Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài 3: Đại lượng tỉ lệ nghịch Toán 7 Chân trời sáng tạo

Trắc nghiệm Bài 3: Đại lượng tỉ lệ nghịch Toán 7 Chân trời sáng tạo

Trắc nghiệm Bài 3: Đại lượng tỉ lệ nghịch Toán 7 Chân trời sáng tạo

Chào mừng các em học sinh đến với bài tập trắc nghiệm Toán 7 Bài 3: Đại lượng tỉ lệ nghịch thuộc chương trình Chân trời sáng tạo. Bài tập này được thiết kế để giúp các em củng cố kiến thức đã học và rèn luyện kỹ năng giải toán.

Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, kèm đáp án chi tiết và lời giải dễ hiểu, giúp các em tự tin hơn trong quá trình học tập.

Đề bài

    Câu 1 :

    Khi có \(y = \dfrac{a}{x}\) ta nói:

    • A.

      \(y\) tỉ lệ với \(x\)

    • B.

      \(y\) tỉ lệ nghịch với \(x\) theo hệ số tỉ lệ \(a\)

    • C.

      \(y\) tỉ lệ thuận với \(x\)

    • D.

      \(x\) tỉ lệ thuận với \(y\)

    Câu 2 :

    Cho \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch và \(y = \dfrac{a}{x}\). Gọi \({x_1};{x_2};{x_3};...\) là các giá trị của \(x\) và \({y_1};{y_2};{y_3};...\) là các giá trị tương ứng của \(y\). Ta có

    • A.

      \({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = ... = \dfrac{1}{a}\)

    • B.

      \(\dfrac{{{x_1}}}{{{x_2}}} = \dfrac{{{y_2}}}{{{y_1}}} = a\)

    • C.

      \({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = ... = a\)

    • D.

      \(\dfrac{{{x_1}}}{{{y_1}}} = \dfrac{{{x_2}}}{{{y_2}}} = a\)

    Câu 3 :

    Cho bảng sau:

    x

    10

    20

    25

    30

    40

    y

    10

    5

    4

    \(\dfrac{{10}}{3}\)

    2,5

    Khi đó:

    • A.

      \(y\) tỉ lệ với \(x\).

    • B.

      \(y\) và \(x\) là hai đại lượng tỉ lệ thuận.

    • C.

      \(y\) và \(x\) là hai đại lượng tỉ lệ nghịch.

    • D.

      \(y\) và \(x\) là hai đại lượng bất kì.

    Câu 4 :

    Cho hai đại lượng tỉ lệ nghịch \(x\) và \(y\); \({x_1}\) và \({x_2}\) là hai giá trị của \(x\); \({y_1}\) và \({y_2}\) là hai giá trị tương ứng của \(y\). Biết \({x_1} = 4,{x_2} = 3\) và \({y_1} + {y_2} = 14\). Khi đó \({y_2} = ?\)

    • A.

      \({y_2} = 5\)

    • B.

      \({y_2} = 7\)

    • C.

      \({y_2} = 6\)

    • D.

      \({y_2} = 8\)

    Câu 5 :

    Cho biết \(y\) tỉ lệ nghịch với \(x\) theo tỉ số \({k_1}\left( {{k_1} \ne 0} \right)\) và \(x\) tỉ lệ nghịch với \(z\) theo tỉ số \({k_2}\left( {{k_2} \ne 0} \right)\). Chọn câu đúng.

    • A.

      \(y\) và \(z\) tỉ lệ nghịch với nhau theo hệ số tỉ lệ \(\dfrac{{{k_1}}}{{{k_2}}}\)

    • B.

      \(y\) và \(z\) tỉ lệ nghịch với nhau theo hệ số tỉ lệ \(\dfrac{{{k_2}}}{{{k_1}}}\)

    • C.

      \(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \({k_1}.{k_2}\)

    • D.

      \(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \(\dfrac{{{k_1}}}{{{k_2}}}\)

    Câu 6 :

    Để hoàn thành một công việc trong \(8\) giờ cần 35 công nhân. Nếu có \(40\)công nhân thì công việc đó được hoàn thành trong mấy giờ?

    • A.

      \(5\) giờ

    • B.

      \(8\) giờ

    • C.

      \(6\) giờ

    • D.

      \(7\)giờ

    Câu 7 :

    Ba đội máy cày, cày trên ba cánh đồng có diện tích như nhau. Đội thứ nhất hoàn thành công việc trong \(4\) ngày, đội thứ hai trong \(7\) ngày và đội thứ \(3\) trong \(9\) ngày. Hỏi đội thứ nhất có bao nhiêu máy cày, biết rằng đội thứ nhất có nhiều hơn đội thứ hai là \(3\) máy và công suất của các máy như nhau?

    • A.

      \(7\) máy

    • B.

      \(11\) máy

    • C.

      \(6\) máy

    • D.

      \(9\) máy

    Câu 8 :

    Để làm một công việc trong \(12\) giờ cần \(45\)công nhân. Nếu số công nhân tăng thêm \(15\) người (với năng suất như sau) thì thời gian để hoàn thành công việc giảm đi mấy giờ?

    • A.

      \(3\)

    • B.

      \(6\)

    • C.

      \(9\)

    • D.

      \(4\)

    Câu 9 :

    Hai xe ô tô cùng đi từ A đến B. Biết vận tốc của ô tô thứ nhất bằng 60% vận tốc của ô tô thứ hai và thời gian xe thứ nhất đi từ A đến B nhiều hơn thời gian ô tô thứ hai đi từ A đến B là 4 giờ. Tính thời gian xe thứ hai đi từ A đến B.

    • A.

      \(3\)

    • B.

      \(6\)

    • C.

      \(9\)

    • D.

      \(4\)

    Lời giải và đáp án

    Câu 1 :

    Khi có \(y = \dfrac{a}{x}\) ta nói:

    • A.

      \(y\) tỉ lệ với \(x\)

    • B.

      \(y\) tỉ lệ nghịch với \(x\) theo hệ số tỉ lệ \(a\)

    • C.

      \(y\) tỉ lệ thuận với \(x\)

    • D.

      \(x\) tỉ lệ thuận với \(y\)

    Đáp án : B

    Phương pháp giải :

    Áp dụng định nghĩa 2 đại lượng tỉ lệ nghịch

    Lời giải chi tiết :

    Nếu đại lượng \(y\) liên hệ với đại lượng \(x\) theo công thức \(y = \dfrac{a}{x}\) thì ta nói \(y\) tỉ lệ nghịch với \(x\) theo hệ số tỉ lệ \(a.\) 

    Câu 2 :

    Cho \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch và \(y = \dfrac{a}{x}\). Gọi \({x_1};{x_2};{x_3};...\) là các giá trị của \(x\) và \({y_1};{y_2};{y_3};...\) là các giá trị tương ứng của \(y\). Ta có

    • A.

      \({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = ... = \dfrac{1}{a}\)

    • B.

      \(\dfrac{{{x_1}}}{{{x_2}}} = \dfrac{{{y_2}}}{{{y_1}}} = a\)

    • C.

      \({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = ... = a\)

    • D.

      \(\dfrac{{{x_1}}}{{{y_1}}} = \dfrac{{{x_2}}}{{{y_2}}} = a\)

    Đáp án : C

    Phương pháp giải :

    Sử dụng tính chất 2 đại lượng tỉ lệ nghịch.

    Lời giải chi tiết :

    Nếu hai đại lượng y và x tỉ lệ nghịch với nhau theo hệ số tỉ lệ \(a\) thì:

    \({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = ... = a\)

    \(\dfrac{{{x_1}}}{{{x_2}}} = \dfrac{{{y_2}}}{{{y_1}}};\dfrac{{{x_1}}}{{{x_3}}} = \dfrac{{{y_3}}}{{{y_1}}};...\)

    Câu 3 :

    Cho bảng sau:

    x

    10

    20

    25

    30

    40

    y

    10

    5

    4

    \(\dfrac{{10}}{3}\)

    2,5

    Khi đó:

    • A.

      \(y\) tỉ lệ với \(x\).

    • B.

      \(y\) và \(x\) là hai đại lượng tỉ lệ thuận.

    • C.

      \(y\) và \(x\) là hai đại lượng tỉ lệ nghịch.

    • D.

      \(y\) và \(x\) là hai đại lượng bất kì.

    Đáp án : C

    Phương pháp giải :

    Xét xem tất cả các tích các giá trị tương ứng của hai đại lượng có bằng nhau không?

    Nếu bằng nhau thì hai đại lượng tỉ lệ nghịch.

    Nếu không bằng nhau thì hai đại lượng không tỉ lệ nghịch.

    Lời giải chi tiết :

    Xét các tích giá trị của \(x\) và \(y\) ta được: \(10.10 = 20.5\) \( = 25.4 = 30.\dfrac{{10}}{3}\) \( = 40.2,5 = 100\).

    Nên \(y\) và \(x\) là hai đại lượng tỉ lệ nghịch.

    Câu 4 :

    Cho hai đại lượng tỉ lệ nghịch \(x\) và \(y\); \({x_1}\) và \({x_2}\) là hai giá trị của \(x\); \({y_1}\) và \({y_2}\) là hai giá trị tương ứng của \(y\). Biết \({x_1} = 4,{x_2} = 3\) và \({y_1} + {y_2} = 14\). Khi đó \({y_2} = ?\)

    • A.

      \({y_2} = 5\)

    • B.

      \({y_2} = 7\)

    • C.

      \({y_2} = 6\)

    • D.

      \({y_2} = 8\)

    Đáp án : D

    Phương pháp giải :

    + Từ tính chất tỉ lệ nghịch ta suy ra tỉ lệ thức.

    +Áp dụng tính chất dãy tỉ số bằng nhau để hoàn thành.

    Lời giải chi tiết :

    Vì \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch nên\({x_1}{y_1} = {x_2}{y_2}\) mà \({x_1} = 4,{x_2} = 3\) và \({y_1} + {y_2} = 14\)

    Do đó \(4{y_1} = 3{y_2} \) suy ra \(\dfrac{{{y_1}}}{3} = \dfrac{{{y_2}}}{4}\)

    Áp dụng tính chất dãy tỉ số bằng nhau ta được:

    \(\dfrac{{{y_1}}}{3} = \dfrac{{{y_2}}}{4} = \dfrac{{{y_1} + {y_2}}}{{3 + 4}} = \dfrac{{14}}{7} = 2\)

    Do đó \(\dfrac{{{y_1}}}{3} = 2 \) suy ra \({y_1} = 2.3 = 6\);

    \(\dfrac{{{y_2}}}{4} = 2 \) suy ra \({y_2} = 2.4 = 8\)

    Vậy \({y_2} = 8.\)

    Câu 5 :

    Cho biết \(y\) tỉ lệ nghịch với \(x\) theo tỉ số \({k_1}\left( {{k_1} \ne 0} \right)\) và \(x\) tỉ lệ nghịch với \(z\) theo tỉ số \({k_2}\left( {{k_2} \ne 0} \right)\). Chọn câu đúng.

    • A.

      \(y\) và \(z\) tỉ lệ nghịch với nhau theo hệ số tỉ lệ \(\dfrac{{{k_1}}}{{{k_2}}}\)

    • B.

      \(y\) và \(z\) tỉ lệ nghịch với nhau theo hệ số tỉ lệ \(\dfrac{{{k_2}}}{{{k_1}}}\)

    • C.

      \(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \({k_1}.{k_2}\)

    • D.

      \(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \(\dfrac{{{k_1}}}{{{k_2}}}\)

    Đáp án : D

    Phương pháp giải :

    Áp dụng tính chất tỉ lệ nghịch và định nghĩa tỉ lệ thuận.

    Lời giải chi tiết :

    Vì \(y\)tỉ lệ nghịch với \(x\) theo tỉ số \({k_1}\left( {{k_1} \ne 0} \right)\) nên \(y = \dfrac{{{k_1}}}{x}\).

    Và \(x\) tỉ lệ nghịch với \(z\) theo tỉ số \({k_2}\left( {{k_2} \ne 0} \right)\) nên \(x = \dfrac{{{k_2}}}{z}\).

    Thay \(x = \dfrac{{{k_2}}}{z}\) vào \(y = \dfrac{{{k_1}}}{x}\) ta được \(y = \dfrac{{{k_1}}}{{\dfrac{{{k_2}}}{z}}} = \dfrac{{{k_1}}}{{{k_2}}}z\).

    Nên \(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \(\dfrac{{{k_1}}}{{{k_2}}}.\)

    Câu 6 :

    Để hoàn thành một công việc trong \(8\) giờ cần 35 công nhân. Nếu có \(40\)công nhân thì công việc đó được hoàn thành trong mấy giờ?

    • A.

      \(5\) giờ

    • B.

      \(8\) giờ

    • C.

      \(6\) giờ

    • D.

      \(7\)giờ

    Đáp án : D

    Phương pháp giải :

    + Xác định rõ các đại lượng có trên đề bài.

    + Xác định tương quan tỉ lệ nghịch giữa hai đại lượng: ở đây thời gian và số công nhân là hai đại lượng tỉ lệ nghịch.

    + Áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ nghịch và tính chất tỉ lệ thức để giải bài toán.

    Lời giải chi tiết :

    Gọi thời gian công nhân làm một công việc đó là \(x\left( {x > 0} \right)\) (giờ)

    Vì số công nhân và thời gian làm của công nhân là hai đại lượng tỉ lệ nghịch, nên theo bài ra ta có:

    8 . 35 = 40.x \( \Rightarrow 280 = 40.x \Rightarrow x = 7\)(giờ) ( thỏa mãn)

    Vậy nếu có \(40\)công nhân thì công việc đó được hoàn thành trong 7 giờ.

    Câu 7 :

    Ba đội máy cày, cày trên ba cánh đồng có diện tích như nhau. Đội thứ nhất hoàn thành công việc trong \(4\) ngày, đội thứ hai trong \(7\) ngày và đội thứ \(3\) trong \(9\) ngày. Hỏi đội thứ nhất có bao nhiêu máy cày, biết rằng đội thứ nhất có nhiều hơn đội thứ hai là \(3\) máy và công suất của các máy như nhau?

    • A.

      \(7\) máy

    • B.

      \(11\) máy

    • C.

      \(6\) máy

    • D.

      \(9\) máy

    Đáp án : A

    Phương pháp giải :

    + Xác định rõ các đại lượng có trên đề bài.

    + Xác định tương quan tỉ lệ nghịch giữa hai đại lượng: ở đây thời gian và số máy cày là hai đại lượng tỉ lệ nghịch.

    + Áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ nghịch và tính chất tỉ lệ thức, tính chất dãy tỉ số bằng nhau để giải bài toán.

    Lời giải chi tiết :

    Gọi số máy cày của ba đội lần lượt là \(x;y;z\,\left( {x;y;z > 0} \right)\).

    Vì diện tích ba cánh đồng là như nhau nên thời gian và số máy cày là hai đại lượng tỉ lệ nghịch.

    Theo bài ra ta có: \(x.4 = y.7 = z.9\) và \(x - y = 3\)

    Suy ra \(\dfrac{x}{7} = \dfrac{y}{4}\) . Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\dfrac{x}{7} = \dfrac{y}{4} = \dfrac{{x - y}}{{7 - 4}} = \dfrac{3}{3} = 1\)

    Do đó \(x = 7;y = 4\) .

    Vậy đội thứ nhất có \(7\) máy.

    Câu 8 :

    Để làm một công việc trong \(12\) giờ cần \(45\)công nhân. Nếu số công nhân tăng thêm \(15\) người (với năng suất như sau) thì thời gian để hoàn thành công việc giảm đi mấy giờ?

    • A.

      \(3\)

    • B.

      \(6\)

    • C.

      \(9\)

    • D.

      \(4\)

    Đáp án : A

    Phương pháp giải :

    + Xác định rõ các đại lượng có trên đề bài.

    + Xác định tương quan tỉ lệ nghịch giữa hai đại lượng: ở đây thời gian và số công nhân là hai đại lượng tỉ lệ nghịch.

    + Áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ nghịch và tính chất tỉ lệ thức, tính chất dãy tỉ số bằng nhau để giải bài toán. 

    Lời giải chi tiết :

    Gọi thời gian để hoàn thành công việc sau khi tăng thêm \(15\) công nhân là \(x\,\left( {0 < x < 12} \right)\) (giờ)

    Từ bài ra ta có số công nhân và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch.

    Nếu tăng thêm \(15\) công nhân thì số công nhân sau khi tăng là \(45 + 15 = 60\) công nhân.

    Theo bài ra ta có:

    \(45.12 = 60.x \Rightarrow 60x = 540 \Rightarrow x = 9\) giờ.

    Do đó thời gian hoàn thành công việc giảm đi \(12 - 9 = 3\) giờ.

    Câu 9 :

    Hai xe ô tô cùng đi từ A đến B. Biết vận tốc của ô tô thứ nhất bằng 60% vận tốc của ô tô thứ hai và thời gian xe thứ nhất đi từ A đến B nhiều hơn thời gian ô tô thứ hai đi từ A đến B là 4 giờ. Tính thời gian xe thứ hai đi từ A đến B.

    • A.

      \(3\)

    • B.

      \(6\)

    • C.

      \(9\)

    • D.

      \(4\)

    Đáp án : B

    Phương pháp giải :

    + Xác định rõ các đại lượng có trên đề bài.

    + Xác định tương quan tỉ lệ nghịch giữa hai đại lượng: ở đây thời gian và vận tốc là hai đại lượng tỉ lệ nghịch.

    + Áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ nghịch và tính chất tỉ lệ thức để giải bài toán. 

    Lời giải chi tiết :

    Gọi \({v_1};{v_2}\) lần lượt là vận tốc của xe thứ nhất và xe thứ hai (km/giờ) \(\left( {{v_1};{v_2} > 0} \right)\)

    Gọi \({t_1};{t_2}\) lần lượt là thời gian của xe thứ nhất và xe thứ hai (giờ) \(\left( {{t_1};{t_2} > 0} \right)\)

    Từ đề bài ta có \({v_1} = \dfrac{{60}}{{100}}{v_2} \Rightarrow {v_1} = \dfrac{3}{5}{v_2}\) và \({t_1} = {t_2} + 4\)

    Vì vận tốc và thời gian là hai đại lượng tỉ lệ nghịch nên ta có

    \({v_1}.{t_1} = {v_2}.{t_2} \Rightarrow \dfrac{3}{5}{v_2}\left( {{t_2} + 4} \right) = {v_2}.{t_2}\) \( \Rightarrow \dfrac{3}{5}{v_2}.{t_2} + \dfrac{{12}}{5}{v_2} = {v_2}.{t_2}\)

    \( \Rightarrow 12{v_2} = 2{v_2}{t_2}\) mà \({v_2} > 0\) nên \({t_2} = \dfrac{{12{v_2}}}{{2{v_2}}} = 6\) ( thỏa mãn)

    Vậy thời gian người thứ hai đi từ A đến B là 6 giờ.

    Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Trắc nghiệm Bài 3: Đại lượng tỉ lệ nghịch Toán 7 Chân trời sáng tạo tại chuyên mục bài tập toán 7 trên toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

    Bài 3: Đại lượng tỉ lệ nghịch Toán 7 Chân trời sáng tạo - Tổng quan

    Trong chương trình Toán 7, bài học về đại lượng tỉ lệ nghịch đóng vai trò quan trọng trong việc xây dựng nền tảng kiến thức về hàm số và các ứng dụng thực tế. Bài 3 trong sách Toán 7 Chân trời sáng tạo tập trung vào việc giúp học sinh hiểu rõ khái niệm, tính chất và cách nhận biết hai đại lượng tỉ lệ nghịch.

    Khái niệm Đại lượng tỉ lệ nghịch

    Hai đại lượng x và y được gọi là tỉ lệ nghịch với nhau nếu tích xy = a (a là một hằng số khác 0). Khi đó, ta có thể viết y = a/x. Hiểu đơn giản, khi một đại lượng tăng lên thì đại lượng còn lại sẽ giảm xuống và ngược lại, với một tỉ số không đổi.

    Tính chất của Đại lượng tỉ lệ nghịch

    • Tích không đổi: xy = a (với a ≠ 0) là tính chất quan trọng nhất của hai đại lượng tỉ lệ nghịch.
    • Khi x tăng, y giảm và ngược lại: Đây là biểu hiện trực quan của mối quan hệ tỉ lệ nghịch.
    • Đồ thị hàm số: Đồ thị của hàm số y = a/x là một đường cong hypebol.

    Cách nhận biết hai đại lượng tỉ lệ nghịch

    Để xác định hai đại lượng x và y có tỉ lệ nghịch hay không, ta cần kiểm tra xem tích xy có là một hằng số khác 0 hay không. Nếu có, thì hai đại lượng đó tỉ lệ nghịch.

    Ví dụ minh họa

    Ví dụ 1: Một người đi xe máy với vận tốc không đổi. Quãng đường đi được và thời gian đi hết là hai đại lượng tỉ lệ nghịch. Nếu vận tốc tăng lên, thời gian đi hết sẽ giảm xuống và ngược lại.

    Ví dụ 2: Diện tích hình chữ nhật không đổi. Chiều dài và chiều rộng của hình chữ nhật là hai đại lượng tỉ lệ nghịch. Nếu chiều dài tăng lên, chiều rộng sẽ giảm xuống và ngược lại.

    Các dạng bài tập Trắc nghiệm thường gặp

    1. Xác định hai đại lượng có tỉ lệ nghịch hay không: Đề bài thường cho bảng số liệu hoặc công thức liên hệ giữa hai đại lượng. Học sinh cần kiểm tra xem tích của hai đại lượng có là một hằng số hay không.
    2. Tìm hệ số tỉ lệ: Khi biết hai giá trị tương ứng của x và y, học sinh có thể tìm hệ số tỉ lệ a bằng công thức a = xy.
    3. Tìm giá trị của đại lượng còn lại: Khi biết một giá trị của x hoặc y và hệ số tỉ lệ a, học sinh có thể tìm giá trị của đại lượng còn lại bằng công thức y = a/x hoặc x = a/y.
    4. Ứng dụng vào bài toán thực tế: Các bài toán thực tế thường yêu cầu học sinh vận dụng kiến thức về đại lượng tỉ lệ nghịch để giải quyết các vấn đề liên quan đến vận tốc, thời gian, quãng đường, diện tích, thể tích,...

    Mẹo giải bài tập Trắc nghiệm

    • Đọc kỹ đề bài: Xác định rõ hai đại lượng cần xét và mối quan hệ giữa chúng.
    • Kiểm tra tích của hai đại lượng: Nếu tích của hai đại lượng là một hằng số, thì hai đại lượng đó tỉ lệ nghịch.
    • Sử dụng công thức: Áp dụng công thức y = a/x hoặc x = a/y để tìm giá trị của đại lượng còn lại.
    • Loại trừ đáp án: Sử dụng các kiến thức đã học để loại trừ các đáp án không hợp lý.

    Luyện tập thêm

    Để nắm vững kiến thức về đại lượng tỉ lệ nghịch, các em nên luyện tập thêm nhiều bài tập khác nhau. Giaitoan.edu.vn cung cấp một kho đề thi trắc nghiệm phong phú, đa dạng, giúp các em rèn luyện kỹ năng giải toán một cách hiệu quả.

    Kết luận

    Bài 3: Đại lượng tỉ lệ nghịch Toán 7 Chân trời sáng tạo là một bài học quan trọng, giúp học sinh hiểu rõ về mối quan hệ giữa hai đại lượng và ứng dụng kiến thức vào giải quyết các bài toán thực tế. Hy vọng với bộ đề trắc nghiệm này, các em sẽ học tập tốt hơn và đạt kết quả cao trong môn Toán.

    Tài liệu, đề thi và đáp án Toán 7