Chào mừng các em học sinh đến với bài trắc nghiệm về chủ đề Số thực và Giá trị tuyệt đối của một số thực, thuộc chương trình Toán 7 Chân trời sáng tạo. Bài trắc nghiệm này được thiết kế để giúp các em ôn luyện và củng cố kiến thức đã học.
Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, bao gồm nhiều mức độ khó khác nhau, giúp các em tự đánh giá năng lực và chuẩn bị tốt nhất cho các bài kiểm tra trên lớp.
Chọn chữ số thích hợp điền vào chỗ trống $ - 5,07 < - 5,...4$
$1;2;...9$
$0;1;2;...9$
$0$
$0;1$
Sắp xếp các số sau theo thứ tự tăng dần: \( - \dfrac{1}{2};0,5; - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4};\dfrac{4}{5}\)
\( - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4}; - \dfrac{1}{2};\dfrac{4}{5};0,5\)
\( - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4}; - \dfrac{1}{2};0,5;\dfrac{4}{5}\)
\( - \dfrac{3}{4}; - \dfrac{1}{2}; - \sqrt 2 - \dfrac{3}{4};0,5;\dfrac{4}{5}\)
\( - \sqrt 2 - \dfrac{3}{4}; - \dfrac{3}{4}; - \dfrac{1}{2};0,5;\dfrac{4}{5}\)
Nếu ${x^2} = 7$ thì $x$ bằng:
$49$ hoặc $ - 49$
\(\sqrt 7 \) hoặc \( - \sqrt 7 \)
\(\dfrac{7}{2}\)
\( \pm 14\)
Kết quả của phép tính \(\left( {\sqrt {\dfrac{9}{{25}}} - 2.9} \right):\left( {\dfrac{4}{5} + 0,2} \right)\) là:
\(\dfrac{{87}}{5}\)
\(\dfrac{{ - 87}}{5}\)
\(\dfrac{{ - 5}}{{87}}\)
\(\dfrac{5}{{87}}\)
Cho \(A = \) \(\left[ { - \sqrt {2,25} + 4\sqrt {{{\left( { - 2,15} \right)}^2}} - {{\left( {3\sqrt {\dfrac{7}{6}} } \right)}^2}} \right] .\sqrt {1\dfrac{9}{{16}}}\) và $B = 1,68 + \left[ {\dfrac{4}{5} - 1,2\left( {\dfrac{5}{2} - 1\dfrac{3}{4}} \right)} \right]:\left[ {{{\left( {\dfrac{2}{3}} \right)}^2} + \dfrac{1}{9}} \right].$ So sánh \(A\) và \(B\).
\(A > B\)
\(A < B\)
\(A = B\)
\(A \ge B\)
Giá trị nào sau đây là kết quả của phép tính \(\left( { - 45,7} \right) + \left[ {\left( { + 5,7} \right) + \left( { + 5,75} \right) + \left( { - 0,75} \right)} \right].\)
\(\dfrac{{87}}{5}\)
\(-35\)
\(35\)
\(\dfrac{5}{{87}}\)
Tìm \(x\) biết \(\dfrac{2}{3} + \dfrac{5}{3}x = \dfrac{5}{7}\)
\(\dfrac{1}{7}\)
\(\dfrac{{ - 3}}{{35}}\)
\(\dfrac{{ - 1}}{{35}}\)
\(\dfrac{1}{{35}}\)
Gọi \(x\) là giá trị thỏa mãn \(\sqrt {1,69} .\left( {2\sqrt x + \sqrt {\dfrac{{81}}{{121}}} } \right) = \dfrac{{13}}{{10}}\). Chọn câu đúng.
\(x > 2\)
\(x < 0\)
\(0 < x < 1\)
\(x > 3\)
Có bao nhiêu giá trị của \(x\) thỏa mãn \(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| - \dfrac{3}{4} = \dfrac{1}{5}\).
\(1\)
\(2\)
\(3\)
\(0\)
Giá trị nào dưới đây của \(x\) thỏa mãn \(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 - 12,3 = 77,7.\)
\(x = 49842\)
\(x = 498\)
\(x = 498420\)
\(x = 498425\)
Tìm số tự nhiên $x$ để \(D = \dfrac{{\sqrt x - 3}}{{\sqrt x + 2}}\) có giá trị là một số nguyên.
\(x = 4\)
\(x = 16\)
\(x = 9\)
\(x = 10\)
Tập hợp các số thực được kí hiệu là:
\(\mathbb{Z}\)
\(\mathbb{F}\)
\(\mathbb{Q}\)
\(\mathbb{R}\)
So sánh: \(\sqrt {17} \) và 4,(12)
\(\sqrt {17} \) > 4,(12)
\(\sqrt {17} \) = 4,(12)
\(\sqrt {17} \)\( \le \)4,(12)
\(\sqrt {17} \) < 4,(12)
So sánh \(\sqrt {{{( - 4)}^2}} \) và \(\sqrt {17} \)
\(\sqrt {{{( - 4)}^2}} \) > \(\sqrt {17} \)
\(\sqrt {{{( - 4)}^2}} \) = \(\sqrt {17} \)
\(\sqrt {{{( - 4)}^2}} \) < \(\sqrt {17} \)
Không so sánh được
Tính: \(\left| { - \sqrt {11} } \right|\)
\(\sqrt {11} \)
-\(\sqrt {11} \)
11
1
Cho x là 1 số thực bất kì, |x| là:
Một số âm
Một số dương
Một số không âm
Một sô không dương
Tìm x sao cho: |2x + 5| = |-1,5|
x = -1,75
x = 1,75
x = -1,75; x = 1,75
x = -1,75 ; x = -3,25.
Tính giá trị biểu thức: \(K = \left| { - 1,3} \right| + {\left( {\frac{{ - 3}}{5}} \right)^2} - |2,3| - {\left( {\frac{4}{5}} \right)^2} - {2022^0}\)
-3
-2,28
-5,6
-1
Tính giá trị nhỏ nhất của biểu thức: \(A = \left| { - x - 3} \right| + {\left( {y - 1} \right)^2} + {\left( {x + 3} \right)^4} + 2\)
0
-2
2
3
Chọn chữ số thích hợp điền vào dấu “…”
-2,3….4 > - 2, (31)
0
1
{1;2;3;4;5;6;7;8;9}
2
Phát biểu nào sau đây sai?
Mọi số vô tỉ đều là số thực
Mọi số thực đều là số vô tỉ.
Mọi số nguyên đều là số hữu tỉ
Số 0 là số hữu tỉ cũng là số thực.
Lời giải và đáp án
Chọn chữ số thích hợp điền vào chỗ trống $ - 5,07 < - 5,...4$
$1;2;...9$
$0;1;2;...9$
$0$
$0;1$
Đáp án : C
Sử dụng cách so sánh hai số nguyên âm để tìm đáp án phù hợp
Áp dụng so sánh hai số nguyên âm ta thấy chỉ có $ - 5,07 < - 5,04$ . Do đó ô trống cần điền là số $0$
Sắp xếp các số sau theo thứ tự tăng dần: \( - \dfrac{1}{2};0,5; - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4};\dfrac{4}{5}\)
\( - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4}; - \dfrac{1}{2};\dfrac{4}{5};0,5\)
\( - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4}; - \dfrac{1}{2};0,5;\dfrac{4}{5}\)
\( - \dfrac{3}{4}; - \dfrac{1}{2}; - \sqrt 2 - \dfrac{3}{4};0,5;\dfrac{4}{5}\)
\( - \sqrt 2 - \dfrac{3}{4}; - \dfrac{3}{4}; - \dfrac{1}{2};0,5;\dfrac{4}{5}\)
Đáp án : D
Áp dụng các quy tắc so sánh: số âm với số âm, số dương với số dương, số âm với số dương.
Ta chia các số đã cho thành hai nhóm: \( - \dfrac{1}{2}; - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4}\) và \(0,5;\dfrac{4}{5}\).
Nhóm 1: Vì \(\dfrac{3}{4} < \sqrt 2 + \dfrac{3}{4}\) nên \( - \dfrac{3}{4} > - \left( {\sqrt 2 + \dfrac{3}{4}} \right) = - \sqrt 2 - \dfrac{3}{4}\).
Lại có \(\dfrac{1}{2} = \dfrac{2}{4} < \dfrac{3}{4}\) nên \( - \dfrac{1}{2} > - \dfrac{3}{4}\) suy ra \( - \sqrt 2 - \dfrac{3}{4} < - \dfrac{3}{4} < - \dfrac{1}{2}\).
Nhóm 2: \(0,5 = \dfrac{1}{2} = \dfrac{5}{{10}} < \dfrac{8}{{10}} = \dfrac{4}{5} \) suy ra \( 0,5 < \dfrac{4}{5}\).
Vậy ta có dãy số tăng dần là \( - \sqrt 2 - \dfrac{3}{4}; - \dfrac{3}{4}; - \dfrac{1}{2};0,5;\dfrac{4}{5}\).
Nếu ${x^2} = 7$ thì $x$ bằng:
$49$ hoặc $ - 49$
\(\sqrt 7 \) hoặc \( - \sqrt 7 \)
\(\dfrac{7}{2}\)
\( \pm 14\)
Đáp án : B
Ta áp dụng tính chất với \(a \ge 0\), đẳng thức \({x^2} = a \Leftrightarrow x = \sqrt a \) hoặc \(x = - \sqrt a \)
Ta có \({x^2} = 7 \Leftrightarrow {x^2} = {\left( { \pm \sqrt 7 } \right)^2}\).
Suy ra \(x = \sqrt 7 \) hoặc \(x = - \sqrt 7 \)
Kết quả của phép tính \(\left( {\sqrt {\dfrac{9}{{25}}} - 2.9} \right):\left( {\dfrac{4}{5} + 0,2} \right)\) là:
\(\dfrac{{87}}{5}\)
\(\dfrac{{ - 87}}{5}\)
\(\dfrac{{ - 5}}{{87}}\)
\(\dfrac{5}{{87}}\)
Đáp án : B
+ Ta thực hiện phép tính dưới dấu căn trước.
+ Sau đó ta thực hiện phép tính theo thứ tự trong ngoặc trước ngoài ngoặc sau, nhân chia trước cộng trừ sau.
\(\left( {\sqrt {\dfrac{9}{{25}}} - 2.9} \right):\left( {\dfrac{4}{5} + 0,2} \right)\)
\( = \left( {\dfrac{3}{5} - 18} \right):\left( {\dfrac{4}{5} + \dfrac{1}{5}} \right)\)
\( = \left( {\dfrac{3}{5} - 18} \right):\left( {\dfrac{4}{5} + \dfrac{1}{5}} \right) \)
\(= \left( {\dfrac{3}{5} - \dfrac{{90}}{5}} \right):\dfrac{5}{5} \)
\(= \dfrac{{ - 87}}{5}:1 = \dfrac{{ - 87}}{5}\)
Cho \(A = \) \(\left[ { - \sqrt {2,25} + 4\sqrt {{{\left( { - 2,15} \right)}^2}} - {{\left( {3\sqrt {\dfrac{7}{6}} } \right)}^2}} \right] .\sqrt {1\dfrac{9}{{16}}}\) và $B = 1,68 + \left[ {\dfrac{4}{5} - 1,2\left( {\dfrac{5}{2} - 1\dfrac{3}{4}} \right)} \right]:\left[ {{{\left( {\dfrac{2}{3}} \right)}^2} + \dfrac{1}{9}} \right].$ So sánh \(A\) và \(B\).
\(A > B\)
\(A < B\)
\(A = B\)
\(A \ge B\)
Đáp án : B
+) Ta tính giá trị của biểu thức dưới dấu căn
+) Sau đó thực hiện phép tính theo thứ tự thực hiện: nhân chia trước, cộng trừ sau; trong ngoặc trước và ngoài ngoặc sau.
Ta có
\(A = \left[ { - \sqrt {2,25} + 4\sqrt {{{\left( { - 2,15} \right)}^2}} - {{\left( {3\sqrt {\dfrac{7}{6}} } \right)}^2}} \right].\sqrt {1\dfrac{9}{{16}}} \)
\(A = \left[ { - 1,5 + 4.2,15 - 9.\dfrac{7}{6}} \right].\sqrt {\dfrac{{25}}{{16}}} \)
\(A = \left[ { - 1,5 + 8,6 - \dfrac{{21}}{2}} \right].\dfrac{5}{4}\)
\(A = \left[ {7,1 - 10,5} \right].1,25\)
\(A = - 3,4.1,25\)
\(A = - 4,25\)
Và
$B = 1,68 + \left[ {\dfrac{4}{5} - 1,2\left( {\dfrac{5}{2} - 1\dfrac{3}{4}} \right)} \right]:\left[ {{{\left( {\dfrac{2}{3}} \right)}^2} + \dfrac{1}{9}} \right]$
$B = \dfrac{{42}}{{25}} + \left[ {\dfrac{4}{5} - \dfrac{6}{5}\left( {\dfrac{5}{2} - \dfrac{7}{4}} \right)} \right]:\left[ {\dfrac{4}{9} + \dfrac{1}{9}} \right]$
$B = \dfrac{{42}}{{25}} + \left[ {\dfrac{4}{5} - \dfrac{6}{5}.\dfrac{3}{4}} \right]:\dfrac{5}{9}$
$B = \dfrac{{42}}{{25}} + \left[ {\dfrac{4}{5} - \dfrac{9}{{10}}} \right]:\dfrac{5}{9}$
$B = \dfrac{{42}}{{25}} + \dfrac{{ - 1}}{{10}}:\dfrac{5}{9} = \dfrac{{42}}{{25}} + \dfrac{{ - 9}}{{50}}$
$B = \dfrac{{84}}{{50}} + \dfrac{{ - 9}}{{50}} = \dfrac{{75}}{{50}} = \dfrac{3}{2}$
Từ đó \(A < B\).
Giá trị nào sau đây là kết quả của phép tính \(\left( { - 45,7} \right) + \left[ {\left( { + 5,7} \right) + \left( { + 5,75} \right) + \left( { - 0,75} \right)} \right].\)
\(\dfrac{{87}}{5}\)
\(-35\)
\(35\)
\(\dfrac{5}{{87}}\)
Đáp án : B
Phá ngoặc rồi cộng trừ các số hạng thích hợp
\(\left( { - 45,7} \right) + \left[ {\left( { + 5,7} \right) + \left( { + 5,75} \right) + \left( { - 0,75} \right)} \right].\)
$=(-45,7)+(5,7+5,75-0,75)$$=-45,7+5,7+5$$=-40+5$$=-35$
Tìm \(x\) biết \(\dfrac{2}{3} + \dfrac{5}{3}x = \dfrac{5}{7}\)
\(\dfrac{1}{7}\)
\(\dfrac{{ - 3}}{{35}}\)
\(\dfrac{{ - 1}}{{35}}\)
\(\dfrac{1}{{35}}\)
Đáp án : D
Ta áp dụng thứ tự thực hiện phép tính để tìm $x$.
\(\dfrac{2}{3} + \dfrac{5}{3}x = \dfrac{5}{7}\)
\(\begin{array}{l}\dfrac{5}{3}x = \dfrac{5}{7} - \dfrac{2}{3}\\\dfrac{5}{3}x = \dfrac{1}{{21}}\\x = \dfrac{1}{{21}}:\dfrac{5}{3}\\x = \dfrac{1}{{35}}\end{array}\)
Vậy \(x = \dfrac{1}{{35}}.\)
Gọi \(x\) là giá trị thỏa mãn \(\sqrt {1,69} .\left( {2\sqrt x + \sqrt {\dfrac{{81}}{{121}}} } \right) = \dfrac{{13}}{{10}}\). Chọn câu đúng.
\(x > 2\)
\(x < 0\)
\(0 < x < 1\)
\(x > 3\)
Đáp án : C
Ta áp dụng thứ tự thực hiện phép tính để tìm $x$.
Sử dụng \(\sqrt x = a\,\left( {a \ge 0;x \ge 0} \right)\) thì \(x = {a^2}\) .
Ta có
\(\sqrt {1,69} .\left( {2\sqrt x + \sqrt {\dfrac{{81}}{{121}}} } \right) = \dfrac{{13}}{{10}}\)
\(1,3.\left( {2\sqrt x + \dfrac{9}{{11}}} \right) = 1,3\)
\(2\sqrt x + \dfrac{9}{{11}} = 1,3:1,3\)
\(2\sqrt x + \dfrac{9}{{11}} = 1\)
\(2\sqrt x = 1 - \dfrac{9}{{11}}\)
\(2\sqrt x = \dfrac{2}{{11}}\)
\(\sqrt x = \dfrac{2}{{11}}:2\)
\(\sqrt x = \dfrac{1}{{11}}\)
\(x = \dfrac{1}{{121}}\)
Vậy \(x = \dfrac{1}{{121}}\) nên \(0 < x < 1\).
Có bao nhiêu giá trị của \(x\) thỏa mãn \(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| - \dfrac{3}{4} = \dfrac{1}{5}\).
\(1\)
\(2\)
\(3\)
\(0\)
Đáp án : A
Ta áp dụng thứ tự thực hiện phép tính để tìm $x$.
Đối với bài toán tìm $x$ có chứa dấu giá trị tuyệt đối ta áp dụng quy tắc phá dấu giá trị tuyệt đối: \(\left| x \right| = \left\{ \begin{array}{l}x\,\,\,\,\,\,khi\,\,x \ge 0\\ - x\,\,\,\,khi\,\,\,x < 0\end{array} \right.\) sau đó tìm $x$.
Ta có \(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| - \dfrac{3}{4} = \dfrac{1}{5}\)
\(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| = \dfrac{1}{5} + \dfrac{3}{4}\)
\(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| = \dfrac{{19}}{{20}}\)
Trường hợp 1: \(\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}} = \dfrac{{19}}{{20}}\)
$\dfrac{3}{5}\sqrt x = \dfrac{{19}}{{20}} + \dfrac{1}{{20}} = 1$
$\sqrt x = 1:\dfrac{3}{5} = \dfrac{5}{3}$
$x = \dfrac{{25}}{9}$
Trường hợp 2: \(\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}} = \dfrac{{ - 19}}{{20}}\)
$\dfrac{3}{5}\sqrt x = \dfrac{{ - 19}}{{20}} + \dfrac{1}{{20}}$
$\dfrac{3}{5} \sqrt x = - \dfrac{9}{{10}}$
$\sqrt x = \dfrac{{ - 9}}{{10}}:\dfrac{3}{5}$
\(\sqrt x = - \dfrac{3}{2} < 0\) (vô lý)
Vậy có một giá trị của \(x\) thỏa mãn là \(x = \dfrac{{25}}{9}\)
Giá trị nào dưới đây của \(x\) thỏa mãn \(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 - 12,3 = 77,7.\)
\(x = 49842\)
\(x = 498\)
\(x = 498420\)
\(x = 498425\)
Đáp án : D
+ Sử dụng qui tắc chuyển vế và mối quan hệ giữa các số hạng, mối quan hệ giữa số bị chia, số chia và thương để tìm \(x\).
Ta có
\(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 - 12,3 = 77,7\)
\(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 = 77,7 + 12,3\)
\(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 = 90\)
\(\left( {7 + 0,004x} \right):0,9 = 90.24,7\)
\(\left( {7 + 0,004x} \right):0,9 = 2223\)
\(7 + 0,004x = 2223.0,9\)
\(7 + 0,004x = 2000,7\)
\(0,004x = 1993,7\)
\(x = 498425\)
Vậy \(x = 498425\).
Tìm số tự nhiên $x$ để \(D = \dfrac{{\sqrt x - 3}}{{\sqrt x + 2}}\) có giá trị là một số nguyên.
\(x = 4\)
\(x = 16\)
\(x = 9\)
\(x = 10\)
Đáp án : C
- Đầu tiên ta tách biểu thức đã cho về dạng một số nguyên cộng với một phân thức có tử là một số nguyên.
- Để $D $ là một số nguyên thì phân thức được tách phải là số nguyên hay tử phải chia hết cho mẫu, hay mẫu là ước của tử.
- Từ đó tìm ra $x$.
Ta có: \(D = \dfrac{{\sqrt x - 3}}{{\sqrt x + 2}} \) \(= \dfrac{{\sqrt x + 2 - 5}}{{\sqrt x + 2}} \) \(= 1 - \dfrac{5}{{\sqrt x + 2}}\)
Để \(D \in Z\) thì \(\left( {\sqrt x + 2} \right)\) phải thuộc $Z$ và là ước của $5.$
Vì \(\left( {\sqrt x + 2} \right) > 0\) nên chỉ có hai trường hợp:
Trường hợp 1: \(\sqrt x + 2 = 1\) suy ra \(\sqrt x = - 1\) (vô lý)
Trường hợp 2: \(\sqrt x + 2 = 5 \) suy ra \(\sqrt x = 3 \) do đó \(x = 9\)(thỏa mãn).
Vậy để \(D \in Z\) thì $x = 9$ (khi đó $D = 0$).
Tập hợp các số thực được kí hiệu là:
\(\mathbb{Z}\)
\(\mathbb{F}\)
\(\mathbb{Q}\)
\(\mathbb{R}\)
Đáp án : D
Kí hiệu tập hợp các số thực
Tập hợp các số thực được kí hiệu là \(\mathbb{R}\)
So sánh: \(\sqrt {17} \) và 4,(12)
\(\sqrt {17} \) > 4,(12)
\(\sqrt {17} \) = 4,(12)
\(\sqrt {17} \)\( \le \)4,(12)
\(\sqrt {17} \) < 4,(12)
Đáp án : A
Đưa các số thực về dạng số thập phân rồi so sánh 2 số thập phân.
Ta có: \(\sqrt {17} \) = 4,1231056…..
4,(12) = 4,1212…..
Đi từ trái sang phải của 2 số thập phân, ta thấy các chữ số ở cùng hàng tương ứng bằng nhau, cho đến chữ số thập phân thức 3 thì 3 > 1 nên 4,1231056….. > 4,1212…..
Vậy \(\sqrt {17} \) > 4,(12)
So sánh \(\sqrt {{{( - 4)}^2}} \) và \(\sqrt {17} \)
\(\sqrt {{{( - 4)}^2}} \) > \(\sqrt {17} \)
\(\sqrt {{{( - 4)}^2}} \) = \(\sqrt {17} \)
\(\sqrt {{{( - 4)}^2}} \) < \(\sqrt {17} \)
Không so sánh được
Đáp án : C
So sánh 2 căn thức: Nếu \(0 < a < b \Rightarrow \sqrt a < \sqrt b \)
Ta có: \(\sqrt {{{( - 4)}^2}} = \sqrt {16} \)
Vì 16 < 17 nên \(\sqrt {16} < \sqrt {17} \Rightarrow \sqrt {{{( - 4)}^2}} < \sqrt {17} \)
Tính: \(\left| { - \sqrt {11} } \right|\)
\(\sqrt {11} \)
-\(\sqrt {11} \)
11
1
Đáp án : A
Giá trị tuyệt đối của số - a là số a.
\(\left| { - \sqrt {11} } \right|\) = \(\sqrt {11} \)
Cho x là 1 số thực bất kì, |x| là:
Một số âm
Một số dương
Một số không âm
Một sô không dương
Đáp án : C
Giá trị tuyệt đối của 1 số thực a là khoảng cách tử điểm biểu diễn a đến gốc O trên trục số.
Giá trị tuyệt đối của 1 số thực khác 0 luôn là 1 số dương. Giá trị tuyệt đối của số 0 là số 0
Giá trị tuyệt đối của 1 số thực bất kì là 1 số không âm.
Tìm x sao cho: |2x + 5| = |-1,5|
x = -1,75
x = 1,75
x = -1,75; x = 1,75
x = -1,75 ; x = -3,25.
Đáp án : D
Bước 1: Tính |-1,5|
Bước 2: |A| = k > 0 thì xảy ra 2 trường hợp:
A = k hoặc A = - k
Ta có: |2x + 5| = |-1,5|
\( \Leftrightarrow \) |2x + 5| = 1,5
\( \Leftrightarrow \left[ {_{2x + 5 = - 1,5}^{2x + 5 = 1,5}} \right. \Leftrightarrow \left[ {_{2x = - 6,5}^{2x = - 3,5}} \right. \Leftrightarrow \left[ {_{x = - 3,25}^{x = - 1,75}} \right.\)
Vậy \(x \in \left\{ { - 1,75; - 3,25} \right\}\)
Tính giá trị biểu thức: \(K = \left| { - 1,3} \right| + {\left( {\frac{{ - 3}}{5}} \right)^2} - |2,3| - {\left( {\frac{4}{5}} \right)^2} - {2022^0}\)
-3
-2,28
-5,6
-1
Đáp án : B
+ Tính các giá trị tuyệt đối và lũy thừa
+ Nhóm các số hạng thích hợp với nhau.
\(\begin{array}{l}K = \left| { - 1,3} \right| + {\left( {\frac{{ - 3}}{5}} \right)^2} - |2,3| - {\left( {\frac{4}{5}} \right)^2} - {2022^0}\\ = 1,3 + \frac{9}{{25}} - 2,3 - \frac{{16}}{{25}} - 1\\ = \left( {1,3 - 2,3} \right) + \left( {\frac{9}{{25}} - \frac{{16}}{{25}}} \right) - 1\\ = ( - 1) + \frac{{ - 7}}{{25}} - 1\\ = \frac{{ - 25}}{{25}} + \frac{{ - 7}}{{25}} - \frac{{25}}{{25}}\\ = \frac{{ - 57}}{{25}}\\ = - 2,28\end{array}\)
Tính giá trị nhỏ nhất của biểu thức: \(A = \left| { - x - 3} \right| + {\left( {y - 1} \right)^2} + {\left( {x + 3} \right)^4} + 2\)
0
-2
2
3
Đáp án : C
Đánh giá:
\(\begin{array}{l}|a| \ge 0,\forall a \in \mathbb{R}\\{b^2} \ge 0,{b^4} \ge 0,\forall b \in \mathbb{R}\end{array}\)
Vì \[\left| { - x - 3} \right| \ge 0;{\left( {y - 1} \right)^2} \ge 0;{\left( {x + 3} \right)^4} \ge 0,\forall x,y \in \mathbb{R}\]
\( \Rightarrow \)\(A = \left| { - x - 3} \right| + {\left( {y - 1} \right)^2} + {\left( {x + 3} \right)^4} + 2 \ge 0 + 0 + 0 + 2 = 2\)
Dấu “ = “ xảy ra khi –x – 3 = 0 ; y – 1 = 0 ; x + 3 = 0 \( \Leftrightarrow x = - 3;y = 1\)
Vậy min A = 2 khi x = -3; y = 1
Chọn chữ số thích hợp điền vào dấu “…”
-2,3….4 > - 2, (31)
0
1
{1;2;3;4;5;6;7;8;9}
2
Đáp án : A
Dựa vào cách so sánh 2 số thập phân
Chú ý: Nếu a > b thì –a < - b
-2,3….4 > - 2, (31)
2,3…4 < 2,(31) = 2,3131
Ta thấy, chỉ có chữ số 0 thỏa mãn do 2,304 < 2,3131
Phát biểu nào sau đây sai?
Mọi số vô tỉ đều là số thực
Mọi số thực đều là số vô tỉ.
Mọi số nguyên đều là số hữu tỉ
Số 0 là số hữu tỉ cũng là số thực.
Đáp án : B
Số thực gồm số hữu tỉ và số vô tỉ
Mọi số nguyên đều là số hữu tỉ. Mọi số hữu tỉ đều là số thực.
Số thực gồm số hữu tỉ và số vô tỉ nên B sai
Bài 2 trong chương trình Toán 7 Chân trời sáng tạo tập trung vào việc giới thiệu về số thực và khái niệm giá trị tuyệt đối của một số thực. Đây là nền tảng quan trọng để học sinh hiểu rõ hơn về các khái niệm toán học phức tạp hơn trong tương lai.
Số thực bao gồm tất cả các số hữu tỉ và số vô tỉ. Các số hữu tỉ có thể biểu diễn dưới dạng phân số a/b, trong đó a và b là các số nguyên và b khác 0. Các số vô tỉ là những số không thể biểu diễn dưới dạng phân số, ví dụ như căn bậc hai của 2 (√2) hoặc số pi (π).
Giá trị tuyệt đối của một số thực x, ký hiệu là |x|, là khoảng cách từ x đến 0 trên trục số. Nó được định nghĩa như sau:
Ví dụ:
Dưới đây là một số bài tập trắc nghiệm minh họa để giúp các em hiểu rõ hơn về chủ đề này:
Câu 1: Giá trị tuyệt đối của số -7 là:
Câu 2: Số nào sau đây có giá trị tuyệt đối bằng 3?
Câu 3: Tính giá trị của biểu thức |2 - 5|:
Số thực và giá trị tuyệt đối có rất nhiều ứng dụng trong thực tế, ví dụ như:
Để nắm vững kiến thức về số thực và giá trị tuyệt đối, các em nên luyện tập thêm nhiều bài tập khác nhau. Giaitoan.edu.vn cung cấp một hệ thống bài tập phong phú và đa dạng, giúp các em tự tin hơn trong quá trình học tập.
Bài học về số thực và giá trị tuyệt đối là một bước quan trọng trong quá trình học Toán 7. Việc hiểu rõ các khái niệm và tính chất của số thực và giá trị tuyệt đối sẽ giúp các em giải quyết các bài toán một cách dễ dàng và hiệu quả hơn. Chúc các em học tốt!
Số thực | Giá trị tuyệt đối |
---|---|
Tất cả các số hữu tỉ và vô tỉ | Khoảng cách từ số đó đến 0 trên trục số |
Ví dụ: 2, -3, √2, π | Ví dụ: |2| = 2, |-3| = 3 |
Nắm vững kiến thức này là nền tảng cho các bài học tiếp theo. |