Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo

Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo

Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo

Chào mừng bạn đến với bài trắc nghiệm trực tuyến giúp bạn ôn luyện và kiểm tra kiến thức về Bài 1: Các góc ở vị trí đặc biệt trong chương trình Toán 7 Chân trời sáng tạo. Bài trắc nghiệm này được thiết kế để giúp bạn nắm vững các khái niệm, định nghĩa và tính chất quan trọng của các góc ở vị trí đặc biệt.

Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, kèm đáp án chi tiết và lời giải thích rõ ràng, giúp bạn tự tin hơn trong quá trình học tập và làm bài.

Đề bài

    Câu 1 :

    Vẽ góc \(xOy\) có số đo bằng 125o. Vẽ góc \(x'Oy'\) đối đỉnh với góc \(xOy.\) Viết tên các góc có số đo bằng 55o.

    • A.

      \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy'}\)

    • B.

      \(\widehat {xOy}\,\,;\,\,\widehat {x'Oy'}\)

    • C.

      \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)

    • D.

      \(\widehat {xOy'}\,\,;\,\,\widehat {xOy}\)

    Câu 2 :

    Cho \(\widehat {ABC} = {56^o}\). Vẽ \(\widehat {ABC'}\) kề bù với \(\widehat {ABC}\); \(\widehat {C'BA'}\) kề bù với \(\widehat {ABC'}\). Tính số đo \(\widehat {C'BA'}\).

    • A.

      124o

    • B.

      142o

    • C.

      65o

    • D.

      56o

    Câu 3 :

    Cho 2 đường thẳng ab và cd cắt nhau tại M ( tia Ma đối tia Mb). Biết \(\widehat {aMc} = 5.\widehat {bMc}\). Tính số đo \(\widehat {aMc}\) ?

    • A.

      30\(^\circ \)

    • B.

      36\(^\circ \)

    • C.

      144\(^\circ \)

    • D.

      150\(^\circ \)

    Câu 4 :

    Cho hai đường thẳng \(xx'\) và \(yy'\) cắt nhau tại \(O\) sao cho \(\widehat {xOy} = 135^\circ \) . Chọn câu đúng:

    • A.

      \(\widehat {x'Oy} = 135^\circ \)

    • B.

      \(\widehat {x'Oy'} = 45^\circ \)

    • C.

      \(\widehat {xOy'} = 135^\circ \)

    • D.

      \(\widehat {x'Oy'} = 135^\circ \)

    Câu 5 :

    Hai đường thẳng zz’ và tt’ cắt nhau tại \(A\). Góc đối đỉnh với \(\widehat {zAt'}\) là:

    • A.

      \(\widehat {z'At'}\)

    • B.

      \(\widehat {z'At}\)

    • C.

      \(\widehat {zAt'}\)

    • D.

      \(\widehat {zAt}\)

    Câu 6 :

    Hai đường thẳng $AB$ và $CD$ cắt nhau tại $O.$ Biết \(\widehat {AOC} - \widehat {AOD} = {50^0}.\) Chọn câu đúng.

    • A.

      \(\widehat {AOC} = 110^\circ \)

    • B.

      \(\widehat {BOC} = 65^\circ \)

    • C.

      \(\widehat {BOD} = 120^\circ \)

    • D.

      \(\widehat {AOD} = 50^\circ \)

    Hai đường thẳng $MN$ và $PQ$ cắt nhau tại $O$, tạo thành góc $MOP$ có số đo bằng ${80^o}.$

    Câu 7

    Chọn câu đúng.

    • A.

      $\widehat {MOQ} = \widehat {PON} = {100^o}$

    • B.

      $\widehat {MOQ} = \widehat {PON} = {80^o}$

    • C.

      $\widehat {MOQ} + \widehat {PON} = {180^o}$

    • D.

      $\widehat {MOQ} = \widehat {PON} = {160^o}$

    Câu 8

    Vẽ tia $Ot$ là tia phân giác của góc $MOP,$ $Ot'$ là tia đối của tia $Ot.$ Chọn câu đúng.

    • A.

      $Ot'$ là tia phân giác của góc $NOP.$

    • B.

      $Ot'$ là tia phân giác của góc $NOQ.$

    • C.

      $ON$ là tia phân giác của góc $t'OP.$

    • D.

      Cả A, B, C đều sai.

    Câu 9 :

    Vẽ góc $xOy$ có số đo bằng $35^\circ$. Vẽ góc $x'Oy'$ đối đỉnh với góc $xOy.$ Viết tên các góc có số đo bằng $145^o.$

    • A.

      \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy'}\)

    • B.

      \(\widehat {xOy}\,\,;\,\,\widehat {x'Oy'}\)

    • C.

      \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)

    • D.

      \(\widehat {xOy'}\,\,;\,\,\widehat {xOy}\)

    Câu 10 :

    Cho hình vẽ sau. Biết góc $xOy'$ đối đỉnh với góc $x'Oy,$ biết \(\widehat {xOy'} = {\widehat O_1} = {165^o}\). Tính các góc đỉnh O (khác góc bẹt).

    Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 1
    • A.

      \({\widehat O_2} = {165^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {165^o}\,\,\)

    • B.

      \({\widehat O_2} = {165^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {15^o}\,\,\)

    • C.

      \({\widehat O_2} = {15^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {165^o}\,\,\)

    • D.

      \({\widehat O_2} = {15^o};\,{\widehat O_3} = {165^o};\,\,{\widehat O_4} = {15^o}\,\,\)

    Câu 11 :

    Cho cặp góc đối đỉnh \(\widehat {tOz}\) và \(\widehat {t'Oz'}\) (\(Oz\) và $Oz'$ là hai tia đối nhau). Biết \(\widehat {tOz'} = 4.\widehat {tOz}\). Tính các góc \(\widehat {tOz}\) và \(\widehat {t'Oz'}.\)

    • A.

      \(\widehat {zOt} = \widehat {z'Ot'} = 72^\circ \)

    • B.

      \(\widehat {zOt} = \widehat {z'Ot'} = 30^\circ \)

    • C.

      \(\widehat {zOt} = \widehat {z'Ot'} = 36^\circ \)

    • D.

      \(\widehat {zOt} = 72^\circ ;\,\widehat {z'Ot'} = 36^\circ \)

    Câu 12 :

    Vẽ \(\widehat {ABC} = {56^o}\). Vẽ \(\widehat {ABC'}\) kề bù với \(\widehat {ABC}\). Sau đó vẽ tiếp \(\widehat {C'BA'}\) kề bù với \(\widehat {ABC'}\). Tính số đo \(\widehat {C'BA'}\).

    • A.

      $124^\circ$

    • B.

      $142^\circ$

    • C.

      $65^\circ$

    • D.

      $56^\circ$

    Câu 13 :

    Cho hai đường thẳng \(xx'\) và \(yy'\) giao nhau tại \(O\) sao cho \(\widehat {xOy} = 45^\circ \) . Chọn câu sai.

    • A.

      $\widehat {x'Oy} = 135^\circ $

    • B.

      $\widehat {x'Oy'} = 45^\circ $

    • C.

      $\widehat {xOy'} = 135^\circ $

    • D.

      $\widehat {x'Oy'} = 135^\circ $

    Câu 14 :

    Cho góc \(xBy\) đối đỉnh với góc \(x'By'\) và \(\widehat {xBy} = 60^\circ \) . Tính số đo góc \(x'By'.\)

    • A.

      $30^\circ$

    • B.

      $120^\circ$

    • C.

      $90^\circ$

    • D.

      $60^\circ$

    Câu 15 :

    Hai đường thẳng zz’ và tt’ cắt nhau tại $A$. Góc đối đỉnh với \(\widehat {zAt'}\) là:

    • A.

      \(\widehat {z'At'}\)

    • B.

      \(\widehat {z'At}\)

    • C.

      \(\widehat {zAt'}\) \(\)

    • D.

      \(\widehat {zAt}\)

    Lời giải và đáp án

    Câu 1 :

    Vẽ góc \(xOy\) có số đo bằng 125o. Vẽ góc \(x'Oy'\) đối đỉnh với góc \(xOy.\) Viết tên các góc có số đo bằng 55o.

    • A.

      \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy'}\)

    • B.

      \(\widehat {xOy}\,\,;\,\,\widehat {x'Oy'}\)

    • C.

      \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)

    • D.

      \(\widehat {xOy'}\,\,;\,\,\widehat {xOy}\)

    Đáp án : C

    Phương pháp giải :

    + Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

    + Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau

    Lời giải chi tiết :

    Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 2

    Vì hai đường thẳng \(xx'\) và \(yy'\) cắt nhau tại \(O\) nên \(Ox'\) là tia đối của tia \(Ox;Oy'\) là tia đối của tia \(Oy.\)

    Suy ra \(\widehat {xOy}\) và \(\widehat {x'Oy'}\) ; \(\widehat {x'Oy}\) và \(\widehat {xOy'}\) là hai cặp góc đối đỉnh.

    Do đó \(\widehat {x'Oy'} = \widehat {xOy} = 125^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'}\)

    Lại có \(\widehat {xOy}\) và \(\widehat {x'Oy}\) là hai góc ở vị trí kề bù nên

    \(\widehat {xOy} + \widehat {x'Oy} = 180^\circ \)

    Suy ra \(125^\circ + \widehat {x'Oy} = 180^\circ \)

    Suy ra \(\widehat {x'Oy} = 180^\circ - 125^\circ = 55^\circ \)

    Hai góc có số đo bằng 55o là : \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)

    Câu 2 :

    Cho \(\widehat {ABC} = {56^o}\). Vẽ \(\widehat {ABC'}\) kề bù với \(\widehat {ABC}\); \(\widehat {C'BA'}\) kề bù với \(\widehat {ABC'}\). Tính số đo \(\widehat {C'BA'}\).

    • A.

      124o

    • B.

      142o

    • C.

      65o

    • D.

      56o

    Đáp án : D

    Phương pháp giải :

    Áp dụng tính chất hai góc kề bù, xác định các tia đối từ đó xác định góc đối đỉnh. Áp dụng tính chất hai góc đối đỉnh để tính góc \(C'BA'.\)

    Lời giải chi tiết :

    Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 3

    Vì góc \(ABC'\) kề bù với góc \(ABC\) nên \(BC'\) là tia đối của tia \(BC.\)

    Vì góc \(C'BA'\) kề bù với góc \(ABC'\) nên \(BA'\) là tia đối của tia \(BA.\)

    Do đó, góc \(C'BA'\) và góc \(ABC\) đối đỉnh.

    \( \Rightarrow \widehat {C'BA'} = \widehat {ABC} = {56^o}\) 

    Câu 3 :

    Cho 2 đường thẳng ab và cd cắt nhau tại M ( tia Ma đối tia Mb). Biết \(\widehat {aMc} = 5.\widehat {bMc}\). Tính số đo \(\widehat {aMc}\) ?

    • A.

      30\(^\circ \)

    • B.

      36\(^\circ \)

    • C.

      144\(^\circ \)

    • D.

      150\(^\circ \)

    Đáp án : D

    Phương pháp giải :

    + Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

    Lời giải chi tiết :

    Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 4

    Ta có: \(\widehat {aMc} + \widehat {bMc} = 180^\circ \) ( 2 góc kề bù)

    Mà \(\widehat {aMc} = 5.\widehat {bMc}\)

    \(\begin{array}{l} 5.\widehat {bMc} + \widehat {bMc} = 180^\circ \\ 6.\widehat {bMc} = 180^\circ \\ \widehat {bMc} = 180^\circ :6 = 30^\circ \\ \widehat {aMc} = 5.30^\circ = 150^\circ \end{array}\)

    \(\begin{array}{l} 5.\widehat {bMc} + \widehat {bMc} = 180^\circ \\ 6.\widehat {bMc} = 180^\circ \\ \widehat {bMc} = 180^\circ :6 = 30^\circ \\ \widehat {aMc} = 5.30^\circ = 150^\circ \end{array}\)

    Câu 4 :

    Cho hai đường thẳng \(xx'\) và \(yy'\) cắt nhau tại \(O\) sao cho \(\widehat {xOy} = 135^\circ \) . Chọn câu đúng:

    • A.

      \(\widehat {x'Oy} = 135^\circ \)

    • B.

      \(\widehat {x'Oy'} = 45^\circ \)

    • C.

      \(\widehat {xOy'} = 135^\circ \)

    • D.

      \(\widehat {x'Oy'} = 135^\circ \)

    Đáp án : D

    Phương pháp giải :

    + Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau

    + Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

    Lời giải chi tiết :

    Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 5

    Vì hai đường thẳng \(xx'\) và \(yy'\) cắt nhau tại \(O\) nên \(Ox'\) là tia đối của tia \(Ox;Oy'\) là tia đối của tia \(Oy.\)

    Suy ra \(\widehat {xOy}\) và \(\widehat {x'Oy'}\) ; \(\widehat {x'Oy}\) và \(\widehat {xOy'}\) là hai cặp góc đối đỉnh.

    Do đó \(\widehat {x'Oy'} = \widehat {xOy} = 135^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'}\)

    Lại có \(\widehat {xOy}\) và \(\widehat {x'Oy}\) là hai góc kề bù nên

    \(\widehat {xOy} + \widehat {x'Oy} = 180^\circ \)

    \(45^\circ + \widehat {x'Oy} = 180^\circ \)

    Suy ra \(\widehat {x'Oy} = 180^\circ - 135^\circ = 45^\circ \)

    Do đó \(\widehat {x'Oy} = \widehat {xOy'} = 45^\circ .\)

    Vậy \(\widehat {x'Oy'} = \widehat {xOy} = 135^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'} = 45^\circ .\)

    Câu 5 :

    Hai đường thẳng zz’ và tt’ cắt nhau tại \(A\). Góc đối đỉnh với \(\widehat {zAt'}\) là:

    • A.

      \(\widehat {z'At'}\)

    • B.

      \(\widehat {z'At}\)

    • C.

      \(\widehat {zAt'}\)

    • D.

      \(\widehat {zAt}\)

    Đáp án : B

    Phương pháp giải :

    Áp dụng định nghĩa hai góc đối đỉnh, xác định tia đối của tia Az và At, từ đó xác định góc đối đỉnh với \(\widehat {zAt}\).

    Lời giải chi tiết :

    Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 6

    Vì hai đường thẳng \(zz'\) và \(tt'\) cắt nhau tại \(A\) nên \(Az'\) là tia đối của tia \(Az,At'\) là tia đối của tia \(At.\) Vậy góc đối đỉnh với \(\widehat {zAt'}\) là \(\widehat {z'At}\).

    Câu 6 :

    Hai đường thẳng $AB$ và $CD$ cắt nhau tại $O.$ Biết \(\widehat {AOC} - \widehat {AOD} = {50^0}.\) Chọn câu đúng.

    • A.

      \(\widehat {AOC} = 110^\circ \)

    • B.

      \(\widehat {BOC} = 65^\circ \)

    • C.

      \(\widehat {BOD} = 120^\circ \)

    • D.

      \(\widehat {AOD} = 50^\circ \)

    Đáp án : B

    Phương pháp giải :

    + Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

    + Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau

    Lời giải chi tiết :
    Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 7

    Vì \(\widehat {AOD}\) và \(\widehat {AOC}\) là hai góc kề bù nên \(\widehat {AOD} + \widehat {AOC} = 180^\circ \) mà \(\widehat {AOC} - \widehat {AOD} = 50^\circ \)

    Nên \(\widehat {AOC} = \dfrac{{180^\circ + 50^\circ }}{2} = 115^\circ \) và \(\widehat {AOD} = 180^\circ - \widehat {AOC} = 65^\circ \)

    Mà \(\widehat {AOD}\) và \(\widehat {BOC}\) là hai góc đối đỉnh nên \(\widehat {BOC} = \widehat {AOD} = 65^\circ .\)

    Lại có \(\widehat {BOD}\) và \(\widehat {AOC}\) là hai góc đối đỉnh nên \(\widehat {BOD} = \widehat {AOC} = 115^\circ .\)

    Vậy \(\widehat {BOD} = \widehat {AOC} = 115^\circ ;\,\widehat {BOC} = \widehat {AOD} = 65^\circ .\)

    Hai đường thẳng $MN$ và $PQ$ cắt nhau tại $O$, tạo thành góc $MOP$ có số đo bằng ${80^o}.$

    Câu 7

    Chọn câu đúng.

    • A.

      $\widehat {MOQ} = \widehat {PON} = {100^o}$

    • B.

      $\widehat {MOQ} = \widehat {PON} = {80^o}$

    • C.

      $\widehat {MOQ} + \widehat {PON} = {180^o}$

    • D.

      $\widehat {MOQ} = \widehat {PON} = {160^o}$

    Đáp án: A

    Phương pháp giải :

    Áp dụng tính chất $2$ góc đối đỉnh, tính chất $2$ góc kề bù. Tính các góc còn lại.

    Lời giải chi tiết :
    Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 8

    $\widehat {NOQ} = \widehat {MOP} = {80^o}$ (tính chất hai góc đối đỉnh)

    Vì góc $MOP$ và $PON$ là hai góc kề bù nên :

    $\,\widehat {MOP} + \widehat {PON} = {180^o} \Rightarrow {80^o} + \widehat {PON} = {180^o}$ $ \Rightarrow \widehat {PON} = {180^o} - {80^o} = {100^o}$

    Khi đó $\widehat {MOQ} = \widehat {PON} = {100^o}$ (tính chất hai góc đối đỉnh).

    Câu 8

    Vẽ tia $Ot$ là tia phân giác của góc $MOP,$ $Ot'$ là tia đối của tia $Ot.$ Chọn câu đúng.

    • A.

      $Ot'$ là tia phân giác của góc $NOP.$

    • B.

      $Ot'$ là tia phân giác của góc $NOQ.$

    • C.

      $ON$ là tia phân giác của góc $t'OP.$

    • D.

      Cả A, B, C đều sai.

    Đáp án: B

    Phương pháp giải :

    Áp dụng tính chất tia phân giác của một góc để tính $2$ góc $MOt,POt.$ Xác định tia đối, áp dụng tính chất hai góc đối đỉnh, tính $2$ góc $NOt',QOt'.$ Từ đó chứng minh $Ot'$ là tia phân giác của góc $NOQ.$

    Lời giải chi tiết :
    Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 9

    Vì $Ot$ là tia phân giác của góc $MOP$ nên $\widehat {MOt} = \widehat {tOP} = \dfrac{1}{2}\widehat {MOP} = \dfrac{1}{2}{.80^o} = {40^o}.$

    Vì $Ot'$ là tia đối của tia $Ot,$ do đó :

    \(\widehat {NOt'} = \widehat {MOt} = {40^o}\,\,\,\) (hai góc đối đỉnh)

    \(\widehat {t'OQ} = \widehat {tOP} = {40^o}\,\,\,\,\) (hai góc đối đỉnh)

    \( \Rightarrow \widehat {NOt'} = \widehat {t'OQ}\) 

    Mặt khác tia $Ot'$ nằm trong góc $NOQ.$ Vậy $Ot'$ là tia phân giác của góc $NOQ.$

    Câu 9 :

    Vẽ góc $xOy$ có số đo bằng $35^\circ$. Vẽ góc $x'Oy'$ đối đỉnh với góc $xOy.$ Viết tên các góc có số đo bằng $145^o.$

    • A.

      \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy'}\)

    • B.

      \(\widehat {xOy}\,\,;\,\,\widehat {x'Oy'}\)

    • C.

      \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)

    • D.

      \(\widehat {xOy'}\,\,;\,\,\widehat {xOy}\)

    Đáp án : C

    Phương pháp giải :

    Áp dụng tính chất hai góc đối đỉnh, tính chất hai góc kề bù để tính các góc còn lại.

    Lời giải chi tiết :
    Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 10

    Vì hai đường thẳng $xx'$ và $yy'$ cắt nhau tại $O$ nên $Ox'$ là tia đối của tia $Ox;Oy'$ là tia đối của tia $Oy.$

    Suy ra \(\widehat {xOy}\) và \(\widehat {x'Oy'}\) ; \(\widehat {x'Oy}\) và \(\widehat {xOy'}\) là hai cặp góc đối đỉnh.

    Do đó \(\widehat {x'Oy'} = \widehat {xOy} = 35^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'}\)

    Lại có \(\widehat {xOy}\) và \(\widehat {x'Oy}\) là hai góc ở vị trí kề bù nên \(\widehat {xOy} + \widehat {x'Oy} = 180^\circ \)\( \Rightarrow 35^\circ + \widehat {x'Oy} = 180^\circ \Rightarrow \widehat {x'Oy} = 180^\circ - 35^\circ \)

    \( \Rightarrow \widehat {x'Oy} = 145^\circ \)

    Vậy \(\widehat {x'Oy'} = \widehat {xOy} = 45^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'} = 145^\circ .\)

    Hai góc có số đo bằng ${145^o}$ là : \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)

    Câu 10 :

    Cho hình vẽ sau. Biết góc $xOy'$ đối đỉnh với góc $x'Oy,$ biết \(\widehat {xOy'} = {\widehat O_1} = {165^o}\). Tính các góc đỉnh O (khác góc bẹt).

    Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 11
    • A.

      \({\widehat O_2} = {165^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {165^o}\,\,\)

    • B.

      \({\widehat O_2} = {165^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {15^o}\,\,\)

    • C.

      \({\widehat O_2} = {15^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {165^o}\,\,\)

    • D.

      \({\widehat O_2} = {15^o};\,{\widehat O_3} = {165^o};\,\,{\widehat O_4} = {15^o}\,\,\)

    Đáp án : B

    Phương pháp giải :

     Áp dụng tính chất hai góc đối đỉnh, hai góc kề bù để tính các góc còn lại.

    Lời giải chi tiết :

    \({\widehat O_2} = {\widehat O_1} = {165^o}\) (tính chất hai góc đối đỉnh)

    Góc ${O_1}$ và góc ${O_4}$ là hai góc kề bù

    \( \Rightarrow {\widehat O_1} + {\widehat O_4} = {180^o}\)

    \( \Rightarrow {\widehat O_4} = {180^o} - {\widehat O_1}\)

    \( \Rightarrow {\widehat O_4} = {180^o} - {165^o} = {15^o}\)

    \({\widehat O_3} = {\widehat O_4} = {15^o}\,\) (hai góc đối đỉnh)

    Câu 11 :

    Cho cặp góc đối đỉnh \(\widehat {tOz}\) và \(\widehat {t'Oz'}\) (\(Oz\) và $Oz'$ là hai tia đối nhau). Biết \(\widehat {tOz'} = 4.\widehat {tOz}\). Tính các góc \(\widehat {tOz}\) và \(\widehat {t'Oz'}.\)

    • A.

      \(\widehat {zOt} = \widehat {z'Ot'} = 72^\circ \)

    • B.

      \(\widehat {zOt} = \widehat {z'Ot'} = 30^\circ \)

    • C.

      \(\widehat {zOt} = \widehat {z'Ot'} = 36^\circ \)

    • D.

      \(\widehat {zOt} = 72^\circ ;\,\widehat {z'Ot'} = 36^\circ \)

    Đáp án : C

    Phương pháp giải :

    + Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

    + Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau

    Lời giải chi tiết :
    Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 12

    Ta có \(\widehat {zOt} + \widehat {tOz'} = 180^\circ \) (hai góc kề bù) mà \(\widehat {tOz'} = 4.\widehat {tOz}\) \( \Rightarrow \widehat {zOt} + 4.\widehat {zOt} = 180^\circ \) \( \Rightarrow 5.\widehat {zOt} = 180^\circ \Rightarrow \widehat {zOt} = 36^\circ \)

    Vì \(\widehat {tOz}\) và \(\widehat {t'Oz'}\) là hai góc đối đỉnh nên \(\widehat {zOt} = \widehat {z'Ot'} = 36^\circ .\)

    Câu 12 :

    Vẽ \(\widehat {ABC} = {56^o}\). Vẽ \(\widehat {ABC'}\) kề bù với \(\widehat {ABC}\). Sau đó vẽ tiếp \(\widehat {C'BA'}\) kề bù với \(\widehat {ABC'}\). Tính số đo \(\widehat {C'BA'}\).

    • A.

      $124^\circ$

    • B.

      $142^\circ$

    • C.

      $65^\circ$

    • D.

      $56^\circ$

    Đáp án : D

    Phương pháp giải :

    Áp dụng tính chất hai góc kề bù, xác định các tia đối từ đó xác định góc đối đỉnh. Áp dụng tính chất hai góc đối đỉnh để tính góc \(C'BA'.\)

    Lời giải chi tiết :
    Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 13

    Vì góc \(ABC'\) kề bù với góc $ABC$ nên $BC'$ là tia đối của tia $BC.$

    Vì góc $C'BA'$ kề bù với góc $ABC'$ nên $BA'$ là tia đối của tia $BA.$

    Do đó, góc $C'BA'$ và góc $ABC$ đối đỉnh.

    \( \Rightarrow \widehat {C'BA'} = \widehat {ABC} = {56^o}\) 

    Câu 13 :

    Cho hai đường thẳng \(xx'\) và \(yy'\) giao nhau tại \(O\) sao cho \(\widehat {xOy} = 45^\circ \) . Chọn câu sai.

    • A.

      $\widehat {x'Oy} = 135^\circ $

    • B.

      $\widehat {x'Oy'} = 45^\circ $

    • C.

      $\widehat {xOy'} = 135^\circ $

    • D.

      $\widehat {x'Oy'} = 135^\circ $

    Đáp án : D

    Phương pháp giải :

    + Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau

    + Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

    Lời giải chi tiết :
    Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 14

    Vì hai đường thẳng $xx'$ và $yy'$ cắt nhau tại $O$ nên $Ox'$ là tia đối của tia $Ox;Oy'$ là tia đối của tia $Oy.$

    Suy ra \(\widehat {xOy}\) và \(\widehat {x'Oy'}\) ; \(\widehat {x'Oy}\) và \(\widehat {xOy'}\) là hai cặp góc đối đỉnh.

    Do đó \(\widehat {x'Oy'} = \widehat {xOy} = 45^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'}\)

    Lại có \(\widehat {xOy}\) và \(\widehat {x'Oy}\) là hai góc ở vị trí kề bù nên \(\widehat {xOy} + \widehat {x'Oy} = 180^\circ \)\( \Rightarrow 45^\circ + \widehat {x'Oy} = 180^\circ \Rightarrow \widehat {x'Oy} = 180^\circ - 45^\circ \)

    \( \Rightarrow \widehat {x'Oy} = 135^\circ \)

    Vậy \(\widehat {x'Oy'} = \widehat {xOy} = 45^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'} = 135^\circ .\)

    Suy ra A, B, C đúng, D sai.

    Câu 14 :

    Cho góc \(xBy\) đối đỉnh với góc \(x'By'\) và \(\widehat {xBy} = 60^\circ \) . Tính số đo góc \(x'By'.\)

    • A.

      $30^\circ$

    • B.

      $120^\circ$

    • C.

      $90^\circ$

    • D.

      $60^\circ$

    Đáp án : D

    Phương pháp giải :

    Áp dụng tính chất: Hai góc đối đỉnh thì bằng nhau.

    Lời giải chi tiết :
    Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 15

    Vẽ \(\widehat {x'By'}\) là góc đối đỉnh với \(\widehat {xBy}\). Khi đó:

    \(\widehat {x'By'} = \widehat {xBy} = {60^o}\) (tính chất hai góc đối đỉnh)

    Câu 15 :

    Hai đường thẳng zz’ và tt’ cắt nhau tại $A$. Góc đối đỉnh với \(\widehat {zAt'}\) là:

    • A.

      \(\widehat {z'At'}\)

    • B.

      \(\widehat {z'At}\)

    • C.

      \(\widehat {zAt'}\) \(\)

    • D.

      \(\widehat {zAt}\)

    Đáp án : B

    Phương pháp giải :

    Áp dụng định nghĩa hai góc đối đỉnh, xác định tia đối của tia \(Az\) và \(At'\), từ đó xác định góc đối đỉnh với \(\widehat {zAt'}\).

    Lời giải chi tiết :
    Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 16

     Vì hai đường thẳng $zz'$ và $tt'$ cắt nhau tại $A$ nên $Az'$ là tia đối của tia $Az,At'$ là tia đối của tia $At.$ Vậy góc đối đỉnh với \(\widehat {zAt'}\) là \(\widehat {z'At}\).

    Lời giải và đáp án

      Câu 1 :

      Vẽ góc \(xOy\) có số đo bằng 125o. Vẽ góc \(x'Oy'\) đối đỉnh với góc \(xOy.\) Viết tên các góc có số đo bằng 55o.

      • A.

        \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy'}\)

      • B.

        \(\widehat {xOy}\,\,;\,\,\widehat {x'Oy'}\)

      • C.

        \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)

      • D.

        \(\widehat {xOy'}\,\,;\,\,\widehat {xOy}\)

      Câu 2 :

      Cho \(\widehat {ABC} = {56^o}\). Vẽ \(\widehat {ABC'}\) kề bù với \(\widehat {ABC}\); \(\widehat {C'BA'}\) kề bù với \(\widehat {ABC'}\). Tính số đo \(\widehat {C'BA'}\).

      • A.

        124o

      • B.

        142o

      • C.

        65o

      • D.

        56o

      Câu 3 :

      Cho 2 đường thẳng ab và cd cắt nhau tại M ( tia Ma đối tia Mb). Biết \(\widehat {aMc} = 5.\widehat {bMc}\). Tính số đo \(\widehat {aMc}\) ?

      • A.

        30\(^\circ \)

      • B.

        36\(^\circ \)

      • C.

        144\(^\circ \)

      • D.

        150\(^\circ \)

      Câu 4 :

      Cho hai đường thẳng \(xx'\) và \(yy'\) cắt nhau tại \(O\) sao cho \(\widehat {xOy} = 135^\circ \) . Chọn câu đúng:

      • A.

        \(\widehat {x'Oy} = 135^\circ \)

      • B.

        \(\widehat {x'Oy'} = 45^\circ \)

      • C.

        \(\widehat {xOy'} = 135^\circ \)

      • D.

        \(\widehat {x'Oy'} = 135^\circ \)

      Câu 5 :

      Hai đường thẳng zz’ và tt’ cắt nhau tại \(A\). Góc đối đỉnh với \(\widehat {zAt'}\) là:

      • A.

        \(\widehat {z'At'}\)

      • B.

        \(\widehat {z'At}\)

      • C.

        \(\widehat {zAt'}\)

      • D.

        \(\widehat {zAt}\)

      Câu 6 :

      Hai đường thẳng $AB$ và $CD$ cắt nhau tại $O.$ Biết \(\widehat {AOC} - \widehat {AOD} = {50^0}.\) Chọn câu đúng.

      • A.

        \(\widehat {AOC} = 110^\circ \)

      • B.

        \(\widehat {BOC} = 65^\circ \)

      • C.

        \(\widehat {BOD} = 120^\circ \)

      • D.

        \(\widehat {AOD} = 50^\circ \)

      Hai đường thẳng $MN$ và $PQ$ cắt nhau tại $O$, tạo thành góc $MOP$ có số đo bằng ${80^o}.$

      Câu 7

      Chọn câu đúng.

      • A.

        $\widehat {MOQ} = \widehat {PON} = {100^o}$

      • B.

        $\widehat {MOQ} = \widehat {PON} = {80^o}$

      • C.

        $\widehat {MOQ} + \widehat {PON} = {180^o}$

      • D.

        $\widehat {MOQ} = \widehat {PON} = {160^o}$

      Câu 8

      Vẽ tia $Ot$ là tia phân giác của góc $MOP,$ $Ot'$ là tia đối của tia $Ot.$ Chọn câu đúng.

      • A.

        $Ot'$ là tia phân giác của góc $NOP.$

      • B.

        $Ot'$ là tia phân giác của góc $NOQ.$

      • C.

        $ON$ là tia phân giác của góc $t'OP.$

      • D.

        Cả A, B, C đều sai.

      Câu 9 :

      Vẽ góc $xOy$ có số đo bằng $35^\circ$. Vẽ góc $x'Oy'$ đối đỉnh với góc $xOy.$ Viết tên các góc có số đo bằng $145^o.$

      • A.

        \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy'}\)

      • B.

        \(\widehat {xOy}\,\,;\,\,\widehat {x'Oy'}\)

      • C.

        \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)

      • D.

        \(\widehat {xOy'}\,\,;\,\,\widehat {xOy}\)

      Câu 10 :

      Cho hình vẽ sau. Biết góc $xOy'$ đối đỉnh với góc $x'Oy,$ biết \(\widehat {xOy'} = {\widehat O_1} = {165^o}\). Tính các góc đỉnh O (khác góc bẹt).

      Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 1
      • A.

        \({\widehat O_2} = {165^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {165^o}\,\,\)

      • B.

        \({\widehat O_2} = {165^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {15^o}\,\,\)

      • C.

        \({\widehat O_2} = {15^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {165^o}\,\,\)

      • D.

        \({\widehat O_2} = {15^o};\,{\widehat O_3} = {165^o};\,\,{\widehat O_4} = {15^o}\,\,\)

      Câu 11 :

      Cho cặp góc đối đỉnh \(\widehat {tOz}\) và \(\widehat {t'Oz'}\) (\(Oz\) và $Oz'$ là hai tia đối nhau). Biết \(\widehat {tOz'} = 4.\widehat {tOz}\). Tính các góc \(\widehat {tOz}\) và \(\widehat {t'Oz'}.\)

      • A.

        \(\widehat {zOt} = \widehat {z'Ot'} = 72^\circ \)

      • B.

        \(\widehat {zOt} = \widehat {z'Ot'} = 30^\circ \)

      • C.

        \(\widehat {zOt} = \widehat {z'Ot'} = 36^\circ \)

      • D.

        \(\widehat {zOt} = 72^\circ ;\,\widehat {z'Ot'} = 36^\circ \)

      Câu 12 :

      Vẽ \(\widehat {ABC} = {56^o}\). Vẽ \(\widehat {ABC'}\) kề bù với \(\widehat {ABC}\). Sau đó vẽ tiếp \(\widehat {C'BA'}\) kề bù với \(\widehat {ABC'}\). Tính số đo \(\widehat {C'BA'}\).

      • A.

        $124^\circ$

      • B.

        $142^\circ$

      • C.

        $65^\circ$

      • D.

        $56^\circ$

      Câu 13 :

      Cho hai đường thẳng \(xx'\) và \(yy'\) giao nhau tại \(O\) sao cho \(\widehat {xOy} = 45^\circ \) . Chọn câu sai.

      • A.

        $\widehat {x'Oy} = 135^\circ $

      • B.

        $\widehat {x'Oy'} = 45^\circ $

      • C.

        $\widehat {xOy'} = 135^\circ $

      • D.

        $\widehat {x'Oy'} = 135^\circ $

      Câu 14 :

      Cho góc \(xBy\) đối đỉnh với góc \(x'By'\) và \(\widehat {xBy} = 60^\circ \) . Tính số đo góc \(x'By'.\)

      • A.

        $30^\circ$

      • B.

        $120^\circ$

      • C.

        $90^\circ$

      • D.

        $60^\circ$

      Câu 15 :

      Hai đường thẳng zz’ và tt’ cắt nhau tại $A$. Góc đối đỉnh với \(\widehat {zAt'}\) là:

      • A.

        \(\widehat {z'At'}\)

      • B.

        \(\widehat {z'At}\)

      • C.

        \(\widehat {zAt'}\) \(\)

      • D.

        \(\widehat {zAt}\)

      Câu 1 :

      Vẽ góc \(xOy\) có số đo bằng 125o. Vẽ góc \(x'Oy'\) đối đỉnh với góc \(xOy.\) Viết tên các góc có số đo bằng 55o.

      • A.

        \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy'}\)

      • B.

        \(\widehat {xOy}\,\,;\,\,\widehat {x'Oy'}\)

      • C.

        \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)

      • D.

        \(\widehat {xOy'}\,\,;\,\,\widehat {xOy}\)

      Đáp án : C

      Phương pháp giải :

      + Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

      + Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau

      Lời giải chi tiết :

      Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 2

      Vì hai đường thẳng \(xx'\) và \(yy'\) cắt nhau tại \(O\) nên \(Ox'\) là tia đối của tia \(Ox;Oy'\) là tia đối của tia \(Oy.\)

      Suy ra \(\widehat {xOy}\) và \(\widehat {x'Oy'}\) ; \(\widehat {x'Oy}\) và \(\widehat {xOy'}\) là hai cặp góc đối đỉnh.

      Do đó \(\widehat {x'Oy'} = \widehat {xOy} = 125^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'}\)

      Lại có \(\widehat {xOy}\) và \(\widehat {x'Oy}\) là hai góc ở vị trí kề bù nên

      \(\widehat {xOy} + \widehat {x'Oy} = 180^\circ \)

      Suy ra \(125^\circ + \widehat {x'Oy} = 180^\circ \)

      Suy ra \(\widehat {x'Oy} = 180^\circ - 125^\circ = 55^\circ \)

      Hai góc có số đo bằng 55o là : \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)

      Câu 2 :

      Cho \(\widehat {ABC} = {56^o}\). Vẽ \(\widehat {ABC'}\) kề bù với \(\widehat {ABC}\); \(\widehat {C'BA'}\) kề bù với \(\widehat {ABC'}\). Tính số đo \(\widehat {C'BA'}\).

      • A.

        124o

      • B.

        142o

      • C.

        65o

      • D.

        56o

      Đáp án : D

      Phương pháp giải :

      Áp dụng tính chất hai góc kề bù, xác định các tia đối từ đó xác định góc đối đỉnh. Áp dụng tính chất hai góc đối đỉnh để tính góc \(C'BA'.\)

      Lời giải chi tiết :

      Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 3

      Vì góc \(ABC'\) kề bù với góc \(ABC\) nên \(BC'\) là tia đối của tia \(BC.\)

      Vì góc \(C'BA'\) kề bù với góc \(ABC'\) nên \(BA'\) là tia đối của tia \(BA.\)

      Do đó, góc \(C'BA'\) và góc \(ABC\) đối đỉnh.

      \( \Rightarrow \widehat {C'BA'} = \widehat {ABC} = {56^o}\) 

      Câu 3 :

      Cho 2 đường thẳng ab và cd cắt nhau tại M ( tia Ma đối tia Mb). Biết \(\widehat {aMc} = 5.\widehat {bMc}\). Tính số đo \(\widehat {aMc}\) ?

      • A.

        30\(^\circ \)

      • B.

        36\(^\circ \)

      • C.

        144\(^\circ \)

      • D.

        150\(^\circ \)

      Đáp án : D

      Phương pháp giải :

      + Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

      Lời giải chi tiết :

      Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 4

      Ta có: \(\widehat {aMc} + \widehat {bMc} = 180^\circ \) ( 2 góc kề bù)

      Mà \(\widehat {aMc} = 5.\widehat {bMc}\)

      \(\begin{array}{l} 5.\widehat {bMc} + \widehat {bMc} = 180^\circ \\ 6.\widehat {bMc} = 180^\circ \\ \widehat {bMc} = 180^\circ :6 = 30^\circ \\ \widehat {aMc} = 5.30^\circ = 150^\circ \end{array}\)

      \(\begin{array}{l} 5.\widehat {bMc} + \widehat {bMc} = 180^\circ \\ 6.\widehat {bMc} = 180^\circ \\ \widehat {bMc} = 180^\circ :6 = 30^\circ \\ \widehat {aMc} = 5.30^\circ = 150^\circ \end{array}\)

      Câu 4 :

      Cho hai đường thẳng \(xx'\) và \(yy'\) cắt nhau tại \(O\) sao cho \(\widehat {xOy} = 135^\circ \) . Chọn câu đúng:

      • A.

        \(\widehat {x'Oy} = 135^\circ \)

      • B.

        \(\widehat {x'Oy'} = 45^\circ \)

      • C.

        \(\widehat {xOy'} = 135^\circ \)

      • D.

        \(\widehat {x'Oy'} = 135^\circ \)

      Đáp án : D

      Phương pháp giải :

      + Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau

      + Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

      Lời giải chi tiết :

      Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 5

      Vì hai đường thẳng \(xx'\) và \(yy'\) cắt nhau tại \(O\) nên \(Ox'\) là tia đối của tia \(Ox;Oy'\) là tia đối của tia \(Oy.\)

      Suy ra \(\widehat {xOy}\) và \(\widehat {x'Oy'}\) ; \(\widehat {x'Oy}\) và \(\widehat {xOy'}\) là hai cặp góc đối đỉnh.

      Do đó \(\widehat {x'Oy'} = \widehat {xOy} = 135^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'}\)

      Lại có \(\widehat {xOy}\) và \(\widehat {x'Oy}\) là hai góc kề bù nên

      \(\widehat {xOy} + \widehat {x'Oy} = 180^\circ \)

      \(45^\circ + \widehat {x'Oy} = 180^\circ \)

      Suy ra \(\widehat {x'Oy} = 180^\circ - 135^\circ = 45^\circ \)

      Do đó \(\widehat {x'Oy} = \widehat {xOy'} = 45^\circ .\)

      Vậy \(\widehat {x'Oy'} = \widehat {xOy} = 135^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'} = 45^\circ .\)

      Câu 5 :

      Hai đường thẳng zz’ và tt’ cắt nhau tại \(A\). Góc đối đỉnh với \(\widehat {zAt'}\) là:

      • A.

        \(\widehat {z'At'}\)

      • B.

        \(\widehat {z'At}\)

      • C.

        \(\widehat {zAt'}\)

      • D.

        \(\widehat {zAt}\)

      Đáp án : B

      Phương pháp giải :

      Áp dụng định nghĩa hai góc đối đỉnh, xác định tia đối của tia Az và At, từ đó xác định góc đối đỉnh với \(\widehat {zAt}\).

      Lời giải chi tiết :

      Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 6

      Vì hai đường thẳng \(zz'\) và \(tt'\) cắt nhau tại \(A\) nên \(Az'\) là tia đối của tia \(Az,At'\) là tia đối của tia \(At.\) Vậy góc đối đỉnh với \(\widehat {zAt'}\) là \(\widehat {z'At}\).

      Câu 6 :

      Hai đường thẳng $AB$ và $CD$ cắt nhau tại $O.$ Biết \(\widehat {AOC} - \widehat {AOD} = {50^0}.\) Chọn câu đúng.

      • A.

        \(\widehat {AOC} = 110^\circ \)

      • B.

        \(\widehat {BOC} = 65^\circ \)

      • C.

        \(\widehat {BOD} = 120^\circ \)

      • D.

        \(\widehat {AOD} = 50^\circ \)

      Đáp án : B

      Phương pháp giải :

      + Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

      + Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau

      Lời giải chi tiết :
      Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 7

      Vì \(\widehat {AOD}\) và \(\widehat {AOC}\) là hai góc kề bù nên \(\widehat {AOD} + \widehat {AOC} = 180^\circ \) mà \(\widehat {AOC} - \widehat {AOD} = 50^\circ \)

      Nên \(\widehat {AOC} = \dfrac{{180^\circ + 50^\circ }}{2} = 115^\circ \) và \(\widehat {AOD} = 180^\circ - \widehat {AOC} = 65^\circ \)

      Mà \(\widehat {AOD}\) và \(\widehat {BOC}\) là hai góc đối đỉnh nên \(\widehat {BOC} = \widehat {AOD} = 65^\circ .\)

      Lại có \(\widehat {BOD}\) và \(\widehat {AOC}\) là hai góc đối đỉnh nên \(\widehat {BOD} = \widehat {AOC} = 115^\circ .\)

      Vậy \(\widehat {BOD} = \widehat {AOC} = 115^\circ ;\,\widehat {BOC} = \widehat {AOD} = 65^\circ .\)

      Hai đường thẳng $MN$ và $PQ$ cắt nhau tại $O$, tạo thành góc $MOP$ có số đo bằng ${80^o}.$

      Câu 7

      Chọn câu đúng.

      • A.

        $\widehat {MOQ} = \widehat {PON} = {100^o}$

      • B.

        $\widehat {MOQ} = \widehat {PON} = {80^o}$

      • C.

        $\widehat {MOQ} + \widehat {PON} = {180^o}$

      • D.

        $\widehat {MOQ} = \widehat {PON} = {160^o}$

      Đáp án: A

      Phương pháp giải :

      Áp dụng tính chất $2$ góc đối đỉnh, tính chất $2$ góc kề bù. Tính các góc còn lại.

      Lời giải chi tiết :
      Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 8

      $\widehat {NOQ} = \widehat {MOP} = {80^o}$ (tính chất hai góc đối đỉnh)

      Vì góc $MOP$ và $PON$ là hai góc kề bù nên :

      $\,\widehat {MOP} + \widehat {PON} = {180^o} \Rightarrow {80^o} + \widehat {PON} = {180^o}$ $ \Rightarrow \widehat {PON} = {180^o} - {80^o} = {100^o}$

      Khi đó $\widehat {MOQ} = \widehat {PON} = {100^o}$ (tính chất hai góc đối đỉnh).

      Câu 8

      Vẽ tia $Ot$ là tia phân giác của góc $MOP,$ $Ot'$ là tia đối của tia $Ot.$ Chọn câu đúng.

      • A.

        $Ot'$ là tia phân giác của góc $NOP.$

      • B.

        $Ot'$ là tia phân giác của góc $NOQ.$

      • C.

        $ON$ là tia phân giác của góc $t'OP.$

      • D.

        Cả A, B, C đều sai.

      Đáp án: B

      Phương pháp giải :

      Áp dụng tính chất tia phân giác của một góc để tính $2$ góc $MOt,POt.$ Xác định tia đối, áp dụng tính chất hai góc đối đỉnh, tính $2$ góc $NOt',QOt'.$ Từ đó chứng minh $Ot'$ là tia phân giác của góc $NOQ.$

      Lời giải chi tiết :
      Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 9

      Vì $Ot$ là tia phân giác của góc $MOP$ nên $\widehat {MOt} = \widehat {tOP} = \dfrac{1}{2}\widehat {MOP} = \dfrac{1}{2}{.80^o} = {40^o}.$

      Vì $Ot'$ là tia đối của tia $Ot,$ do đó :

      \(\widehat {NOt'} = \widehat {MOt} = {40^o}\,\,\,\) (hai góc đối đỉnh)

      \(\widehat {t'OQ} = \widehat {tOP} = {40^o}\,\,\,\,\) (hai góc đối đỉnh)

      \( \Rightarrow \widehat {NOt'} = \widehat {t'OQ}\) 

      Mặt khác tia $Ot'$ nằm trong góc $NOQ.$ Vậy $Ot'$ là tia phân giác của góc $NOQ.$

      Câu 9 :

      Vẽ góc $xOy$ có số đo bằng $35^\circ$. Vẽ góc $x'Oy'$ đối đỉnh với góc $xOy.$ Viết tên các góc có số đo bằng $145^o.$

      • A.

        \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy'}\)

      • B.

        \(\widehat {xOy}\,\,;\,\,\widehat {x'Oy'}\)

      • C.

        \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)

      • D.

        \(\widehat {xOy'}\,\,;\,\,\widehat {xOy}\)

      Đáp án : C

      Phương pháp giải :

      Áp dụng tính chất hai góc đối đỉnh, tính chất hai góc kề bù để tính các góc còn lại.

      Lời giải chi tiết :
      Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 10

      Vì hai đường thẳng $xx'$ và $yy'$ cắt nhau tại $O$ nên $Ox'$ là tia đối của tia $Ox;Oy'$ là tia đối của tia $Oy.$

      Suy ra \(\widehat {xOy}\) và \(\widehat {x'Oy'}\) ; \(\widehat {x'Oy}\) và \(\widehat {xOy'}\) là hai cặp góc đối đỉnh.

      Do đó \(\widehat {x'Oy'} = \widehat {xOy} = 35^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'}\)

      Lại có \(\widehat {xOy}\) và \(\widehat {x'Oy}\) là hai góc ở vị trí kề bù nên \(\widehat {xOy} + \widehat {x'Oy} = 180^\circ \)\( \Rightarrow 35^\circ + \widehat {x'Oy} = 180^\circ \Rightarrow \widehat {x'Oy} = 180^\circ - 35^\circ \)

      \( \Rightarrow \widehat {x'Oy} = 145^\circ \)

      Vậy \(\widehat {x'Oy'} = \widehat {xOy} = 45^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'} = 145^\circ .\)

      Hai góc có số đo bằng ${145^o}$ là : \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)

      Câu 10 :

      Cho hình vẽ sau. Biết góc $xOy'$ đối đỉnh với góc $x'Oy,$ biết \(\widehat {xOy'} = {\widehat O_1} = {165^o}\). Tính các góc đỉnh O (khác góc bẹt).

      Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 11
      • A.

        \({\widehat O_2} = {165^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {165^o}\,\,\)

      • B.

        \({\widehat O_2} = {165^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {15^o}\,\,\)

      • C.

        \({\widehat O_2} = {15^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {165^o}\,\,\)

      • D.

        \({\widehat O_2} = {15^o};\,{\widehat O_3} = {165^o};\,\,{\widehat O_4} = {15^o}\,\,\)

      Đáp án : B

      Phương pháp giải :

       Áp dụng tính chất hai góc đối đỉnh, hai góc kề bù để tính các góc còn lại.

      Lời giải chi tiết :

      \({\widehat O_2} = {\widehat O_1} = {165^o}\) (tính chất hai góc đối đỉnh)

      Góc ${O_1}$ và góc ${O_4}$ là hai góc kề bù

      \( \Rightarrow {\widehat O_1} + {\widehat O_4} = {180^o}\)

      \( \Rightarrow {\widehat O_4} = {180^o} - {\widehat O_1}\)

      \( \Rightarrow {\widehat O_4} = {180^o} - {165^o} = {15^o}\)

      \({\widehat O_3} = {\widehat O_4} = {15^o}\,\) (hai góc đối đỉnh)

      Câu 11 :

      Cho cặp góc đối đỉnh \(\widehat {tOz}\) và \(\widehat {t'Oz'}\) (\(Oz\) và $Oz'$ là hai tia đối nhau). Biết \(\widehat {tOz'} = 4.\widehat {tOz}\). Tính các góc \(\widehat {tOz}\) và \(\widehat {t'Oz'}.\)

      • A.

        \(\widehat {zOt} = \widehat {z'Ot'} = 72^\circ \)

      • B.

        \(\widehat {zOt} = \widehat {z'Ot'} = 30^\circ \)

      • C.

        \(\widehat {zOt} = \widehat {z'Ot'} = 36^\circ \)

      • D.

        \(\widehat {zOt} = 72^\circ ;\,\widehat {z'Ot'} = 36^\circ \)

      Đáp án : C

      Phương pháp giải :

      + Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

      + Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau

      Lời giải chi tiết :
      Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 12

      Ta có \(\widehat {zOt} + \widehat {tOz'} = 180^\circ \) (hai góc kề bù) mà \(\widehat {tOz'} = 4.\widehat {tOz}\) \( \Rightarrow \widehat {zOt} + 4.\widehat {zOt} = 180^\circ \) \( \Rightarrow 5.\widehat {zOt} = 180^\circ \Rightarrow \widehat {zOt} = 36^\circ \)

      Vì \(\widehat {tOz}\) và \(\widehat {t'Oz'}\) là hai góc đối đỉnh nên \(\widehat {zOt} = \widehat {z'Ot'} = 36^\circ .\)

      Câu 12 :

      Vẽ \(\widehat {ABC} = {56^o}\). Vẽ \(\widehat {ABC'}\) kề bù với \(\widehat {ABC}\). Sau đó vẽ tiếp \(\widehat {C'BA'}\) kề bù với \(\widehat {ABC'}\). Tính số đo \(\widehat {C'BA'}\).

      • A.

        $124^\circ$

      • B.

        $142^\circ$

      • C.

        $65^\circ$

      • D.

        $56^\circ$

      Đáp án : D

      Phương pháp giải :

      Áp dụng tính chất hai góc kề bù, xác định các tia đối từ đó xác định góc đối đỉnh. Áp dụng tính chất hai góc đối đỉnh để tính góc \(C'BA'.\)

      Lời giải chi tiết :
      Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 13

      Vì góc \(ABC'\) kề bù với góc $ABC$ nên $BC'$ là tia đối của tia $BC.$

      Vì góc $C'BA'$ kề bù với góc $ABC'$ nên $BA'$ là tia đối của tia $BA.$

      Do đó, góc $C'BA'$ và góc $ABC$ đối đỉnh.

      \( \Rightarrow \widehat {C'BA'} = \widehat {ABC} = {56^o}\) 

      Câu 13 :

      Cho hai đường thẳng \(xx'\) và \(yy'\) giao nhau tại \(O\) sao cho \(\widehat {xOy} = 45^\circ \) . Chọn câu sai.

      • A.

        $\widehat {x'Oy} = 135^\circ $

      • B.

        $\widehat {x'Oy'} = 45^\circ $

      • C.

        $\widehat {xOy'} = 135^\circ $

      • D.

        $\widehat {x'Oy'} = 135^\circ $

      Đáp án : D

      Phương pháp giải :

      + Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau

      + Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

      Lời giải chi tiết :
      Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 14

      Vì hai đường thẳng $xx'$ và $yy'$ cắt nhau tại $O$ nên $Ox'$ là tia đối của tia $Ox;Oy'$ là tia đối của tia $Oy.$

      Suy ra \(\widehat {xOy}\) và \(\widehat {x'Oy'}\) ; \(\widehat {x'Oy}\) và \(\widehat {xOy'}\) là hai cặp góc đối đỉnh.

      Do đó \(\widehat {x'Oy'} = \widehat {xOy} = 45^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'}\)

      Lại có \(\widehat {xOy}\) và \(\widehat {x'Oy}\) là hai góc ở vị trí kề bù nên \(\widehat {xOy} + \widehat {x'Oy} = 180^\circ \)\( \Rightarrow 45^\circ + \widehat {x'Oy} = 180^\circ \Rightarrow \widehat {x'Oy} = 180^\circ - 45^\circ \)

      \( \Rightarrow \widehat {x'Oy} = 135^\circ \)

      Vậy \(\widehat {x'Oy'} = \widehat {xOy} = 45^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'} = 135^\circ .\)

      Suy ra A, B, C đúng, D sai.

      Câu 14 :

      Cho góc \(xBy\) đối đỉnh với góc \(x'By'\) và \(\widehat {xBy} = 60^\circ \) . Tính số đo góc \(x'By'.\)

      • A.

        $30^\circ$

      • B.

        $120^\circ$

      • C.

        $90^\circ$

      • D.

        $60^\circ$

      Đáp án : D

      Phương pháp giải :

      Áp dụng tính chất: Hai góc đối đỉnh thì bằng nhau.

      Lời giải chi tiết :
      Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 15

      Vẽ \(\widehat {x'By'}\) là góc đối đỉnh với \(\widehat {xBy}\). Khi đó:

      \(\widehat {x'By'} = \widehat {xBy} = {60^o}\) (tính chất hai góc đối đỉnh)

      Câu 15 :

      Hai đường thẳng zz’ và tt’ cắt nhau tại $A$. Góc đối đỉnh với \(\widehat {zAt'}\) là:

      • A.

        \(\widehat {z'At'}\)

      • B.

        \(\widehat {z'At}\)

      • C.

        \(\widehat {zAt'}\) \(\)

      • D.

        \(\widehat {zAt}\)

      Đáp án : B

      Phương pháp giải :

      Áp dụng định nghĩa hai góc đối đỉnh, xác định tia đối của tia \(Az\) và \(At'\), từ đó xác định góc đối đỉnh với \(\widehat {zAt'}\).

      Lời giải chi tiết :
      Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo 0 16

       Vì hai đường thẳng $zz'$ và $tt'$ cắt nhau tại $A$ nên $Az'$ là tia đối của tia $Az,At'$ là tia đối của tia $At.$ Vậy góc đối đỉnh với \(\widehat {zAt'}\) là \(\widehat {z'At}\).

      Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo tại chuyên mục giải bài tập toán lớp 7 trên toán math. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

      Trắc nghiệm Bài 1: Các góc ở vị trí đặc biệt Toán 7 Chân trời sáng tạo - Tổng quan

      Bài 1: Các góc ở vị trí đặc biệt là một phần quan trọng trong chương trình Toán 7 Chân trời sáng tạo. Bài học này giới thiệu các khái niệm cơ bản về góc, các loại góc (nhọn, tù, vuông, bẹt) và mối quan hệ giữa chúng khi ở các vị trí đặc biệt. Việc nắm vững kiến thức này là nền tảng để học các bài toán hình học phức tạp hơn trong tương lai.

      Các khái niệm chính trong bài học

      • Góc: Định nghĩa góc, cách đặt tên góc (ví dụ: ∠ABC).
      • Các loại góc:
        • Góc nhọn: Góc có số đo nhỏ hơn 90°.
        • Góc vuông: Góc có số đo bằng 90°.
        • Góc tù: Góc có số đo lớn hơn 90° và nhỏ hơn 180°.
        • Góc bẹt: Góc có số đo bằng 180°.
      • Góc kề nhau: Hai góc có chung một cạnh và không có điểm trong chung.
      • Góc bù nhau: Hai góc kề nhau có tổng số đo bằng 180°.
      • Góc phụ nhau: Hai góc kề nhau có tổng số đo bằng 90°.
      • Góc đối đỉnh: Hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.

      Ứng dụng của kiến thức về các góc ở vị trí đặc biệt

      Kiến thức về các góc ở vị trí đặc biệt có ứng dụng rộng rãi trong thực tế và trong các bài toán hình học khác. Ví dụ:

      • Tính toán góc: Sử dụng các tính chất của góc bù nhau, góc phụ nhau, góc đối đỉnh để tính toán số đo của các góc.
      • Chứng minh tính chất hình học: Chứng minh hai đường thẳng vuông góc, song song dựa trên các góc tạo bởi chúng.
      • Giải quyết các bài toán thực tế: Tính góc tạo bởi kim đồng hồ, góc nghiêng của một vật thể,…

      Dạng bài tập thường gặp

      1. Xác định loại góc: Cho một góc, xác định góc đó là góc nhọn, góc vuông, góc tù hay góc bẹt.
      2. Tính số đo góc: Tính số đo của một góc khi biết thông tin về các góc kề nhau, bù nhau, phụ nhau hoặc đối đỉnh.
      3. Chứng minh hai đường thẳng vuông góc: Chứng minh hai đường thẳng vuông góc dựa trên các góc tạo bởi chúng.
      4. Ứng dụng vào hình học: Giải các bài toán liên quan đến tam giác, hình chữ nhật, hình vuông,…

      Hướng dẫn làm bài trắc nghiệm hiệu quả

      Để đạt kết quả tốt nhất trong bài trắc nghiệm này, bạn nên:

      • Đọc kỹ đề bài: Hiểu rõ yêu cầu của câu hỏi trước khi trả lời.
      • Vận dụng kiến thức: Áp dụng các khái niệm, định nghĩa và tính chất đã học để giải quyết bài toán.
      • Kiểm tra lại đáp án: Sau khi trả lời, hãy kiểm tra lại đáp án của mình để đảm bảo tính chính xác.
      • Luyện tập thường xuyên: Làm nhiều bài tập trắc nghiệm khác nhau để củng cố kiến thức và rèn luyện kỹ năng.

      Ví dụ minh họa

      Câu hỏi: Cho hai góc kề bù ∠AOB và ∠BOC. Biết ∠AOB = 60°. Tính số đo ∠BOC.

      Giải: Vì ∠AOB và ∠BOC là hai góc kề bù nên ∠AOB + ∠BOC = 180°. Suy ra ∠BOC = 180° - ∠AOB = 180° - 60° = 120°.

      Lời khuyên

      Hãy sử dụng bài trắc nghiệm này như một công cụ hỗ trợ học tập. Đừng ngần ngại xem lại lý thuyết và làm thêm các bài tập khác nếu bạn gặp khó khăn. Chúc bạn học tốt và đạt kết quả cao!

      Tài liệu, đề thi và đáp án Toán 7