Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo

Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo

Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng - Toán 7 Chân trời sáng tạo

Chào mừng bạn đến với bài trắc nghiệm Toán 7 Bài 4, chương trình Chân trời sáng tạo. Bài tập này sẽ giúp bạn củng cố kiến thức về cách tính diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác.

Hãy cùng giaitoan.edu.vn kiểm tra khả năng của bạn qua những câu hỏi trắc nghiệm được thiết kế một cách khoa học và bám sát chương trình học nhé!

Đề bài

    Câu 1 :

    Một lăng trụ đứng có đáy là hình chữ nhật có các kích thức $3$ cm, $8$ cm. Chiều cao của hình lăng trụ đứng là $2$cm. Tính diện tích xung quanh và thể tích của hình lăng trụ đứng.

    • A.

      \(48\;c{m^2},\;46\;c{m^3}\) 

    • B.

      \(48\;c{m^2},\;44\;c{m^3}\)

    • C.

      \(46\;c{m^2},\;48\;c{m^3}\) 

    • D.

      \(44\;c{m^2},\;48\;c{m^3}\)

    Câu 2 :

    Tính thể tích của hình lăng trụ đứng sau:

    Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 1
    • A.

      \(16\;c{m^3}\)

    • B.

      \(20\;c{m^3}\)

    • C.

      \(26\;c{m^3}\)

    • D.

      \(22\;c{m^3}\)

    Câu 3 :

    Cho một hình lăng trụ đứng có diện tích đáy là $S$ , chiều cao là $h$ . Hỏi công thức tính thể tích hình lăng trụ đứng là gì?

    • A.

      $S.h\;\;\;\;\;\;$

    • B.

      \(\dfrac{1}{2}S.h\)

    • C.

      $2S.h$

    • D.

      $3S.h$

    Câu 4 :

    Tính thể tích của hình lăng trụ đứng có chiều cao $20\,{\rm{cm}}$, đáy là một tam giác vuông có các cạnh góc vuông bằng $8\,{\rm{cm}}$ và $10\,{\rm{cm}}$.

    • A.

      \(800\,c{m^3}\) 

    • B.

      \(400\,c{m^3}\)

    • C.

      \(600\,c{m^3}\)

    • D.

      \(500\,c{m^3}\)

    Câu 5 :

    Cho hình lăng trụ tam giác đều $ABC.A'B'C'$ có chiều cao bằng $2cm$ , \(\widehat {BAB'} = {45^0}\) . Tính diện tích xung quanh của hình lăng trụ.

    • A.

      \(15\,c{m^2}\) 

    • B.

      \(6\,c{m^2}\)

    • C.

      \(12\,c{m^2}\)

    • D.

      \(16\,c{m^2}\)

    Câu 6 :

    Một hình hộp chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng $6\,cm$ . Một kích thước của đáy bằng $10\,cm$ , tính kích thước còn lại.

    Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 2
    • A.

      \(15\,cm\) 

    • B.

      \(20\,cm\)

    • C.

      \(25\,cm\)

    • D.

      \(10\,cm\)

    Câu 7 :

    Một hình hộp chữ nhật có diện tích xung quanh bằng $120\,c{m^2}$ , chiều cao bằng $6cm$ . Tìm các kích thước của đáy để hình hộp chữ nhật có thể tích lớn nhất.

    • A.

      \(8\,cm\) 

    • B.

      \(7\,cm\)

    • C.

      \(6\,cm\)

    • D.

      \(5\,cm\)

    Câu 8 :

    Một hình lăng trụ đứng có đáy là hình chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng \(6cm\). Một kích thước của đáy bằng \(10cm\), tính kích thước còn lại.

    • A.

      \(15cm\)

    • B.

      \(20cm\)

    • C.

      \(25cm\)

    • D.

      \(10cm\)

    Câu 9 :

    Một hình lăng trụ đều (tức là lăng trụ có đáy là đa giác đều) có tất cả \(18\) cạnh, mỗi cạnh dài \(6\sqrt 3 \) cm. Tính thể tích của hình lăng trụ đó.

    • A.

      864 cm3

    • B.

      1944 cm3

    • C.

      2916 cm3

    • D.

      1122 cm3

    Câu 10 :

    Cho hình lăng trụ đứng có diện tích xung quanh bằng 336 cm2, chiều cao 14 cm. Khi đó, chu vi đáy của hình lăng trụ đứng là:

    • A.

      \(12cm\)

    • B.

      \(24cm\)

    • C.

      \(36cm\)

    • D.

      \(48cm\)

    Câu 11 :

    Một hình lăng trụ đứng có đáy là hình chữ nhật có các kích thước \(3cm,\,\,8cm\). Chiều cao của hình lăng trụ đứng là \(2cm\). Diện tích xung quanh của hình lăng trụ đứng là

    • A.

      \(44c{m^2}\)

    • B.

      \(24c{m^2}\)

    • C.

      \(48c{m^2}\)

    • D.

      \(22c{m^2}\)

    Câu 12 :

    Một chiếc đèn lồng có dạng hình lăng trụ đứng, chiều cao \(40cm\) và đáy là lục giác đều cạnh \(18cm\). Nếu giữ nguyên chiều cao của đèn thì phải giảm độ dài cạnh đáy bao nhiêu lần để thể tích của đèn giảm đi hai lần.

    • A.

      \(\sqrt 2 \)lần

    • B.

      2 lần

    • C.

      4 lần

    • D.

      8 lần

    Câu 13 :

    Tính thể tích phần không gian của một ngôi nhà dạng một lăng trụ đứng theo các kích thước đã cho trong hình.

    Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 3

    • A.

      369 m3

    • B.

      315 m3

    • C.

      327 m3

    • D.

      423 m3

    Câu 14 :

    Tính thể tích của hình lăng trụ đứng có chiều cao \(20cm\), đáy là một tam giác vuông có các cạnh góc vuông lần lượt là \(8cm\) và \(10cm\).

    • A.

      \(800c{m^3}\)

    • B.

      \(400c{m^3}\)

    • C.

      \(600c{m^3}\)

    • D.

      \(500c{m^3}\)

    Lời giải và đáp án

    Câu 1 :

    Một lăng trụ đứng có đáy là hình chữ nhật có các kích thức $3$ cm, $8$ cm. Chiều cao của hình lăng trụ đứng là $2$cm. Tính diện tích xung quanh và thể tích của hình lăng trụ đứng.

    • A.

      \(48\;c{m^2},\;46\;c{m^3}\) 

    • B.

      \(48\;c{m^2},\;44\;c{m^3}\)

    • C.

      \(46\;c{m^2},\;48\;c{m^3}\) 

    • D.

      \(44\;c{m^2},\;48\;c{m^3}\)

    Đáp án : D

    Phương pháp giải :

    - Áp dụng công thức tính diện tích xung quanh hình lăng trụ đứng và thể tích hình lăng trụ đứng để giải bài toán: \({S_{xq}} = 2\left( {a + b} \right)c,\;\;V = abc.\)

    Lời giải chi tiết :
    Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 4

    Diện tích xung quanh \({S_{xq}} = 2.(8 + 3).2 = 44\;c{m^2}\)

    Thể tích của hình lăng trụ đứng là:\(V = 8.3.2 = 48\;c{m^3}\)

    Câu 2 :

    Tính thể tích của hình lăng trụ đứng sau:

    Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 5
    • A.

      \(16\;c{m^3}\)

    • B.

      \(20\;c{m^3}\)

    • C.

      \(26\;c{m^3}\)

    • D.

      \(22\;c{m^3}\)

    Đáp án : D

    Phương pháp giải :

    - Chia hình lăng trụ đứng thành các hình hộp chữ nhật nhỏ hơn, sau đó tính thể tích từng hình hộp chữ nhật nhỏ.

    - Tính được thể tích lăng trụ đứng bằng tổng thể tích các hình hộp chữ nhật nhỏ

    Lời giải chi tiết :
    Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 6

    Hình lăng trụ đứng đã cho được tạo thành từ 2 hình hộp chữ nhật. Hình hộp chữ nhật thứ nhất có kích thước là

    \(3cm,\;\;1cm,\;\;2cm;\) hình hộp chữ nhật thứ hai có kích thước là \(2cm,\;\;4cm,\;\;2cm.\)

    Thể tích hình hộp chữ nhật thứ nhất là: \({V_1} = 3.1.2 = 6\;c{m^3}\)

    Thể tích hình hộp chữ nhật thứ hai là: \({V_2} = 2.4.2 = 16\;c{m^3}\)

    Thể tích hình lăng trụ đứng là: \(V = {V_1} + {V_2} = 6 + 16 = 22\;c{m^3}\)

    Câu 3 :

    Cho một hình lăng trụ đứng có diện tích đáy là $S$ , chiều cao là $h$ . Hỏi công thức tính thể tích hình lăng trụ đứng là gì?

    • A.

      $S.h\;\;\;\;\;\;$

    • B.

      \(\dfrac{1}{2}S.h\)

    • C.

      $2S.h$

    • D.

      $3S.h$

    Đáp án : A

    Lời giải chi tiết :

    Công thức tính thể tích hình lăng trụ đứng là: $V = S.h$

    Câu 4 :

    Tính thể tích của hình lăng trụ đứng có chiều cao $20\,{\rm{cm}}$, đáy là một tam giác vuông có các cạnh góc vuông bằng $8\,{\rm{cm}}$ và $10\,{\rm{cm}}$.

    • A.

      \(800\,c{m^3}\) 

    • B.

      \(400\,c{m^3}\)

    • C.

      \(600\,c{m^3}\)

    • D.

      \(500\,c{m^3}\)

    Đáp án : A

    Phương pháp giải :

    Sử dụng công thức tính thể tích hình lăng trụ đứng \(V = S.h\) với \(S\) là diện tích đáy, \(h\) là chiều cao.

    Lời giải chi tiết :

    Vì đáy là tam giác vuông nên diện tích đáy \(S = \dfrac{{8.10}}{2} = 40\,cm\) .

    Thể tích lăng trụ đứng là \(V = S.h = 40.20 = 800\,c{m^3}\) .

    Câu 5 :

    Cho hình lăng trụ tam giác đều $ABC.A'B'C'$ có chiều cao bằng $2cm$ , \(\widehat {BAB'} = {45^0}\) . Tính diện tích xung quanh của hình lăng trụ.

    • A.

      \(15\,c{m^2}\) 

    • B.

      \(6\,c{m^2}\)

    • C.

      \(12\,c{m^2}\)

    • D.

      \(16\,c{m^2}\)

    Đáp án : C

    Phương pháp giải :

    + Từ các điều kiện của đề bài tính chiều cao của lăng trụ

    + Sử dụng công thức tính diện tích xung quanh lăng trụ để tính toán.

    Lời giải chi tiết :
    Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 7

    Tam giác vuông $ABB'$ có \(\widehat {BAB'} = {45^0}\) nên là tam giác vuông cân tại \(B\) nên $AB = BB' = 2cm$ .

    Vì tam giác \(ABC\) đều nên chu vi đáy bằng $3AB = 3.2 = 6cm$

    Diện tích xung quanh bằng $6.2 = 12\left( {c{m^2}} \right).$

    Câu 6 :

    Một hình hộp chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng $6\,cm$ . Một kích thước của đáy bằng $10\,cm$ , tính kích thước còn lại.

    Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 8
    • A.

      \(15\,cm\) 

    • B.

      \(20\,cm\)

    • C.

      \(25\,cm\)

    • D.

      \(10\,cm\)

    Đáp án : A

    Lời giải chi tiết :
    Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 9

    Đặt $AD = x$ .

    Diện tích xung quanh bằng:

    $2\left( {10 + x} \right).6\left( {c{m^2}} \right)$

    Tổng diện tích hai đáy bằng $2.10x\left( {c{m^2}} \right)$

    Ta có $2\left( {10 + x} \right).6{\rm{ }} = {\rm{ }}2.10x \Leftrightarrow 60 + 6x = 10x \Leftrightarrow x = 15$

    Kích thước còn lại của đáy bằng $15cm$ .

    Câu 7 :

    Một hình hộp chữ nhật có diện tích xung quanh bằng $120\,c{m^2}$ , chiều cao bằng $6cm$ . Tìm các kích thước của đáy để hình hộp chữ nhật có thể tích lớn nhất.

    • A.

      \(8\,cm\) 

    • B.

      \(7\,cm\)

    • C.

      \(6\,cm\)

    • D.

      \(5\,cm\)

    Đáp án : D

    Phương pháp giải :

    + Sử dụng công thức thể tích và diện tích xung quanh của hình hộp chữ nhật.

    + Dùng hằng đẳng thức để biện luận theo yêu cầu đề bài.

    Lời giải chi tiết :

    Gọi $a$ và $b$ là các kích thước của đáy.

    Ta có $V = 6ab$ nên $V$ lớn nhất \( \Leftrightarrow \) $ab$ lớn nhất

    \({S_{xq}} = 120\) nên \(2\left( {a + b} \right).6 = 120\) hay \(a + b = 10\).

    Ta có: \(ab = a\left( {10 - a} \right) = - {a^2} + 10a = - {\left( {a - 5} \right)^2} + 25 \le 25\).

    Suy ra \(V = 6ab \le 6.25 = 150\).

    Thể tích lớn nhất bằng \(150\) \({\rm{c}}{{\rm{m}}^3}\) khi \(a = b = 5\), tức là các cạnh đáy bằng $5$ cm.

    Câu 8 :

    Một hình lăng trụ đứng có đáy là hình chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng \(6cm\). Một kích thước của đáy bằng \(10cm\), tính kích thước còn lại.

    • A.

      \(15cm\)

    • B.

      \(20cm\)

    • C.

      \(25cm\)

    • D.

      \(10cm\)

    Đáp án : A

    Phương pháp giải :

    Sử dụng công thức diện tích xung quanh của hình lăng trụ đứng:

    \({S_{xq}} = C.h\)

    Trong đó, \(C\) là chu vi đáy; \(h\) là chiều cao

    Lời giải chi tiết :

    Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 10

    Đặt \(AD = x\left( {cm} \right)\).

    Chu vi đáy của hình lăng trụ là: \(C = 2(AB + AD) = 2(10+x) (cm)\)

    Diện tích xung quanh của hình lăng trụ là: 

    \({S_{xq}} = C.h\)\( = 2.\left( {10 + {\rm{ }}x} \right).6\)\( = 12.\left( {10 + {\rm{ }}x} \right)\,\,\left( {c{m^2}} \right)\)

    Tổng diện tích hai đáy của hình lăng trụ là: \(2.10x = 20x\,\,(c{m^2})\)

    Theo đề bài, ta có diện tích xung quanh bằng tổng diện tích hai đáy nên \(12.\left( {10 + x} \right) = 20x\)

    Do đó \(120 + 12x = 20x\)

    Suy ra \(x = 15\,\left( {cm} \right)\)

    hay \(AD = 15\left( {cm} \right)\)

    Vậy kích thước còn lại của đáy bằng 15 cm.

    Câu 9 :

    Một hình lăng trụ đều (tức là lăng trụ có đáy là đa giác đều) có tất cả \(18\) cạnh, mỗi cạnh dài \(6\sqrt 3 \) cm. Tính thể tích của hình lăng trụ đó.

    • A.

      864 cm3

    • B.

      1944 cm3

    • C.

      2916 cm3

    • D.

      1122 cm3

    Đáp án : C

    Phương pháp giải :

    Để tìm được thể tích lăng trụ đứng khi đã biết chiều cao, ta cần tính diện tích đáy.

    Thể tích = diện tích đáy . chiều cao

    Lời giải chi tiết :

    Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 11

    Gọi số cạnh của một đáy là \(n\). Khi đó số cạnh bên là \(n\).

    Suy ra, tổng số cạnh của hình lăng trụ đứng là \(n + n + n = 3n\).

    Theo đề bài, hình lăng trụ đều có tất cả 18 cạnh, ta có: \(3n = 18 \Rightarrow n = 6.\)

    Vậy hình lăng trụ đứng đã cho là hình lăng trụ lục giác đều.

    Có thể coi diện tích đáy là tổng diện tích của 6 tam giác đều, mỗi cạnh bằng \(6\sqrt 3 \) cm.

    Do đó diện tích đáy là: \(S = \frac{{{{\left( {6\sqrt 3 } \right)}^2}.\sqrt 3 }}{4}.6 = 162\sqrt 3 \) ( cm2)

    Thể tích hình lăng trụ là: \(V = S.h = 162\sqrt 3 .6\sqrt 3 \)= 2916 ( cm3)

    Thể tích hình lăng trụ là 2916 ( cm3).

    Câu 10 :

    Cho hình lăng trụ đứng có diện tích xung quanh bằng 336 cm2, chiều cao 14 cm. Khi đó, chu vi đáy của hình lăng trụ đứng là:

    • A.

      \(12cm\)

    • B.

      \(24cm\)

    • C.

      \(36cm\)

    • D.

      \(48cm\)

    Đáp án : B

    Phương pháp giải :

    Từ công thức Sxq = Chu vi đáy . chiều cao suy ra chu vi đáy

    Lời giải chi tiết :

    Chu vi đáy của hình lăng trụ đứng đó là:

    C = Sxq : h = 336 : 14 = 24 (cm)

    Câu 11 :

    Một hình lăng trụ đứng có đáy là hình chữ nhật có các kích thước \(3cm,\,\,8cm\). Chiều cao của hình lăng trụ đứng là \(2cm\). Diện tích xung quanh của hình lăng trụ đứng là

    • A.

      \(44c{m^2}\)

    • B.

      \(24c{m^2}\)

    • C.

      \(48c{m^2}\)

    • D.

      \(22c{m^2}\)

    Đáp án : A

    Phương pháp giải :

    + Tính chu vi đáy là hình chữ nhật

    + Tính Sxq = chu vi đáy . chiều cao

    Lời giải chi tiết :

    Chu vi đáy của hình lăng trụ đứng là: \(\left( {8 + 3} \right).2 = 22\left( {cm} \right)\)

    Diện tích xung quanh của hình lăng trụ đứng là: \({S_{xq}} = C.h = 22.2 = 44\,\,\left( {c{m^2}} \right)\)

    Vậy diện tích xung quanh của hình lăng trụ đứng là \(44\,\,\left( {c{m^2}} \right)\)

    Câu 12 :

    Một chiếc đèn lồng có dạng hình lăng trụ đứng, chiều cao \(40cm\) và đáy là lục giác đều cạnh \(18cm\). Nếu giữ nguyên chiều cao của đèn thì phải giảm độ dài cạnh đáy bao nhiêu lần để thể tích của đèn giảm đi hai lần.

    • A.

      \(\sqrt 2 \)lần

    • B.

      2 lần

    • C.

      4 lần

    • D.

      8 lần

    Đáp án : A

    Phương pháp giải :

    Lập tỉ số thể tích trước và sau khi giảm độ dài cạnh đáy.

    Lời giải chi tiết :

    Diện tích đáy đèn là: \(S = \frac{{{a^2}\sqrt 3 }}{4}.6\)\( = \frac{{{{18}^2}\sqrt 3 }}{4}.6 = 486\sqrt 3 \,\,\left( {c{m^2}} \right)\)

    Gọi \(a\) và \(b\) lần lượt là độ dài cạnh đáy đèn lồng trước và sau khi giảm thể tích.

    Gọi \({S_1}\) và \({S_2}\) là các diện tích đáy tương ứng. Khi đó: \({V_1} = {S_1}.h;\,\,{V_2} = {S_2}.h\)

    Ta có: \(\frac{{{V_1}}}{{{V_2}}} = 2 \Leftrightarrow \frac{{{S_1}.h}}{{{S_2}.h}} = 2\)\( \Leftrightarrow \frac{{{S_1}}}{{{S_2}}} = 2\)

    \( \Leftrightarrow \frac{{{a^2}\sqrt 3 .6}}{4}:\frac{{{b^2}\sqrt 3 .6}}{4} = 2\)\( \Leftrightarrow {a^2}:{b^2} = 2\)\( \Leftrightarrow a:b = \sqrt 2 \)

    Vậy độ dài cạnh đáy phải giảm đi \(\sqrt 2 \) lần.

    Câu 13 :

    Tính thể tích phần không gian của một ngôi nhà dạng một lăng trụ đứng theo các kích thước đã cho trong hình.

    Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 12

    • A.

      369 m3

    • B.

      315 m3

    • C.

      327 m3

    • D.

      423 m3

    Đáp án : A

    Phương pháp giải :

    Tính tổng của thể tích hình lăng trụ và thể tích hình hộp chữ nhật.

    Lời giải chi tiết :

    Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 13

    Theọ hình vẽ, ngôi nhà gồm hai phần: một phần là lăng trụ đứng có đáy là tam giác cân cạnh đáy bằng \(6m\), chiều cao đáy \(1,2m\), chiều cao lăng trụ bằng \(15m\); phần còn lại là hình hộp chữ nhật có kích thước đáy là \(6m\) và \(15m\), chiều cao \(3,5m\).

    Thể tích hình lăng trụ tam giác là:

    \({V_1} = \frac{1}{2}.6.1,2.15 = 54{\rm{ }}\left( {{m^3}} \right)\)

    Thể tích hình hộp chữ nhật là:

    \({V_2} = 6.15.3,5 = 315{\rm{ }}\left( {{m^3}} \right)\)

    Thể tích phần không gian bên trong của cả ngôi nhà là:

    \(V = {V_1} + {V_2} = 54 + 315 = 369{\rm{ }}\left( {{m^3}} \right)\)

    Thể tích phần không gian của ngôi nhà là \(369{\rm{ }}\left( {{m^3}} \right)\)

    Câu 14 :

    Tính thể tích của hình lăng trụ đứng có chiều cao \(20cm\), đáy là một tam giác vuông có các cạnh góc vuông lần lượt là \(8cm\) và \(10cm\).

    • A.

      \(800c{m^3}\)

    • B.

      \(400c{m^3}\)

    • C.

      \(600c{m^3}\)

    • D.

      \(500c{m^3}\)

    Đáp án : A

    Phương pháp giải :

    + Tính diện tích đáy là tam giác vuông: Sđáy = \(\frac{1}{2}\). Cạnh góc vuông . cạnh góc vuông

    + Tính thể tích: V = Sđáy . h

    Lời giải chi tiết :

    Diện tích đáy của hình lăng trụ đứng là:\(\dfrac{1}{2}.8.10=40 cm^3\)

    Thể tích của hình lăng trụ đứng là: \( 40.20= 800\,\,\left( {c{m^3}} \right)\)

    Vậy thể tích của hình lăng trụ đứng là \(800\,\,\left( {c{m^3}} \right)\).

    Lời giải và đáp án

      Câu 1 :

      Một lăng trụ đứng có đáy là hình chữ nhật có các kích thức $3$ cm, $8$ cm. Chiều cao của hình lăng trụ đứng là $2$cm. Tính diện tích xung quanh và thể tích của hình lăng trụ đứng.

      • A.

        \(48\;c{m^2},\;46\;c{m^3}\) 

      • B.

        \(48\;c{m^2},\;44\;c{m^3}\)

      • C.

        \(46\;c{m^2},\;48\;c{m^3}\) 

      • D.

        \(44\;c{m^2},\;48\;c{m^3}\)

      Câu 2 :

      Tính thể tích của hình lăng trụ đứng sau:

      Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 1
      • A.

        \(16\;c{m^3}\)

      • B.

        \(20\;c{m^3}\)

      • C.

        \(26\;c{m^3}\)

      • D.

        \(22\;c{m^3}\)

      Câu 3 :

      Cho một hình lăng trụ đứng có diện tích đáy là $S$ , chiều cao là $h$ . Hỏi công thức tính thể tích hình lăng trụ đứng là gì?

      • A.

        $S.h\;\;\;\;\;\;$

      • B.

        \(\dfrac{1}{2}S.h\)

      • C.

        $2S.h$

      • D.

        $3S.h$

      Câu 4 :

      Tính thể tích của hình lăng trụ đứng có chiều cao $20\,{\rm{cm}}$, đáy là một tam giác vuông có các cạnh góc vuông bằng $8\,{\rm{cm}}$ và $10\,{\rm{cm}}$.

      • A.

        \(800\,c{m^3}\) 

      • B.

        \(400\,c{m^3}\)

      • C.

        \(600\,c{m^3}\)

      • D.

        \(500\,c{m^3}\)

      Câu 5 :

      Cho hình lăng trụ tam giác đều $ABC.A'B'C'$ có chiều cao bằng $2cm$ , \(\widehat {BAB'} = {45^0}\) . Tính diện tích xung quanh của hình lăng trụ.

      • A.

        \(15\,c{m^2}\) 

      • B.

        \(6\,c{m^2}\)

      • C.

        \(12\,c{m^2}\)

      • D.

        \(16\,c{m^2}\)

      Câu 6 :

      Một hình hộp chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng $6\,cm$ . Một kích thước của đáy bằng $10\,cm$ , tính kích thước còn lại.

      Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 2
      • A.

        \(15\,cm\) 

      • B.

        \(20\,cm\)

      • C.

        \(25\,cm\)

      • D.

        \(10\,cm\)

      Câu 7 :

      Một hình hộp chữ nhật có diện tích xung quanh bằng $120\,c{m^2}$ , chiều cao bằng $6cm$ . Tìm các kích thước của đáy để hình hộp chữ nhật có thể tích lớn nhất.

      • A.

        \(8\,cm\) 

      • B.

        \(7\,cm\)

      • C.

        \(6\,cm\)

      • D.

        \(5\,cm\)

      Câu 8 :

      Một hình lăng trụ đứng có đáy là hình chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng \(6cm\). Một kích thước của đáy bằng \(10cm\), tính kích thước còn lại.

      • A.

        \(15cm\)

      • B.

        \(20cm\)

      • C.

        \(25cm\)

      • D.

        \(10cm\)

      Câu 9 :

      Một hình lăng trụ đều (tức là lăng trụ có đáy là đa giác đều) có tất cả \(18\) cạnh, mỗi cạnh dài \(6\sqrt 3 \) cm. Tính thể tích của hình lăng trụ đó.

      • A.

        864 cm3

      • B.

        1944 cm3

      • C.

        2916 cm3

      • D.

        1122 cm3

      Câu 10 :

      Cho hình lăng trụ đứng có diện tích xung quanh bằng 336 cm2, chiều cao 14 cm. Khi đó, chu vi đáy của hình lăng trụ đứng là:

      • A.

        \(12cm\)

      • B.

        \(24cm\)

      • C.

        \(36cm\)

      • D.

        \(48cm\)

      Câu 11 :

      Một hình lăng trụ đứng có đáy là hình chữ nhật có các kích thước \(3cm,\,\,8cm\). Chiều cao của hình lăng trụ đứng là \(2cm\). Diện tích xung quanh của hình lăng trụ đứng là

      • A.

        \(44c{m^2}\)

      • B.

        \(24c{m^2}\)

      • C.

        \(48c{m^2}\)

      • D.

        \(22c{m^2}\)

      Câu 12 :

      Một chiếc đèn lồng có dạng hình lăng trụ đứng, chiều cao \(40cm\) và đáy là lục giác đều cạnh \(18cm\). Nếu giữ nguyên chiều cao của đèn thì phải giảm độ dài cạnh đáy bao nhiêu lần để thể tích của đèn giảm đi hai lần.

      • A.

        \(\sqrt 2 \)lần

      • B.

        2 lần

      • C.

        4 lần

      • D.

        8 lần

      Câu 13 :

      Tính thể tích phần không gian của một ngôi nhà dạng một lăng trụ đứng theo các kích thước đã cho trong hình.

      Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 3

      • A.

        369 m3

      • B.

        315 m3

      • C.

        327 m3

      • D.

        423 m3

      Câu 14 :

      Tính thể tích của hình lăng trụ đứng có chiều cao \(20cm\), đáy là một tam giác vuông có các cạnh góc vuông lần lượt là \(8cm\) và \(10cm\).

      • A.

        \(800c{m^3}\)

      • B.

        \(400c{m^3}\)

      • C.

        \(600c{m^3}\)

      • D.

        \(500c{m^3}\)

      Câu 1 :

      Một lăng trụ đứng có đáy là hình chữ nhật có các kích thức $3$ cm, $8$ cm. Chiều cao của hình lăng trụ đứng là $2$cm. Tính diện tích xung quanh và thể tích của hình lăng trụ đứng.

      • A.

        \(48\;c{m^2},\;46\;c{m^3}\) 

      • B.

        \(48\;c{m^2},\;44\;c{m^3}\)

      • C.

        \(46\;c{m^2},\;48\;c{m^3}\) 

      • D.

        \(44\;c{m^2},\;48\;c{m^3}\)

      Đáp án : D

      Phương pháp giải :

      - Áp dụng công thức tính diện tích xung quanh hình lăng trụ đứng và thể tích hình lăng trụ đứng để giải bài toán: \({S_{xq}} = 2\left( {a + b} \right)c,\;\;V = abc.\)

      Lời giải chi tiết :
      Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 4

      Diện tích xung quanh \({S_{xq}} = 2.(8 + 3).2 = 44\;c{m^2}\)

      Thể tích của hình lăng trụ đứng là:\(V = 8.3.2 = 48\;c{m^3}\)

      Câu 2 :

      Tính thể tích của hình lăng trụ đứng sau:

      Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 5
      • A.

        \(16\;c{m^3}\)

      • B.

        \(20\;c{m^3}\)

      • C.

        \(26\;c{m^3}\)

      • D.

        \(22\;c{m^3}\)

      Đáp án : D

      Phương pháp giải :

      - Chia hình lăng trụ đứng thành các hình hộp chữ nhật nhỏ hơn, sau đó tính thể tích từng hình hộp chữ nhật nhỏ.

      - Tính được thể tích lăng trụ đứng bằng tổng thể tích các hình hộp chữ nhật nhỏ

      Lời giải chi tiết :
      Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 6

      Hình lăng trụ đứng đã cho được tạo thành từ 2 hình hộp chữ nhật. Hình hộp chữ nhật thứ nhất có kích thước là

      \(3cm,\;\;1cm,\;\;2cm;\) hình hộp chữ nhật thứ hai có kích thước là \(2cm,\;\;4cm,\;\;2cm.\)

      Thể tích hình hộp chữ nhật thứ nhất là: \({V_1} = 3.1.2 = 6\;c{m^3}\)

      Thể tích hình hộp chữ nhật thứ hai là: \({V_2} = 2.4.2 = 16\;c{m^3}\)

      Thể tích hình lăng trụ đứng là: \(V = {V_1} + {V_2} = 6 + 16 = 22\;c{m^3}\)

      Câu 3 :

      Cho một hình lăng trụ đứng có diện tích đáy là $S$ , chiều cao là $h$ . Hỏi công thức tính thể tích hình lăng trụ đứng là gì?

      • A.

        $S.h\;\;\;\;\;\;$

      • B.

        \(\dfrac{1}{2}S.h\)

      • C.

        $2S.h$

      • D.

        $3S.h$

      Đáp án : A

      Lời giải chi tiết :

      Công thức tính thể tích hình lăng trụ đứng là: $V = S.h$

      Câu 4 :

      Tính thể tích của hình lăng trụ đứng có chiều cao $20\,{\rm{cm}}$, đáy là một tam giác vuông có các cạnh góc vuông bằng $8\,{\rm{cm}}$ và $10\,{\rm{cm}}$.

      • A.

        \(800\,c{m^3}\) 

      • B.

        \(400\,c{m^3}\)

      • C.

        \(600\,c{m^3}\)

      • D.

        \(500\,c{m^3}\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức tính thể tích hình lăng trụ đứng \(V = S.h\) với \(S\) là diện tích đáy, \(h\) là chiều cao.

      Lời giải chi tiết :

      Vì đáy là tam giác vuông nên diện tích đáy \(S = \dfrac{{8.10}}{2} = 40\,cm\) .

      Thể tích lăng trụ đứng là \(V = S.h = 40.20 = 800\,c{m^3}\) .

      Câu 5 :

      Cho hình lăng trụ tam giác đều $ABC.A'B'C'$ có chiều cao bằng $2cm$ , \(\widehat {BAB'} = {45^0}\) . Tính diện tích xung quanh của hình lăng trụ.

      • A.

        \(15\,c{m^2}\) 

      • B.

        \(6\,c{m^2}\)

      • C.

        \(12\,c{m^2}\)

      • D.

        \(16\,c{m^2}\)

      Đáp án : C

      Phương pháp giải :

      + Từ các điều kiện của đề bài tính chiều cao của lăng trụ

      + Sử dụng công thức tính diện tích xung quanh lăng trụ để tính toán.

      Lời giải chi tiết :
      Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 7

      Tam giác vuông $ABB'$ có \(\widehat {BAB'} = {45^0}\) nên là tam giác vuông cân tại \(B\) nên $AB = BB' = 2cm$ .

      Vì tam giác \(ABC\) đều nên chu vi đáy bằng $3AB = 3.2 = 6cm$

      Diện tích xung quanh bằng $6.2 = 12\left( {c{m^2}} \right).$

      Câu 6 :

      Một hình hộp chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng $6\,cm$ . Một kích thước của đáy bằng $10\,cm$ , tính kích thước còn lại.

      Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 8
      • A.

        \(15\,cm\) 

      • B.

        \(20\,cm\)

      • C.

        \(25\,cm\)

      • D.

        \(10\,cm\)

      Đáp án : A

      Lời giải chi tiết :
      Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 9

      Đặt $AD = x$ .

      Diện tích xung quanh bằng:

      $2\left( {10 + x} \right).6\left( {c{m^2}} \right)$

      Tổng diện tích hai đáy bằng $2.10x\left( {c{m^2}} \right)$

      Ta có $2\left( {10 + x} \right).6{\rm{ }} = {\rm{ }}2.10x \Leftrightarrow 60 + 6x = 10x \Leftrightarrow x = 15$

      Kích thước còn lại của đáy bằng $15cm$ .

      Câu 7 :

      Một hình hộp chữ nhật có diện tích xung quanh bằng $120\,c{m^2}$ , chiều cao bằng $6cm$ . Tìm các kích thước của đáy để hình hộp chữ nhật có thể tích lớn nhất.

      • A.

        \(8\,cm\) 

      • B.

        \(7\,cm\)

      • C.

        \(6\,cm\)

      • D.

        \(5\,cm\)

      Đáp án : D

      Phương pháp giải :

      + Sử dụng công thức thể tích và diện tích xung quanh của hình hộp chữ nhật.

      + Dùng hằng đẳng thức để biện luận theo yêu cầu đề bài.

      Lời giải chi tiết :

      Gọi $a$ và $b$ là các kích thước của đáy.

      Ta có $V = 6ab$ nên $V$ lớn nhất \( \Leftrightarrow \) $ab$ lớn nhất

      \({S_{xq}} = 120\) nên \(2\left( {a + b} \right).6 = 120\) hay \(a + b = 10\).

      Ta có: \(ab = a\left( {10 - a} \right) = - {a^2} + 10a = - {\left( {a - 5} \right)^2} + 25 \le 25\).

      Suy ra \(V = 6ab \le 6.25 = 150\).

      Thể tích lớn nhất bằng \(150\) \({\rm{c}}{{\rm{m}}^3}\) khi \(a = b = 5\), tức là các cạnh đáy bằng $5$ cm.

      Câu 8 :

      Một hình lăng trụ đứng có đáy là hình chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng \(6cm\). Một kích thước của đáy bằng \(10cm\), tính kích thước còn lại.

      • A.

        \(15cm\)

      • B.

        \(20cm\)

      • C.

        \(25cm\)

      • D.

        \(10cm\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức diện tích xung quanh của hình lăng trụ đứng:

      \({S_{xq}} = C.h\)

      Trong đó, \(C\) là chu vi đáy; \(h\) là chiều cao

      Lời giải chi tiết :

      Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 10

      Đặt \(AD = x\left( {cm} \right)\).

      Chu vi đáy của hình lăng trụ là: \(C = 2(AB + AD) = 2(10+x) (cm)\)

      Diện tích xung quanh của hình lăng trụ là: 

      \({S_{xq}} = C.h\)\( = 2.\left( {10 + {\rm{ }}x} \right).6\)\( = 12.\left( {10 + {\rm{ }}x} \right)\,\,\left( {c{m^2}} \right)\)

      Tổng diện tích hai đáy của hình lăng trụ là: \(2.10x = 20x\,\,(c{m^2})\)

      Theo đề bài, ta có diện tích xung quanh bằng tổng diện tích hai đáy nên \(12.\left( {10 + x} \right) = 20x\)

      Do đó \(120 + 12x = 20x\)

      Suy ra \(x = 15\,\left( {cm} \right)\)

      hay \(AD = 15\left( {cm} \right)\)

      Vậy kích thước còn lại của đáy bằng 15 cm.

      Câu 9 :

      Một hình lăng trụ đều (tức là lăng trụ có đáy là đa giác đều) có tất cả \(18\) cạnh, mỗi cạnh dài \(6\sqrt 3 \) cm. Tính thể tích của hình lăng trụ đó.

      • A.

        864 cm3

      • B.

        1944 cm3

      • C.

        2916 cm3

      • D.

        1122 cm3

      Đáp án : C

      Phương pháp giải :

      Để tìm được thể tích lăng trụ đứng khi đã biết chiều cao, ta cần tính diện tích đáy.

      Thể tích = diện tích đáy . chiều cao

      Lời giải chi tiết :

      Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 11

      Gọi số cạnh của một đáy là \(n\). Khi đó số cạnh bên là \(n\).

      Suy ra, tổng số cạnh của hình lăng trụ đứng là \(n + n + n = 3n\).

      Theo đề bài, hình lăng trụ đều có tất cả 18 cạnh, ta có: \(3n = 18 \Rightarrow n = 6.\)

      Vậy hình lăng trụ đứng đã cho là hình lăng trụ lục giác đều.

      Có thể coi diện tích đáy là tổng diện tích của 6 tam giác đều, mỗi cạnh bằng \(6\sqrt 3 \) cm.

      Do đó diện tích đáy là: \(S = \frac{{{{\left( {6\sqrt 3 } \right)}^2}.\sqrt 3 }}{4}.6 = 162\sqrt 3 \) ( cm2)

      Thể tích hình lăng trụ là: \(V = S.h = 162\sqrt 3 .6\sqrt 3 \)= 2916 ( cm3)

      Thể tích hình lăng trụ là 2916 ( cm3).

      Câu 10 :

      Cho hình lăng trụ đứng có diện tích xung quanh bằng 336 cm2, chiều cao 14 cm. Khi đó, chu vi đáy của hình lăng trụ đứng là:

      • A.

        \(12cm\)

      • B.

        \(24cm\)

      • C.

        \(36cm\)

      • D.

        \(48cm\)

      Đáp án : B

      Phương pháp giải :

      Từ công thức Sxq = Chu vi đáy . chiều cao suy ra chu vi đáy

      Lời giải chi tiết :

      Chu vi đáy của hình lăng trụ đứng đó là:

      C = Sxq : h = 336 : 14 = 24 (cm)

      Câu 11 :

      Một hình lăng trụ đứng có đáy là hình chữ nhật có các kích thước \(3cm,\,\,8cm\). Chiều cao của hình lăng trụ đứng là \(2cm\). Diện tích xung quanh của hình lăng trụ đứng là

      • A.

        \(44c{m^2}\)

      • B.

        \(24c{m^2}\)

      • C.

        \(48c{m^2}\)

      • D.

        \(22c{m^2}\)

      Đáp án : A

      Phương pháp giải :

      + Tính chu vi đáy là hình chữ nhật

      + Tính Sxq = chu vi đáy . chiều cao

      Lời giải chi tiết :

      Chu vi đáy của hình lăng trụ đứng là: \(\left( {8 + 3} \right).2 = 22\left( {cm} \right)\)

      Diện tích xung quanh của hình lăng trụ đứng là: \({S_{xq}} = C.h = 22.2 = 44\,\,\left( {c{m^2}} \right)\)

      Vậy diện tích xung quanh của hình lăng trụ đứng là \(44\,\,\left( {c{m^2}} \right)\)

      Câu 12 :

      Một chiếc đèn lồng có dạng hình lăng trụ đứng, chiều cao \(40cm\) và đáy là lục giác đều cạnh \(18cm\). Nếu giữ nguyên chiều cao của đèn thì phải giảm độ dài cạnh đáy bao nhiêu lần để thể tích của đèn giảm đi hai lần.

      • A.

        \(\sqrt 2 \)lần

      • B.

        2 lần

      • C.

        4 lần

      • D.

        8 lần

      Đáp án : A

      Phương pháp giải :

      Lập tỉ số thể tích trước và sau khi giảm độ dài cạnh đáy.

      Lời giải chi tiết :

      Diện tích đáy đèn là: \(S = \frac{{{a^2}\sqrt 3 }}{4}.6\)\( = \frac{{{{18}^2}\sqrt 3 }}{4}.6 = 486\sqrt 3 \,\,\left( {c{m^2}} \right)\)

      Gọi \(a\) và \(b\) lần lượt là độ dài cạnh đáy đèn lồng trước và sau khi giảm thể tích.

      Gọi \({S_1}\) và \({S_2}\) là các diện tích đáy tương ứng. Khi đó: \({V_1} = {S_1}.h;\,\,{V_2} = {S_2}.h\)

      Ta có: \(\frac{{{V_1}}}{{{V_2}}} = 2 \Leftrightarrow \frac{{{S_1}.h}}{{{S_2}.h}} = 2\)\( \Leftrightarrow \frac{{{S_1}}}{{{S_2}}} = 2\)

      \( \Leftrightarrow \frac{{{a^2}\sqrt 3 .6}}{4}:\frac{{{b^2}\sqrt 3 .6}}{4} = 2\)\( \Leftrightarrow {a^2}:{b^2} = 2\)\( \Leftrightarrow a:b = \sqrt 2 \)

      Vậy độ dài cạnh đáy phải giảm đi \(\sqrt 2 \) lần.

      Câu 13 :

      Tính thể tích phần không gian của một ngôi nhà dạng một lăng trụ đứng theo các kích thước đã cho trong hình.

      Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 12

      • A.

        369 m3

      • B.

        315 m3

      • C.

        327 m3

      • D.

        423 m3

      Đáp án : A

      Phương pháp giải :

      Tính tổng của thể tích hình lăng trụ và thể tích hình hộp chữ nhật.

      Lời giải chi tiết :

      Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo 0 13

      Theọ hình vẽ, ngôi nhà gồm hai phần: một phần là lăng trụ đứng có đáy là tam giác cân cạnh đáy bằng \(6m\), chiều cao đáy \(1,2m\), chiều cao lăng trụ bằng \(15m\); phần còn lại là hình hộp chữ nhật có kích thước đáy là \(6m\) và \(15m\), chiều cao \(3,5m\).

      Thể tích hình lăng trụ tam giác là:

      \({V_1} = \frac{1}{2}.6.1,2.15 = 54{\rm{ }}\left( {{m^3}} \right)\)

      Thể tích hình hộp chữ nhật là:

      \({V_2} = 6.15.3,5 = 315{\rm{ }}\left( {{m^3}} \right)\)

      Thể tích phần không gian bên trong của cả ngôi nhà là:

      \(V = {V_1} + {V_2} = 54 + 315 = 369{\rm{ }}\left( {{m^3}} \right)\)

      Thể tích phần không gian của ngôi nhà là \(369{\rm{ }}\left( {{m^3}} \right)\)

      Câu 14 :

      Tính thể tích của hình lăng trụ đứng có chiều cao \(20cm\), đáy là một tam giác vuông có các cạnh góc vuông lần lượt là \(8cm\) và \(10cm\).

      • A.

        \(800c{m^3}\)

      • B.

        \(400c{m^3}\)

      • C.

        \(600c{m^3}\)

      • D.

        \(500c{m^3}\)

      Đáp án : A

      Phương pháp giải :

      + Tính diện tích đáy là tam giác vuông: Sđáy = \(\frac{1}{2}\). Cạnh góc vuông . cạnh góc vuông

      + Tính thể tích: V = Sđáy . h

      Lời giải chi tiết :

      Diện tích đáy của hình lăng trụ đứng là:\(\dfrac{1}{2}.8.10=40 cm^3\)

      Thể tích của hình lăng trụ đứng là: \( 40.20= 800\,\,\left( {c{m^3}} \right)\)

      Vậy thể tích của hình lăng trụ đứng là \(800\,\,\left( {c{m^3}} \right)\).

      Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác Toán 7 Chân trời sáng tạo tại chuyên mục bài tập toán 7 trên đề thi toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

      Trắc nghiệm Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng - Toán 7 Chân trời sáng tạo

      Bài 4 trong chương trình Toán 7 Chân trời sáng tạo tập trung vào việc giúp học sinh nắm vững kiến thức về hình lăng trụ đứng, đặc biệt là cách tính diện tích xung quanh và thể tích của hai loại hình lăng trụ phổ biến: lăng trụ đứng tam giác và lăng trụ đứng tứ giác. Việc hiểu rõ các công thức và áp dụng chúng vào giải bài tập là yếu tố then chốt để đạt kết quả tốt trong môn học.

      I. Khái niệm cơ bản về hình lăng trụ đứng

      Hình lăng trụ đứng là hình đa diện có hai đáy là hai đa giác đồng dạng và song song, các cạnh bên vuông góc với hai đáy. Các mặt bên là các hình chữ nhật.

      • Đáy: Là hai đa giác đồng dạng và song song.
      • Cạnh bên: Là các đoạn thẳng nối đỉnh của hai đáy.
      • Mặt bên: Là các hình chữ nhật nối các cạnh bên.
      • Chiều cao: Là khoảng cách giữa hai đáy.

      II. Diện tích xung quanh của hình lăng trụ đứng

      Diện tích xung quanh của hình lăng trụ đứng được tính bằng chu vi đáy nhân với chiều cao. Công thức tổng quát:

      Sxq = Pđáy * h

      Trong đó:

      • Sxq: Diện tích xung quanh
      • Pđáy: Chu vi đáy
      • h: Chiều cao

      III. Thể tích của hình lăng trụ đứng

      Thể tích của hình lăng trụ đứng được tính bằng diện tích đáy nhân với chiều cao. Công thức tổng quát:

      V = Sđáy * h

      Trong đó:

      • V: Thể tích
      • Sđáy: Diện tích đáy
      • h: Chiều cao

      IV. Bài tập áp dụng: Lăng trụ đứng tam giác

      Đối với lăng trụ đứng tam giác, đáy là một tam giác. Diện tích đáy được tính tùy thuộc vào loại tam giác (tam giác vuông, tam giác cân, tam giác đều). Ví dụ, nếu đáy là tam giác vuông có hai cạnh góc vuông là a và b, thì Sđáy = (1/2) * a * b.

      V. Bài tập áp dụng: Lăng trụ đứng tứ giác

      Đối với lăng trụ đứng tứ giác, đáy là một tứ giác. Diện tích đáy được tính tùy thuộc vào loại tứ giác (hình vuông, hình chữ nhật, hình bình hành, hình thang). Ví dụ, nếu đáy là hình chữ nhật có chiều dài a và chiều rộng b, thì Sđáy = a * b.

      VI. Các dạng bài tập thường gặp

      1. Tính diện tích xung quanh khi biết chu vi đáy và chiều cao.
      2. Tính thể tích khi biết diện tích đáy và chiều cao.
      3. Tìm chiều cao khi biết diện tích xung quanh và chu vi đáy.
      4. Tìm diện tích đáy khi biết thể tích và chiều cao.
      5. Giải các bài toán thực tế liên quan đến hình lăng trụ đứng.

      VII. Mẹo giải bài tập

      • Đọc kỹ đề bài để xác định đúng loại hình lăng trụ đứng.
      • Vẽ hình minh họa để dễ hình dung bài toán.
      • Sử dụng đúng công thức tính diện tích xung quanh và thể tích.
      • Kiểm tra lại kết quả sau khi giải xong.

      VIII. Luyện tập nâng cao

      Để nâng cao khả năng giải bài tập, bạn nên luyện tập thêm với các bài tập có độ khó cao hơn. Hãy tìm kiếm các tài liệu tham khảo, sách bài tập hoặc các trang web học toán online để có thêm nhiều bài tập thực hành.

      IX. Kết luận

      Bài 4 về diện tích xung quanh và thể tích của hình lăng trụ đứng là một phần quan trọng trong chương trình Toán 7 Chân trời sáng tạo. Việc nắm vững kiến thức và kỹ năng giải bài tập sẽ giúp bạn tự tin hơn trong các kỳ thi và ứng dụng vào thực tế. Chúc bạn học tập tốt!

      Hình lăng trụCông thức diện tích xung quanhCông thức thể tích
      Lăng trụ đứng tam giácPđáy * hSđáy * h
      Lăng trụ đứng tứ giácPđáy * hSđáy * h

      Tài liệu, đề thi và đáp án Toán 7