Chào mừng các em học sinh đến với bài tập trắc nghiệm Toán 7 Bài 3: Đại lượng tỉ lệ nghịch thuộc chương trình Chân trời sáng tạo. Bài tập này được thiết kế để giúp các em củng cố kiến thức đã học và rèn luyện kỹ năng giải toán.
Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, kèm đáp án chi tiết và lời giải dễ hiểu, giúp các em tự tin hơn trong quá trình học tập.
Khi có \(y = \dfrac{a}{x}\) ta nói:
\(y\) tỉ lệ với \(x\)
\(y\) tỉ lệ nghịch với \(x\) theo hệ số tỉ lệ \(a\)
\(y\) tỉ lệ thuận với \(x\)
\(x\) tỉ lệ thuận với \(y\)
Cho \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch và \(y = \dfrac{a}{x}\). Gọi \({x_1};{x_2};{x_3};...\) là các giá trị của \(x\) và \({y_1};{y_2};{y_3};...\) là các giá trị tương ứng của \(y\). Ta có
\({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = ... = \dfrac{1}{a}\)
\(\dfrac{{{x_1}}}{{{x_2}}} = \dfrac{{{y_2}}}{{{y_1}}} = a\)
\({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = ... = a\)
\(\dfrac{{{x_1}}}{{{y_1}}} = \dfrac{{{x_2}}}{{{y_2}}} = a\)
Cho bảng sau:
x | 10 | 20 | 25 | 30 | 40 |
y | 10 | 5 | 4 | \(\dfrac{{10}}{3}\) | 2,5 |
Khi đó:
\(y\) tỉ lệ với \(x\).
\(y\) và \(x\) là hai đại lượng tỉ lệ thuận.
\(y\) và \(x\) là hai đại lượng tỉ lệ nghịch.
\(y\) và \(x\) là hai đại lượng bất kì.
Cho hai đại lượng tỉ lệ nghịch \(x\) và \(y\); \({x_1}\) và \({x_2}\) là hai giá trị của \(x\); \({y_1}\) và \({y_2}\) là hai giá trị tương ứng của \(y\). Biết \({x_1} = 4,{x_2} = 3\) và \({y_1} + {y_2} = 14\). Khi đó \({y_2} = ?\)
\({y_2} = 5\)
\({y_2} = 7\)
\({y_2} = 6\)
\({y_2} = 8\)
Cho biết \(y\) tỉ lệ nghịch với \(x\) theo tỉ số \({k_1}\left( {{k_1} \ne 0} \right)\) và \(x\) tỉ lệ nghịch với \(z\) theo tỉ số \({k_2}\left( {{k_2} \ne 0} \right)\). Chọn câu đúng.
\(y\) và \(z\) tỉ lệ nghịch với nhau theo hệ số tỉ lệ \(\dfrac{{{k_1}}}{{{k_2}}}\)
\(y\) và \(z\) tỉ lệ nghịch với nhau theo hệ số tỉ lệ \(\dfrac{{{k_2}}}{{{k_1}}}\)
\(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \({k_1}.{k_2}\)
\(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \(\dfrac{{{k_1}}}{{{k_2}}}\)
Để hoàn thành một công việc trong \(8\) giờ cần 35 công nhân. Nếu có \(40\)công nhân thì công việc đó được hoàn thành trong mấy giờ?
\(5\) giờ
\(8\) giờ
\(6\) giờ
\(7\)giờ
Ba đội máy cày, cày trên ba cánh đồng có diện tích như nhau. Đội thứ nhất hoàn thành công việc trong \(4\) ngày, đội thứ hai trong \(7\) ngày và đội thứ \(3\) trong \(9\) ngày. Hỏi đội thứ nhất có bao nhiêu máy cày, biết rằng đội thứ nhất có nhiều hơn đội thứ hai là \(3\) máy và công suất của các máy như nhau?
\(7\) máy
\(11\) máy
\(6\) máy
\(9\) máy
Để làm một công việc trong \(12\) giờ cần \(45\)công nhân. Nếu số công nhân tăng thêm \(15\) người (với năng suất như sau) thì thời gian để hoàn thành công việc giảm đi mấy giờ?
\(3\)
\(6\)
\(9\)
\(4\)
Hai xe ô tô cùng đi từ A đến B. Biết vận tốc của ô tô thứ nhất bằng 60% vận tốc của ô tô thứ hai và thời gian xe thứ nhất đi từ A đến B nhiều hơn thời gian ô tô thứ hai đi từ A đến B là 4 giờ. Tính thời gian xe thứ hai đi từ A đến B.
\(3\)
\(6\)
\(9\)
\(4\)
Lời giải và đáp án
Khi có \(y = \dfrac{a}{x}\) ta nói:
\(y\) tỉ lệ với \(x\)
\(y\) tỉ lệ nghịch với \(x\) theo hệ số tỉ lệ \(a\)
\(y\) tỉ lệ thuận với \(x\)
\(x\) tỉ lệ thuận với \(y\)
Đáp án : B
Áp dụng định nghĩa 2 đại lượng tỉ lệ nghịch
Nếu đại lượng \(y\) liên hệ với đại lượng \(x\) theo công thức \(y = \dfrac{a}{x}\) thì ta nói \(y\) tỉ lệ nghịch với \(x\) theo hệ số tỉ lệ \(a.\)
Cho \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch và \(y = \dfrac{a}{x}\). Gọi \({x_1};{x_2};{x_3};...\) là các giá trị của \(x\) và \({y_1};{y_2};{y_3};...\) là các giá trị tương ứng của \(y\). Ta có
\({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = ... = \dfrac{1}{a}\)
\(\dfrac{{{x_1}}}{{{x_2}}} = \dfrac{{{y_2}}}{{{y_1}}} = a\)
\({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = ... = a\)
\(\dfrac{{{x_1}}}{{{y_1}}} = \dfrac{{{x_2}}}{{{y_2}}} = a\)
Đáp án : C
Sử dụng tính chất 2 đại lượng tỉ lệ nghịch.
Nếu hai đại lượng y và x tỉ lệ nghịch với nhau theo hệ số tỉ lệ \(a\) thì:
\({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = ... = a\)
\(\dfrac{{{x_1}}}{{{x_2}}} = \dfrac{{{y_2}}}{{{y_1}}};\dfrac{{{x_1}}}{{{x_3}}} = \dfrac{{{y_3}}}{{{y_1}}};...\)
Cho bảng sau:
x | 10 | 20 | 25 | 30 | 40 |
y | 10 | 5 | 4 | \(\dfrac{{10}}{3}\) | 2,5 |
Khi đó:
\(y\) tỉ lệ với \(x\).
\(y\) và \(x\) là hai đại lượng tỉ lệ thuận.
\(y\) và \(x\) là hai đại lượng tỉ lệ nghịch.
\(y\) và \(x\) là hai đại lượng bất kì.
Đáp án : C
Xét xem tất cả các tích các giá trị tương ứng của hai đại lượng có bằng nhau không?
Nếu bằng nhau thì hai đại lượng tỉ lệ nghịch.
Nếu không bằng nhau thì hai đại lượng không tỉ lệ nghịch.
Xét các tích giá trị của \(x\) và \(y\) ta được: \(10.10 = 20.5\) \( = 25.4 = 30.\dfrac{{10}}{3}\) \( = 40.2,5 = 100\).
Nên \(y\) và \(x\) là hai đại lượng tỉ lệ nghịch.
Cho hai đại lượng tỉ lệ nghịch \(x\) và \(y\); \({x_1}\) và \({x_2}\) là hai giá trị của \(x\); \({y_1}\) và \({y_2}\) là hai giá trị tương ứng của \(y\). Biết \({x_1} = 4,{x_2} = 3\) và \({y_1} + {y_2} = 14\). Khi đó \({y_2} = ?\)
\({y_2} = 5\)
\({y_2} = 7\)
\({y_2} = 6\)
\({y_2} = 8\)
Đáp án : D
+ Từ tính chất tỉ lệ nghịch ta suy ra tỉ lệ thức.
+Áp dụng tính chất dãy tỉ số bằng nhau để hoàn thành.
Vì \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch nên\({x_1}{y_1} = {x_2}{y_2}\) mà \({x_1} = 4,{x_2} = 3\) và \({y_1} + {y_2} = 14\)
Do đó \(4{y_1} = 3{y_2} \) suy ra \(\dfrac{{{y_1}}}{3} = \dfrac{{{y_2}}}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{{{y_1}}}{3} = \dfrac{{{y_2}}}{4} = \dfrac{{{y_1} + {y_2}}}{{3 + 4}} = \dfrac{{14}}{7} = 2\)
Do đó \(\dfrac{{{y_1}}}{3} = 2 \) suy ra \({y_1} = 2.3 = 6\);
\(\dfrac{{{y_2}}}{4} = 2 \) suy ra \({y_2} = 2.4 = 8\)
Vậy \({y_2} = 8.\)
Cho biết \(y\) tỉ lệ nghịch với \(x\) theo tỉ số \({k_1}\left( {{k_1} \ne 0} \right)\) và \(x\) tỉ lệ nghịch với \(z\) theo tỉ số \({k_2}\left( {{k_2} \ne 0} \right)\). Chọn câu đúng.
\(y\) và \(z\) tỉ lệ nghịch với nhau theo hệ số tỉ lệ \(\dfrac{{{k_1}}}{{{k_2}}}\)
\(y\) và \(z\) tỉ lệ nghịch với nhau theo hệ số tỉ lệ \(\dfrac{{{k_2}}}{{{k_1}}}\)
\(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \({k_1}.{k_2}\)
\(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \(\dfrac{{{k_1}}}{{{k_2}}}\)
Đáp án : D
Áp dụng tính chất tỉ lệ nghịch và định nghĩa tỉ lệ thuận.
Vì \(y\)tỉ lệ nghịch với \(x\) theo tỉ số \({k_1}\left( {{k_1} \ne 0} \right)\) nên \(y = \dfrac{{{k_1}}}{x}\).
Và \(x\) tỉ lệ nghịch với \(z\) theo tỉ số \({k_2}\left( {{k_2} \ne 0} \right)\) nên \(x = \dfrac{{{k_2}}}{z}\).
Thay \(x = \dfrac{{{k_2}}}{z}\) vào \(y = \dfrac{{{k_1}}}{x}\) ta được \(y = \dfrac{{{k_1}}}{{\dfrac{{{k_2}}}{z}}} = \dfrac{{{k_1}}}{{{k_2}}}z\).
Nên \(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \(\dfrac{{{k_1}}}{{{k_2}}}.\)
Để hoàn thành một công việc trong \(8\) giờ cần 35 công nhân. Nếu có \(40\)công nhân thì công việc đó được hoàn thành trong mấy giờ?
\(5\) giờ
\(8\) giờ
\(6\) giờ
\(7\)giờ
Đáp án : D
+ Xác định rõ các đại lượng có trên đề bài.
+ Xác định tương quan tỉ lệ nghịch giữa hai đại lượng: ở đây thời gian và số công nhân là hai đại lượng tỉ lệ nghịch.
+ Áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ nghịch và tính chất tỉ lệ thức để giải bài toán.
Gọi thời gian công nhân làm một công việc đó là \(x\left( {x > 0} \right)\) (giờ)
Vì số công nhân và thời gian làm của công nhân là hai đại lượng tỉ lệ nghịch, nên theo bài ra ta có:
8 . 35 = 40.x \( \Rightarrow 280 = 40.x \Rightarrow x = 7\)(giờ) ( thỏa mãn)
Vậy nếu có \(40\)công nhân thì công việc đó được hoàn thành trong 7 giờ.
Ba đội máy cày, cày trên ba cánh đồng có diện tích như nhau. Đội thứ nhất hoàn thành công việc trong \(4\) ngày, đội thứ hai trong \(7\) ngày và đội thứ \(3\) trong \(9\) ngày. Hỏi đội thứ nhất có bao nhiêu máy cày, biết rằng đội thứ nhất có nhiều hơn đội thứ hai là \(3\) máy và công suất của các máy như nhau?
\(7\) máy
\(11\) máy
\(6\) máy
\(9\) máy
Đáp án : A
+ Xác định rõ các đại lượng có trên đề bài.
+ Xác định tương quan tỉ lệ nghịch giữa hai đại lượng: ở đây thời gian và số máy cày là hai đại lượng tỉ lệ nghịch.
+ Áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ nghịch và tính chất tỉ lệ thức, tính chất dãy tỉ số bằng nhau để giải bài toán.
Gọi số máy cày của ba đội lần lượt là \(x;y;z\,\left( {x;y;z > 0} \right)\).
Vì diện tích ba cánh đồng là như nhau nên thời gian và số máy cày là hai đại lượng tỉ lệ nghịch.
Theo bài ra ta có: \(x.4 = y.7 = z.9\) và \(x - y = 3\)
Suy ra \(\dfrac{x}{7} = \dfrac{y}{4}\) . Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\dfrac{x}{7} = \dfrac{y}{4} = \dfrac{{x - y}}{{7 - 4}} = \dfrac{3}{3} = 1\)
Do đó \(x = 7;y = 4\) .
Vậy đội thứ nhất có \(7\) máy.
Để làm một công việc trong \(12\) giờ cần \(45\)công nhân. Nếu số công nhân tăng thêm \(15\) người (với năng suất như sau) thì thời gian để hoàn thành công việc giảm đi mấy giờ?
\(3\)
\(6\)
\(9\)
\(4\)
Đáp án : A
+ Xác định rõ các đại lượng có trên đề bài.
+ Xác định tương quan tỉ lệ nghịch giữa hai đại lượng: ở đây thời gian và số công nhân là hai đại lượng tỉ lệ nghịch.
+ Áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ nghịch và tính chất tỉ lệ thức, tính chất dãy tỉ số bằng nhau để giải bài toán.
Gọi thời gian để hoàn thành công việc sau khi tăng thêm \(15\) công nhân là \(x\,\left( {0 < x < 12} \right)\) (giờ)
Từ bài ra ta có số công nhân và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch.
Nếu tăng thêm \(15\) công nhân thì số công nhân sau khi tăng là \(45 + 15 = 60\) công nhân.
Theo bài ra ta có:
\(45.12 = 60.x \Rightarrow 60x = 540 \Rightarrow x = 9\) giờ.
Do đó thời gian hoàn thành công việc giảm đi \(12 - 9 = 3\) giờ.
Hai xe ô tô cùng đi từ A đến B. Biết vận tốc của ô tô thứ nhất bằng 60% vận tốc của ô tô thứ hai và thời gian xe thứ nhất đi từ A đến B nhiều hơn thời gian ô tô thứ hai đi từ A đến B là 4 giờ. Tính thời gian xe thứ hai đi từ A đến B.
\(3\)
\(6\)
\(9\)
\(4\)
Đáp án : B
+ Xác định rõ các đại lượng có trên đề bài.
+ Xác định tương quan tỉ lệ nghịch giữa hai đại lượng: ở đây thời gian và vận tốc là hai đại lượng tỉ lệ nghịch.
+ Áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ nghịch và tính chất tỉ lệ thức để giải bài toán.
Gọi \({v_1};{v_2}\) lần lượt là vận tốc của xe thứ nhất và xe thứ hai (km/giờ) \(\left( {{v_1};{v_2} > 0} \right)\)
Gọi \({t_1};{t_2}\) lần lượt là thời gian của xe thứ nhất và xe thứ hai (giờ) \(\left( {{t_1};{t_2} > 0} \right)\)
Từ đề bài ta có \({v_1} = \dfrac{{60}}{{100}}{v_2} \Rightarrow {v_1} = \dfrac{3}{5}{v_2}\) và \({t_1} = {t_2} + 4\)
Vì vận tốc và thời gian là hai đại lượng tỉ lệ nghịch nên ta có
\({v_1}.{t_1} = {v_2}.{t_2} \Rightarrow \dfrac{3}{5}{v_2}\left( {{t_2} + 4} \right) = {v_2}.{t_2}\) \( \Rightarrow \dfrac{3}{5}{v_2}.{t_2} + \dfrac{{12}}{5}{v_2} = {v_2}.{t_2}\)
\( \Rightarrow 12{v_2} = 2{v_2}{t_2}\) mà \({v_2} > 0\) nên \({t_2} = \dfrac{{12{v_2}}}{{2{v_2}}} = 6\) ( thỏa mãn)
Vậy thời gian người thứ hai đi từ A đến B là 6 giờ.
Trong chương trình Toán 7, bài học về đại lượng tỉ lệ nghịch đóng vai trò quan trọng trong việc xây dựng nền tảng kiến thức về hàm số và các ứng dụng thực tế. Bài 3 trong sách Toán 7 Chân trời sáng tạo tập trung vào việc giúp học sinh hiểu rõ khái niệm, tính chất và cách nhận biết hai đại lượng tỉ lệ nghịch.
Hai đại lượng x và y được gọi là tỉ lệ nghịch với nhau nếu tích xy = a (a là một hằng số khác 0). Khi đó, ta có thể viết y = a/x. Hiểu đơn giản, khi một đại lượng tăng lên thì đại lượng còn lại sẽ giảm xuống và ngược lại, với một tỉ số không đổi.
Để xác định hai đại lượng x và y có tỉ lệ nghịch hay không, ta cần kiểm tra xem tích xy có là một hằng số khác 0 hay không. Nếu có, thì hai đại lượng đó tỉ lệ nghịch.
Ví dụ 1: Một người đi xe máy với vận tốc không đổi. Quãng đường đi được và thời gian đi hết là hai đại lượng tỉ lệ nghịch. Nếu vận tốc tăng lên, thời gian đi hết sẽ giảm xuống và ngược lại.
Ví dụ 2: Diện tích hình chữ nhật không đổi. Chiều dài và chiều rộng của hình chữ nhật là hai đại lượng tỉ lệ nghịch. Nếu chiều dài tăng lên, chiều rộng sẽ giảm xuống và ngược lại.
Để nắm vững kiến thức về đại lượng tỉ lệ nghịch, các em nên luyện tập thêm nhiều bài tập khác nhau. Giaitoan.edu.vn cung cấp một kho đề thi trắc nghiệm phong phú, đa dạng, giúp các em rèn luyện kỹ năng giải toán một cách hiệu quả.
Bài 3: Đại lượng tỉ lệ nghịch Toán 7 Chân trời sáng tạo là một bài học quan trọng, giúp học sinh hiểu rõ về mối quan hệ giữa hai đại lượng và ứng dụng kiến thức vào giải quyết các bài toán thực tế. Hy vọng với bộ đề trắc nghiệm này, các em sẽ học tập tốt hơn và đạt kết quả cao trong môn Toán.