Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài 4: Quy tắc dấu ngoặc và quy tắc chuyển vế Toán 7 Chân trời sáng tạo

Trắc nghiệm Bài 4: Quy tắc dấu ngoặc và quy tắc chuyển vế Toán 7 Chân trời sáng tạo

Trắc nghiệm Bài 4: Quy tắc dấu ngoặc và quy tắc chuyển vế Toán 7 Chân trời sáng tạo

Bài viết này cung cấp bộ câu hỏi trắc nghiệm giúp học sinh ôn luyện và kiểm tra kiến thức về quy tắc dấu ngoặc và quy tắc chuyển vế trong Toán 7 chương trình Chân trời sáng tạo. Các câu hỏi được thiết kế đa dạng, bám sát nội dung sách giáo khoa và có đáp án chi tiết.

Học sinh có thể sử dụng bộ trắc nghiệm này để tự đánh giá năng lực, rèn luyện kỹ năng giải bài tập và chuẩn bị tốt cho các bài kiểm tra trên lớp.

Đề bài

    Câu 1 :

    Tính:

    \(\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\)

    • A.

      \(\frac{{ - 799}}{{216}}\)

    • B.

      \(\frac{{ - 113}}{{35}}\)

    • C.

      \( - 1\)

    • D.

      \(\frac{{ - 961}}{{216}}\)

    Câu 2 :

    Tìm x thỏa mãn 2x + 3 = -x + 6

    • A.

      x = 1

    • B.

      x = 3

    • C.

      x = -1

    • D.

      x = 9

    Câu 3 :

    Tìm x biết:

    \( - 2x + {\left( { - \frac{2}{5}} \right)^2} = 0,{1^2}\)

    • A.

      \(\frac{3}{{40}}\)

    • B.

      \(\frac{{17}}{{200}}\)

    • C.

      \(\frac{{ - 17}}{{200}}\)

    • D.

      \(\frac{2}{{25}}\)

    Câu 4 :

    Tính \(\frac{{{{25}^{30}}}}{{{{125}^{15}}}}\)

    • A.

      530

    • B.

      52

    • C.

      2515

    • D.

      515

    Câu 5 :

    Tính: T = [ (-43,57) . 40 – 40. 26,43] : [ -72 . 63,6 – 4,9 . 64]

    • A.

      0

    • B.

      \(\frac{6}{7}\)

    • C.

      \(\frac{{40}}{{49}}\)

    • D.

      1

    Câu 6 :

    Tìm x thỏa mãn: \(\left( { - 2x + \frac{5}{2}} \right).\left( {{x^2} + 4} \right) = 0\)

    • A.

      x = \(\frac{5}{4}\); x = -2 ; x = 2

    • B.

      x = 5 ; x = -4

    • C.

      x = \(\frac{{ - 5}}{4}\)

    • D.

      x = \(\frac{5}{4}\)

    Câu 7 :

    Với n nguyên dương, cho Q = 3n+3 + 3n+1 + 2n+2 + 2n+1

    Tìm khẳng định đúng nhất:

    • A.

      Q luôn chia hết cho 13

    • B.

      Q luôn chia hết cho 11

    • C.

      Q luôn chia hết cho 5

    • D.

      Q luôn chia hết cho 6

    Câu 8 :

    Tìm n biết:

    \(\frac{{{8^7} + {8^7} + {8^7} + {8^7}}}{{{3^7} + {3^7} + {3^7}}}:\frac{{{2^7} + {2^7}}}{{{6^7} + {6^7} + {6^7} + {6^7} + {6^7} + {6^7}}} = {2^n}\)

    • A.

      24

    • B.

      23

    • C.

      25

    • D.

      8

    Câu 9 :

    Tính: \(B = 1,2.(3\frac{1}{3} - 2,2) - \frac{2}{{15}}.( - 2 + \frac{5}{6}) - {2022^0}\)

    • A.

      1

    • B.

      \(\frac{{116}}{{225}}\)

    • C.

      \(\frac{{46}}{{225}}\)

    • D.

      0

    Câu 10 :

    Tìm giá trị lớn nhất của biểu thức:

    \(M = \frac{3}{{{{(2x + 1)}^4} + 2}}\)

    • A.

      \(\frac{3}{2}\)

    • B.

      \( - \frac{3}{2}\)

    • C.

      3

    • D.

      \(\frac{2}{3}\)

    Lời giải và đáp án

    Câu 1 :

    Tính:

    \(\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\)

    • A.

      \(\frac{{ - 799}}{{216}}\)

    • B.

      \(\frac{{ - 113}}{{35}}\)

    • C.

      \( - 1\)

    • D.

      \(\frac{{ - 961}}{{216}}\)

    Đáp án : D

    Phương pháp giải :

    - Đối với biểu thức không có dấu ngoặc.

    + Nếu phép tính chỉ có cộng, trừ hoặc chỉ có nhân, chia, ta thực hiện phép tính theo thứ tự từ trái sang phải.

    + Nếu phép tính có cả cộng , trừ, nhân, chia, nâng lên lũy thừa, ta thực hiện phép nâng lên lũy thừa trước, rồi đến nhân chia, cuối cùng đến cộng trừ.

    Lũy thừa à nhân và chia à cộng và trừ.

    - Đối với biểu thức có dấu ngoặc.

    Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự : { } -> [ ] -> ( )

    Lời giải chi tiết :

    \(\begin{array}{l}\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\\ = \frac{5}{9}:\left( {\frac{2}{{22}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{4}{{14}}} \right)\\ = \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{7}{4}.\frac{{ - 3}}{{14}}\\ = \frac{5}{9}.\frac{{ - 22}}{3} + \frac{{ - 3}}{8}\\ = \frac{{ - 110}}{{27}} + \frac{{ - 3}}{8}\\ = \frac{{ - 880}}{{216}} + \frac{{ - 81}}{{216}}\\ = \frac{{ - 961}}{{216}}\end{array}\)

    Câu 2 :

    Tìm x thỏa mãn 2x + 3 = -x + 6

    • A.

      x = 1

    • B.

      x = 3

    • C.

      x = -1

    • D.

      x = 9

    Đáp án : A

    Phương pháp giải :

    Áp dụng quy tắc chuyển vế:

    a + b = c + d thì a – c = d – b

    Lời giải chi tiết :

    2x + 3 = -x + 6

    2x + x = 6 – 3

    3x = 3

    x = 1

    Vậy x = 1

    Câu 3 :

    Tìm x biết:

    \( - 2x + {\left( { - \frac{2}{5}} \right)^2} = 0,{1^2}\)

    • A.

      \(\frac{3}{{40}}\)

    • B.

      \(\frac{{17}}{{200}}\)

    • C.

      \(\frac{{ - 17}}{{200}}\)

    • D.

      \(\frac{2}{{25}}\)

    Đáp án : A

    Phương pháp giải :

    Bước 1: Tính các lũy thừa

    Bước 2: Tìm -2x

    Bước 3: Tìm x

    Lời giải chi tiết :

    \(\begin{array}{l} - 2x + {\left( { - \frac{2}{5}} \right)^2} = 0,{1^2}\\ - 2x + \frac{4}{{25}} = \frac{1}{{100}}\\ - 2x = \frac{1}{{100}} - \frac{4}{{25}}\\ - 2x = \frac{1}{{100}} - \frac{{16}}{{100}}\\ - 2x = \frac{{ - 15}}{{100}}\\ x = \frac{{ - 15}}{{100}}:( - 2)\\ x = \frac{{ - 15}}{{100}}.\frac{{ - 1}}{2}\\ x = \frac{3}{{40}}\end{array}\)

    Câu 4 :

    Tính \(\frac{{{{25}^{30}}}}{{{{125}^{15}}}}\)

    • A.

      530

    • B.

      52

    • C.

      2515

    • D.

      515

    Đáp án : D

    Phương pháp giải :

    Đưa tử số và mẫu số về dạng chứa lũy thừa có cùng cơ số rồi thực hiện rút gọn

    Chú ý công thức: (a.b)m = am . bm

    am : an = am-n

    am : bm = (a:b)m

    Lời giải chi tiết :

    \(\frac{{{{25}^{30}}}}{{{{125}^{15}}}} = \frac{{{{25}^{30}}}}{{{{(5.25)}^{15}}}} = \frac{{{{25}^{30}}}}{{{5^{15}}{{.25}^{15}}}} = \frac{{{{25}^{15}}}}{{{5^{15}}}} = {5^{15}}\)

    Câu 5 :

    Tính: T = [ (-43,57) . 40 – 40. 26,43] : [ -72 . 63,6 – 4,9 . 64]

    • A.

      0

    • B.

      \(\frac{6}{7}\)

    • C.

      \(\frac{{40}}{{49}}\)

    • D.

      1

    Đáp án : C

    Phương pháp giải :

    Tính các biểu thức trong ngoặc trước

    Sử dụng tính chất phân phối của phép nhân đối với phép cộng: a . b + a . c = a . (b + c)

    Lời giải chi tiết :

    T = [ (-43,57) . 40 – 40. 26,43] : [ -72 . 63,6 – 4,9 . 64]

    = [40. (-43,57 – 26,43)] : (-49 . 63,6 – 49 . 6,4)

    = [40 . (-70)] : [(-49) . (63,6 + 6,4)]

    = [40 . (-70)] : [(-49) . 70]

    = (-40) . 70 : (-49) : 70

    = \(\frac{{40}}{{49}}\)

    Câu 6 :

    Tìm x thỏa mãn: \(\left( { - 2x + \frac{5}{2}} \right).\left( {{x^2} + 4} \right) = 0\)

    • A.

      x = \(\frac{5}{4}\); x = -2 ; x = 2

    • B.

      x = 5 ; x = -4

    • C.

      x = \(\frac{{ - 5}}{4}\)

    • D.

      x = \(\frac{5}{4}\)

    Đáp án : D

    Phương pháp giải :

    Nếu A . B = 0 thì A = 0 hoặc B = 0

    Lời giải chi tiết :

    \(\left( { - 2x + \frac{5}{2}} \right).\left( {{x^2} + 4} \right) = 0\)

    +) Trường hợp 1:

    \(\begin{array}{l} - 2x + \frac{5}{2} = 0\\ 2x = \frac{5}{2}\\ x = \frac{5}{2}:2\\ x = \frac{5}{4}\end{array}\)

    +) Trường hợp 2:

    \({x^2} + 4 = 0\)

    \( {x^2} = - 4\) (Vô lí vì \(x^2 \ge 0\) với mọi x)

    Vậy x = \(\frac{5}{4}\)

    Câu 7 :

    Với n nguyên dương, cho Q = 3n+3 + 3n+1 + 2n+2 + 2n+1

    Tìm khẳng định đúng nhất:

    • A.

      Q luôn chia hết cho 13

    • B.

      Q luôn chia hết cho 11

    • C.

      Q luôn chia hết cho 5

    • D.

      Q luôn chia hết cho 6

    Đáp án : D

    Phương pháp giải :

    Phát hiện mối liên hệ giữa hạng tử.

    Nhóm các hạng tử có cùng cơ số rồi biến đổi

    Lời giải chi tiết :

    Q = 3n+3 + 3n+1 + 2n+2 + 2n+1

    = 3n+1 . 32 + 3n+1 + 2n+1 . 2 + 2n+1

    = 3n+1 . (32 + 1) + 2n+1 . (2 + 1)

    = 3n+1 . 10 + 2n+1 . 3

    = 3n+1 . 2.5 + 2n+1 . 3

    = 3.2 . ( 3n . 5 + 2)

    = 6. ( 3n . 5 + 2)

    Vì 6\( \vdots \) 6 nên 6. ( 3n . 5 + 2) \( \vdots \) 6 với mọi n nguyên dương

    Vậy Q luôn chia hết cho 6

    Câu 8 :

    Tìm n biết:

    \(\frac{{{8^7} + {8^7} + {8^7} + {8^7}}}{{{3^7} + {3^7} + {3^7}}}:\frac{{{2^7} + {2^7}}}{{{6^7} + {6^7} + {6^7} + {6^7} + {6^7} + {6^7}}} = {2^n}\)

    • A.

      24

    • B.

      23

    • C.

      25

    • D.

      8

    Đáp án : B

    Phương pháp giải :

    Rút gọn vế trái

    Nếu am = an ( a khác 0, a khác 1) thì m = n

    Lời giải chi tiết :

    \(\begin{array}{l}\frac{{{8^7} + {8^7} + {8^7} + {8^7}}}{{{3^7} + {3^7} + {3^7}}}:\frac{{{2^7} + {2^7}}}{{{6^7} + {6^7} + {6^7} + {6^7} + {6^7} + {6^7}}} = {2^n}\\ \Leftrightarrow \frac{{{{4.8}^7}}}{{{{3.3}^7}}}:\frac{{{{2.2}^7}}}{{{{6.6}^7}}} = {2^n}\\ \Leftrightarrow \frac{{{{4.8}^7}}}{{{3^8}}}:\frac{{{2^8}}}{{{6^8}}} = {2^n}\\ \Leftrightarrow \frac{{{{4.8}^7}}}{{{3^8}}}.\frac{{{6^8}}}{{{2^8}}} = {2^n}\\ \Leftrightarrow \frac{{{2^2}.{{({2^3})}^7}{{.6}^8}}}{{{{(3.2)}^8}}} = {2^n}\\ \Leftrightarrow \frac{{{2^2}{{.2}^{21}}{{.6}^8}}}{{{6^8}}} = {2^n}\\ \Leftrightarrow {2^{23}} = {2^n}\\ \Leftrightarrow 23 = n\end{array}\)

    Vậy n = 23

    Câu 9 :

    Tính: \(B = 1,2.(3\frac{1}{3} - 2,2) - \frac{2}{{15}}.( - 2 + \frac{5}{6}) - {2022^0}\)

    • A.

      1

    • B.

      \(\frac{{116}}{{225}}\)

    • C.

      \(\frac{{46}}{{225}}\)

    • D.

      0

    Đáp án : B

    Phương pháp giải :

    Tính các biểu thức trong ngoặc trước

    Lời giải chi tiết :

    \(\begin{array}{l}B = 1,2.(3\frac{1}{3} - 2,2) - \frac{2}{{15}}.( - 2 + \frac{5}{6}) - {2022^0}\\ = \frac{{12}}{{10}}.(\frac{{10}}{3} - \frac{{11}}{5}) - \frac{2}{{15}}.(\frac{{ - 12}}{6} + \frac{5}{6}) - 1\\ = \frac{6}{5}.(\frac{{50}}{{15}} - \frac{{33}}{{15}}) - \frac{2}{{15}}.(\frac{{ - 7}}{6}) - 1\\ = \frac{6}{5}.\frac{{17}}{{15}} + \frac{7}{{45}} - 1\\ = \frac{{34}}{{25}} + \frac{7}{{45}} - 1\\ = \frac{{306}}{{225}} + \frac{{35}}{{225}} - \frac{{225}}{{225}}\\ = \frac{{116}}{{225}}\end{array}\)

    Câu 10 :

    Tìm giá trị lớn nhất của biểu thức:

    \(M = \frac{3}{{{{(2x + 1)}^4} + 2}}\)

    • A.

      \(\frac{3}{2}\)

    • B.

      \( - \frac{3}{2}\)

    • C.

      3

    • D.

      \(\frac{2}{3}\)

    Đáp án : A

    Phương pháp giải :

    Đánh giá giá trị của tử và mẫu

    Chú ý: a4\( \ge \) 0, với mọi a

    Lời giải chi tiết :

    Vì (2x+1)4\( \ge \) 0, với mọi x nên (2x+1)4 +2 \( \ge \) 2, với mọi x

    \( \Rightarrow \frac{3}{{{{(2x + 1)}^4} + 2}} \le \frac{3}{2}\), với mọi x. Dấu “=” xảy ra khi 2x + 1 = 0 hay x = \(\frac{{ - 1}}{2}\)

    Vậy Max M = \(\frac{3}{2}\).

    Lời giải và đáp án

      Câu 1 :

      Tính:

      \(\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\)

      • A.

        \(\frac{{ - 799}}{{216}}\)

      • B.

        \(\frac{{ - 113}}{{35}}\)

      • C.

        \( - 1\)

      • D.

        \(\frac{{ - 961}}{{216}}\)

      Câu 2 :

      Tìm x thỏa mãn 2x + 3 = -x + 6

      • A.

        x = 1

      • B.

        x = 3

      • C.

        x = -1

      • D.

        x = 9

      Câu 3 :

      Tìm x biết:

      \( - 2x + {\left( { - \frac{2}{5}} \right)^2} = 0,{1^2}\)

      • A.

        \(\frac{3}{{40}}\)

      • B.

        \(\frac{{17}}{{200}}\)

      • C.

        \(\frac{{ - 17}}{{200}}\)

      • D.

        \(\frac{2}{{25}}\)

      Câu 4 :

      Tính \(\frac{{{{25}^{30}}}}{{{{125}^{15}}}}\)

      • A.

        530

      • B.

        52

      • C.

        2515

      • D.

        515

      Câu 5 :

      Tính: T = [ (-43,57) . 40 – 40. 26,43] : [ -72 . 63,6 – 4,9 . 64]

      • A.

        0

      • B.

        \(\frac{6}{7}\)

      • C.

        \(\frac{{40}}{{49}}\)

      • D.

        1

      Câu 6 :

      Tìm x thỏa mãn: \(\left( { - 2x + \frac{5}{2}} \right).\left( {{x^2} + 4} \right) = 0\)

      • A.

        x = \(\frac{5}{4}\); x = -2 ; x = 2

      • B.

        x = 5 ; x = -4

      • C.

        x = \(\frac{{ - 5}}{4}\)

      • D.

        x = \(\frac{5}{4}\)

      Câu 7 :

      Với n nguyên dương, cho Q = 3n+3 + 3n+1 + 2n+2 + 2n+1

      Tìm khẳng định đúng nhất:

      • A.

        Q luôn chia hết cho 13

      • B.

        Q luôn chia hết cho 11

      • C.

        Q luôn chia hết cho 5

      • D.

        Q luôn chia hết cho 6

      Câu 8 :

      Tìm n biết:

      \(\frac{{{8^7} + {8^7} + {8^7} + {8^7}}}{{{3^7} + {3^7} + {3^7}}}:\frac{{{2^7} + {2^7}}}{{{6^7} + {6^7} + {6^7} + {6^7} + {6^7} + {6^7}}} = {2^n}\)

      • A.

        24

      • B.

        23

      • C.

        25

      • D.

        8

      Câu 9 :

      Tính: \(B = 1,2.(3\frac{1}{3} - 2,2) - \frac{2}{{15}}.( - 2 + \frac{5}{6}) - {2022^0}\)

      • A.

        1

      • B.

        \(\frac{{116}}{{225}}\)

      • C.

        \(\frac{{46}}{{225}}\)

      • D.

        0

      Câu 10 :

      Tìm giá trị lớn nhất của biểu thức:

      \(M = \frac{3}{{{{(2x + 1)}^4} + 2}}\)

      • A.

        \(\frac{3}{2}\)

      • B.

        \( - \frac{3}{2}\)

      • C.

        3

      • D.

        \(\frac{2}{3}\)

      Câu 1 :

      Tính:

      \(\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\)

      • A.

        \(\frac{{ - 799}}{{216}}\)

      • B.

        \(\frac{{ - 113}}{{35}}\)

      • C.

        \( - 1\)

      • D.

        \(\frac{{ - 961}}{{216}}\)

      Đáp án : D

      Phương pháp giải :

      - Đối với biểu thức không có dấu ngoặc.

      + Nếu phép tính chỉ có cộng, trừ hoặc chỉ có nhân, chia, ta thực hiện phép tính theo thứ tự từ trái sang phải.

      + Nếu phép tính có cả cộng , trừ, nhân, chia, nâng lên lũy thừa, ta thực hiện phép nâng lên lũy thừa trước, rồi đến nhân chia, cuối cùng đến cộng trừ.

      Lũy thừa à nhân và chia à cộng và trừ.

      - Đối với biểu thức có dấu ngoặc.

      Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự : { } -> [ ] -> ( )

      Lời giải chi tiết :

      \(\begin{array}{l}\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\\ = \frac{5}{9}:\left( {\frac{2}{{22}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{4}{{14}}} \right)\\ = \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{7}{4}.\frac{{ - 3}}{{14}}\\ = \frac{5}{9}.\frac{{ - 22}}{3} + \frac{{ - 3}}{8}\\ = \frac{{ - 110}}{{27}} + \frac{{ - 3}}{8}\\ = \frac{{ - 880}}{{216}} + \frac{{ - 81}}{{216}}\\ = \frac{{ - 961}}{{216}}\end{array}\)

      Câu 2 :

      Tìm x thỏa mãn 2x + 3 = -x + 6

      • A.

        x = 1

      • B.

        x = 3

      • C.

        x = -1

      • D.

        x = 9

      Đáp án : A

      Phương pháp giải :

      Áp dụng quy tắc chuyển vế:

      a + b = c + d thì a – c = d – b

      Lời giải chi tiết :

      2x + 3 = -x + 6

      2x + x = 6 – 3

      3x = 3

      x = 1

      Vậy x = 1

      Câu 3 :

      Tìm x biết:

      \( - 2x + {\left( { - \frac{2}{5}} \right)^2} = 0,{1^2}\)

      • A.

        \(\frac{3}{{40}}\)

      • B.

        \(\frac{{17}}{{200}}\)

      • C.

        \(\frac{{ - 17}}{{200}}\)

      • D.

        \(\frac{2}{{25}}\)

      Đáp án : A

      Phương pháp giải :

      Bước 1: Tính các lũy thừa

      Bước 2: Tìm -2x

      Bước 3: Tìm x

      Lời giải chi tiết :

      \(\begin{array}{l} - 2x + {\left( { - \frac{2}{5}} \right)^2} = 0,{1^2}\\ - 2x + \frac{4}{{25}} = \frac{1}{{100}}\\ - 2x = \frac{1}{{100}} - \frac{4}{{25}}\\ - 2x = \frac{1}{{100}} - \frac{{16}}{{100}}\\ - 2x = \frac{{ - 15}}{{100}}\\ x = \frac{{ - 15}}{{100}}:( - 2)\\ x = \frac{{ - 15}}{{100}}.\frac{{ - 1}}{2}\\ x = \frac{3}{{40}}\end{array}\)

      Câu 4 :

      Tính \(\frac{{{{25}^{30}}}}{{{{125}^{15}}}}\)

      • A.

        530

      • B.

        52

      • C.

        2515

      • D.

        515

      Đáp án : D

      Phương pháp giải :

      Đưa tử số và mẫu số về dạng chứa lũy thừa có cùng cơ số rồi thực hiện rút gọn

      Chú ý công thức: (a.b)m = am . bm

      am : an = am-n

      am : bm = (a:b)m

      Lời giải chi tiết :

      \(\frac{{{{25}^{30}}}}{{{{125}^{15}}}} = \frac{{{{25}^{30}}}}{{{{(5.25)}^{15}}}} = \frac{{{{25}^{30}}}}{{{5^{15}}{{.25}^{15}}}} = \frac{{{{25}^{15}}}}{{{5^{15}}}} = {5^{15}}\)

      Câu 5 :

      Tính: T = [ (-43,57) . 40 – 40. 26,43] : [ -72 . 63,6 – 4,9 . 64]

      • A.

        0

      • B.

        \(\frac{6}{7}\)

      • C.

        \(\frac{{40}}{{49}}\)

      • D.

        1

      Đáp án : C

      Phương pháp giải :

      Tính các biểu thức trong ngoặc trước

      Sử dụng tính chất phân phối của phép nhân đối với phép cộng: a . b + a . c = a . (b + c)

      Lời giải chi tiết :

      T = [ (-43,57) . 40 – 40. 26,43] : [ -72 . 63,6 – 4,9 . 64]

      = [40. (-43,57 – 26,43)] : (-49 . 63,6 – 49 . 6,4)

      = [40 . (-70)] : [(-49) . (63,6 + 6,4)]

      = [40 . (-70)] : [(-49) . 70]

      = (-40) . 70 : (-49) : 70

      = \(\frac{{40}}{{49}}\)

      Câu 6 :

      Tìm x thỏa mãn: \(\left( { - 2x + \frac{5}{2}} \right).\left( {{x^2} + 4} \right) = 0\)

      • A.

        x = \(\frac{5}{4}\); x = -2 ; x = 2

      • B.

        x = 5 ; x = -4

      • C.

        x = \(\frac{{ - 5}}{4}\)

      • D.

        x = \(\frac{5}{4}\)

      Đáp án : D

      Phương pháp giải :

      Nếu A . B = 0 thì A = 0 hoặc B = 0

      Lời giải chi tiết :

      \(\left( { - 2x + \frac{5}{2}} \right).\left( {{x^2} + 4} \right) = 0\)

      +) Trường hợp 1:

      \(\begin{array}{l} - 2x + \frac{5}{2} = 0\\ 2x = \frac{5}{2}\\ x = \frac{5}{2}:2\\ x = \frac{5}{4}\end{array}\)

      +) Trường hợp 2:

      \({x^2} + 4 = 0\)

      \( {x^2} = - 4\) (Vô lí vì \(x^2 \ge 0\) với mọi x)

      Vậy x = \(\frac{5}{4}\)

      Câu 7 :

      Với n nguyên dương, cho Q = 3n+3 + 3n+1 + 2n+2 + 2n+1

      Tìm khẳng định đúng nhất:

      • A.

        Q luôn chia hết cho 13

      • B.

        Q luôn chia hết cho 11

      • C.

        Q luôn chia hết cho 5

      • D.

        Q luôn chia hết cho 6

      Đáp án : D

      Phương pháp giải :

      Phát hiện mối liên hệ giữa hạng tử.

      Nhóm các hạng tử có cùng cơ số rồi biến đổi

      Lời giải chi tiết :

      Q = 3n+3 + 3n+1 + 2n+2 + 2n+1

      = 3n+1 . 32 + 3n+1 + 2n+1 . 2 + 2n+1

      = 3n+1 . (32 + 1) + 2n+1 . (2 + 1)

      = 3n+1 . 10 + 2n+1 . 3

      = 3n+1 . 2.5 + 2n+1 . 3

      = 3.2 . ( 3n . 5 + 2)

      = 6. ( 3n . 5 + 2)

      Vì 6\( \vdots \) 6 nên 6. ( 3n . 5 + 2) \( \vdots \) 6 với mọi n nguyên dương

      Vậy Q luôn chia hết cho 6

      Câu 8 :

      Tìm n biết:

      \(\frac{{{8^7} + {8^7} + {8^7} + {8^7}}}{{{3^7} + {3^7} + {3^7}}}:\frac{{{2^7} + {2^7}}}{{{6^7} + {6^7} + {6^7} + {6^7} + {6^7} + {6^7}}} = {2^n}\)

      • A.

        24

      • B.

        23

      • C.

        25

      • D.

        8

      Đáp án : B

      Phương pháp giải :

      Rút gọn vế trái

      Nếu am = an ( a khác 0, a khác 1) thì m = n

      Lời giải chi tiết :

      \(\begin{array}{l}\frac{{{8^7} + {8^7} + {8^7} + {8^7}}}{{{3^7} + {3^7} + {3^7}}}:\frac{{{2^7} + {2^7}}}{{{6^7} + {6^7} + {6^7} + {6^7} + {6^7} + {6^7}}} = {2^n}\\ \Leftrightarrow \frac{{{{4.8}^7}}}{{{{3.3}^7}}}:\frac{{{{2.2}^7}}}{{{{6.6}^7}}} = {2^n}\\ \Leftrightarrow \frac{{{{4.8}^7}}}{{{3^8}}}:\frac{{{2^8}}}{{{6^8}}} = {2^n}\\ \Leftrightarrow \frac{{{{4.8}^7}}}{{{3^8}}}.\frac{{{6^8}}}{{{2^8}}} = {2^n}\\ \Leftrightarrow \frac{{{2^2}.{{({2^3})}^7}{{.6}^8}}}{{{{(3.2)}^8}}} = {2^n}\\ \Leftrightarrow \frac{{{2^2}{{.2}^{21}}{{.6}^8}}}{{{6^8}}} = {2^n}\\ \Leftrightarrow {2^{23}} = {2^n}\\ \Leftrightarrow 23 = n\end{array}\)

      Vậy n = 23

      Câu 9 :

      Tính: \(B = 1,2.(3\frac{1}{3} - 2,2) - \frac{2}{{15}}.( - 2 + \frac{5}{6}) - {2022^0}\)

      • A.

        1

      • B.

        \(\frac{{116}}{{225}}\)

      • C.

        \(\frac{{46}}{{225}}\)

      • D.

        0

      Đáp án : B

      Phương pháp giải :

      Tính các biểu thức trong ngoặc trước

      Lời giải chi tiết :

      \(\begin{array}{l}B = 1,2.(3\frac{1}{3} - 2,2) - \frac{2}{{15}}.( - 2 + \frac{5}{6}) - {2022^0}\\ = \frac{{12}}{{10}}.(\frac{{10}}{3} - \frac{{11}}{5}) - \frac{2}{{15}}.(\frac{{ - 12}}{6} + \frac{5}{6}) - 1\\ = \frac{6}{5}.(\frac{{50}}{{15}} - \frac{{33}}{{15}}) - \frac{2}{{15}}.(\frac{{ - 7}}{6}) - 1\\ = \frac{6}{5}.\frac{{17}}{{15}} + \frac{7}{{45}} - 1\\ = \frac{{34}}{{25}} + \frac{7}{{45}} - 1\\ = \frac{{306}}{{225}} + \frac{{35}}{{225}} - \frac{{225}}{{225}}\\ = \frac{{116}}{{225}}\end{array}\)

      Câu 10 :

      Tìm giá trị lớn nhất của biểu thức:

      \(M = \frac{3}{{{{(2x + 1)}^4} + 2}}\)

      • A.

        \(\frac{3}{2}\)

      • B.

        \( - \frac{3}{2}\)

      • C.

        3

      • D.

        \(\frac{2}{3}\)

      Đáp án : A

      Phương pháp giải :

      Đánh giá giá trị của tử và mẫu

      Chú ý: a4\( \ge \) 0, với mọi a

      Lời giải chi tiết :

      Vì (2x+1)4\( \ge \) 0, với mọi x nên (2x+1)4 +2 \( \ge \) 2, với mọi x

      \( \Rightarrow \frac{3}{{{{(2x + 1)}^4} + 2}} \le \frac{3}{2}\), với mọi x. Dấu “=” xảy ra khi 2x + 1 = 0 hay x = \(\frac{{ - 1}}{2}\)

      Vậy Max M = \(\frac{3}{2}\).

      Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Trắc nghiệm Bài 4: Quy tắc dấu ngoặc và quy tắc chuyển vế Toán 7 Chân trời sáng tạo tại chuyên mục bài tập toán lớp 7 trên toán math. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

      Trắc nghiệm Bài 4: Quy tắc dấu ngoặc và quy tắc chuyển vế Toán 7 Chân trời sáng tạo

      Bài 4 trong chương trình Toán 7 Chân trời sáng tạo tập trung vào hai quy tắc quan trọng: quy tắc dấu ngoặc và quy tắc chuyển vế. Việc nắm vững hai quy tắc này là nền tảng để giải các phương trình và bài toán đại số phức tạp hơn ở các lớp trên. Dưới đây là bộ câu hỏi trắc nghiệm được thiết kế để giúp học sinh hiểu rõ và vận dụng thành thạo các quy tắc này.

      I. Lý thuyết cơ bản

      Trước khi bắt đầu với các câu hỏi trắc nghiệm, chúng ta cùng ôn lại lý thuyết cơ bản về quy tắc dấu ngoặc và quy tắc chuyển vế.

      • Quy tắc dấu ngoặc:
        • Khi bỏ dấu ngoặc, nếu trước dấu ngoặc có dấu '+', ta giữ nguyên dấu của các số hạng bên trong dấu ngoặc.
        • Khi bỏ dấu ngoặc, nếu trước dấu ngoặc có dấu '-', ta đổi dấu của tất cả các số hạng bên trong dấu ngoặc.
      • Quy tắc chuyển vế:
        • Khi chuyển một số hạng từ vế này sang vế kia của phương trình, ta phải đổi dấu số hạng đó.

      II. Các dạng bài tập trắc nghiệm

      Bộ câu hỏi trắc nghiệm này bao gồm các dạng bài tập sau:

      1. Dạng 1: Đơn giản biểu thức chứa dấu ngoặc. Các câu hỏi này yêu cầu học sinh áp dụng quy tắc dấu ngoặc để bỏ dấu ngoặc và thu gọn biểu thức.
      2. Dạng 2: Giải phương trình bậc nhất một ẩn. Các câu hỏi này yêu cầu học sinh sử dụng quy tắc chuyển vế để giải phương trình và tìm ra giá trị của ẩn.
      3. Dạng 3: Bài tập kết hợp cả hai quy tắc. Các câu hỏi này yêu cầu học sinh vận dụng cả quy tắc dấu ngoặc và quy tắc chuyển vế để giải quyết bài toán.

      III. Bộ câu hỏi trắc nghiệm

      Câu 1: Rút gọn biểu thức sau: (x + 5) - (x - 2)

      • A. 7
      • B. -7
      • C. 2x + 3
      • D. 2x - 3

      Câu 2: Giải phương trình: 3x + 5 = 14

      • A. x = 3
      • B. x = 6
      • C. x = 9
      • D. x = 19

      Câu 3: Rút gọn biểu thức: 2(x - 3) + 4x

      • A. 6x - 6
      • B. 6x + 6
      • C. 2x - 6
      • D. 2x + 6

      Câu 4: Giải phương trình: 2x - 7 = 5

      • A. x = 1
      • B. x = 6
      • C. x = 12
      • D. x = -1

      Câu 5: Rút gọn biểu thức: -(x + 2) + (x - 5)

      • A. -7
      • B. 7
      • C. 2x - 7
      • D. 2x + 7

      IV. Đáp án và giải thích chi tiết

      Câu 1: A. 7. Giải thích: (x + 5) - (x - 2) = x + 5 - x + 2 = 7

      Câu 2: A. x = 3. Giải thích: 3x + 5 = 14 => 3x = 9 => x = 3

      Câu 3: A. 6x - 6. Giải thích: 2(x - 3) + 4x = 2x - 6 + 4x = 6x - 6

      Câu 4: B. x = 6. Giải thích: 2x - 7 = 5 => 2x = 12 => x = 6

      Câu 5: A. -7. Giải thích: -(x + 2) + (x - 5) = -x - 2 + x - 5 = -7

      V. Lời khuyên khi làm bài tập

      Để làm tốt các bài tập về quy tắc dấu ngoặc và quy tắc chuyển vế, học sinh cần:

      • Nắm vững lý thuyết cơ bản.
      • Luyện tập thường xuyên với nhiều dạng bài tập khác nhau.
      • Kiểm tra lại kết quả sau khi giải xong.
      • Hỏi thầy cô hoặc bạn bè nếu gặp khó khăn.

      Hy vọng bộ câu hỏi trắc nghiệm này sẽ giúp các em học sinh ôn tập và nắm vững kiến thức về quy tắc dấu ngoặc và quy tắc chuyển vế trong Toán 7 Chân trời sáng tạo. Chúc các em học tốt!

      Tài liệu, đề thi và đáp án Toán 7