Logo Header
  1. Môn Toán
  2. Đề thi học kì 1 Toán 6 - Đề số 2 - Chân trời sáng tạo

Đề thi học kì 1 Toán 6 - Đề số 2 - Chân trời sáng tạo

Đề thi học kì 1 Toán 6 - Đề số 2 - Chân trời sáng tạo

Chào mừng các em học sinh lớp 6 đến với đề thi học kì 1 môn Toán, đề số 2, chương trình Chân trời sáng tạo. Đề thi này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong học kì.

Giaitoan.edu.vn cung cấp đề thi kèm đáp án chi tiết, giúp các em tự học và hiểu rõ hơn về các dạng bài tập Toán 6.

Phần I: Trắc nghiệm (4 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Lời giải

    Phần I: Trắc nghiệm

    1. C

    2. C

    3. A

    4. B

    5. B

    6. D

    7. A

    8. C

    9. D

    10. C

    Câu 1

    Phương pháp:

    Nhận biết các phần tử thuộc tập hợp số tự nhiên.

    Cách giải:

    Ta có: số \(0\) thuộc tập hợp số tự nhiên nên cách viết \(0 \in \mathbb{N}\) là cách viết đúng

    Chọn C.

    Câu 2

    Phương pháp:

    Vận dụng dấu hiệu chia hết cho \(2\,;\,3\,;\,5\,;\,9\).

    Cách giải:

    Số chia hết cho \(2\,;\,5\) có chữ số tận cùng là \(0\), nên loại đáp án A và D

    Ta kiểm tra hai số \(39590\) và \(39690\)

    Ta có: \(3 + 9 + 5 + 9 + 0 = 26\not \vdots 9\)

    \(3 + 9 + 6 + 9 + 0 = 27\not \vdots 9\) và \(27\not \vdots 3\)

    Vậy số cần tìm là: \(39690\)

    Chọn C.

    Câu 3

    Phương pháp:

    Vận dụng quy tắc: \({\left( {{a^m}} \right)^n} = {a^{mn}}\)

    Vận dụng quy tắc chia hai lũy thừa cùng cơ số: \({a^m}:{a^n} = {a^{m - n}}\,\,\left( {m \ge n} \right)\)

    Cách giải:

    Ta có: \({3^{15}}:{9^3} = {3^{15}}:{\left( {{3^2}} \right)^3} = {3^{15}}:{3^6} = {3^{15 - 6}} = {3^9}\)

    Chọn A.

    Câu 4

    Phương pháp:

    Vận dụng quy tắc bỏ ngoặc có dấu “\( - \)” ở trước, thực hiện phép trừ hai số nguyên âm.

    Cách giải:

    \(\begin{array}{l}x - \left( { - 199} \right) = - 1\\x + 199 = - 1\\x = \left( { - 1} \right) - 199\\x = \left( { - 1} \right) + \left( { - 199} \right)\\x = - 200\end{array}\)

    Vậy \(x = - 200\)

    Chọn B.

    Câu 5

    Phương pháp:

    Vận dụng định nghĩa hợp số, số nguyên tố của số tự nhiên để phân được các kết quả của phép tính.

    Cách giải:

    Ta có:

    \({5^3} - {5^2} = 125 - 25 = 100\) là hợp số nên không chọn đáp án A

    \({4^2} - {3^2} = 16 - 9 = 7\) là số nguyên tố nên chọn B

    \({6^2} - {3^2} = 36 - 9 = 27\) là hợp số nên không chọn đáp án C

    \({5^2} - {3^2} = 25 - 9 = 16\) là hợp số nên không chọn đáp án D.

    Chọn B.

    Câu 6

    Phương pháp:

    Vận dụng kiến thức về số nguyên âm, số nguyên dương và số sánh các số nguyên với nhau.

    Cách giải:

    Vì \(6 > 5\) nên \( - 6 < - 5\) do đó đáp án D sai.

    Chọn D.

    Câu 7

    Phương pháp:

    Sử dụng công thức tính chu vi của hình vuông có cạnh là \(a\) là: \(P = 4.a\)

    Cách giải:

    Chu vi của hình vuông là: \(4.10 = 40\,\,\left( {cm} \right)\)

    Chọn A.

    Câu 8

    Phương pháp:

    Sử dụng công thức tính diện diện tích hình thang có độ dài hai đáy là \(a\,,\,b\) và có chiều cao là \(h\). Khi đó: \(S = \dfrac{{\left( {a + b} \right).h}}{2}\), tính diện tích của hiên nhà.

    Chi phí làm hiên nhà = diện tích của hiên nhà \( \times \) chi phí của \(1\,{m^2}\)

    Cách giải:

    Diện tích của hiên nhà là: \(\dfrac{{\left( {14 + 36} \right).12}}{2} = 50.6 = 300\,\,\left( {{m^2}} \right)\)

    Chi phí làm hiên nhà là: \(300.120\,000 = 36\,000\,000\) (đồng)

    Chọn C.

    Câu 9

    Phương pháp:

    Vận dụng công thức tính diện tích:

    + Hình vuông có cạnh bằng \(a\) thì \(S = a.a\)

    + Hình bình hành có độ dài hai cạnh đáy là \(a,b\), độ dài đường cao tương ứng với cạnh \(a\) là \(h\) thì \(S = a.h\).

    + Hình chữ nhật có độ dài hai cạnh là \(a,b\) thì \(S = a.b\)

    + Hình thoi có độ dài hai đường chéo \(m,n\) là \(S = \dfrac{1}{2}m.n\).

    Cách giải:

    Diện tích hình 1 là: \(4.4 = 16\,\left( {c{m^2}} \right)\)

    Diện tích hình 2 là: \(2.5 = 10\,\left( {c{m^2}} \right)\)

    Diện tích hình 3 là: \(3.4 = 12\,\left( {c{m^2}} \right)\)

    Diện tích hình 4 là: \(\dfrac{1}{2}.3.6 = 9\,\left( {c{m^2}} \right)\)

    Ta có: \(9 < 10 < 12 < 16\)

    Vậy diện tích hình 4 là bé nhất.

    Chọn D.

    Câu 10

    Phương pháp:

    Sử dụng lý thuyết biểu đồ cột kép.

    Cách giải:

    Số tiền thu được khi xuất khẩu cà phê năm 2018 nhiều hơn số tiên thu được khi xuất khẩu cà phê năm 2019 là: \(3,54 - 2,85 = 0,69\) (tỉ đô la Mỹ) Chọn C.

    Phần II: Tự luận

    Bài 1

    Phương pháp:

    Sử dụng thứ tự thực hiện phép tính đối với biểu thức có dấu ngoặc: \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

    Vận dụng kiến thức lũy thừa của một số tự nhiên

    Cách giải:

    a) \(12:\left[ {450:\left( {125 + 25.4} \right)} \right]\)

    \(\begin{array}{l} = 12:\left[ {450:\left( {125 + 100} \right)} \right]\\ = 12:\left[ {450:225} \right]\\ = 12:2\\ = 6\end{array}\)

    b) \({4.5^2} - {3^2}.\left( {{{2015}^0} + {1^{100}}} \right)\)

    \(\begin{array}{l} = 4.25 - 9.\left( {1 + 1} \right)\\ = 100 - 9.2\\ = 100 - 18\\ = 82\end{array}\)

    c)

    \(\begin{array}{l}98.12345 + 12345.101 + 12345\\ = 12345.\left( {98 + 101 + 1} \right)\\ = 12345.200\\ = 2469000\end{array}\)

    Bài 2

    Phương pháp:

    Giải bài toán ngược để tìm \(x\)

    Vận dụng kiến thức về lũy thừa với số tự nhiên, so sánh lũy thừa cùng cơ số để tìm \(x\).

    Cách giải:

    a) \(71 - \left( {33 + x} \right) = 26\)

    \(\begin{array}{l}33 + x = 71 - 26\\33 + x = 45\\x = 45 - 33\\x = 12\end{array}\)

    Vậy \(x = 12\)

    b) \({3^{4x + 1}} = {27^{x + 3}}\)

    \(\begin{array}{l}{3^{4x + 1}} = {3^{3\left( {x + 3} \right)}}\\4x + 1 = 3(x + 3)\\4x + 1 = 3x + 9\\4x - 3x = 9 - 1\\x = 8\end{array}\)

    Vậy \(x = 8\).

    Bài 3

    Phương pháp:

    a) Vận dụng quy tắc tìm ước chung lớn nhất của hai số.

    b) Vận dụng quy tắc tìm bội chung nhỏ nhất của hai số.

    Cách giải:

    a) Vì \(x\) lớn nhất và \(480\,\, \vdots \,\,x\,;\,\,600\,\, \vdots \,\,x\) \( \Rightarrow x = \)ƯCLN\(\left( {480,600} \right)\)

    Ta có: \(\left\{ \begin{array}{l}480 = {2^5}.3.5\\600 = {2^3}{.3.5^2}\end{array} \right. \Rightarrow \)ƯCLN\(\left( {480,600} \right) = {2^3}.3.5 = 120\)

    Vậy \(x = 120\)

    b) Vì \(x\,\, \vdots \,\,20,\,\,x\,\, \vdots \,\,35\) \( \Rightarrow x \in \)BC\(\left( {20;35} \right)\)

    Ta có: \(\left\{ \begin{array}{l}20 = {2^2}.5\\35 = 5.7\end{array} \right. \Rightarrow \)BCNN\(\left( {20,35} \right) = {2^2}.5.7 = 140\)

    \( \Rightarrow \)BC\(\left( {20,35} \right) = \)B\(\left( {140} \right) = \left\{ {0;140;280;420;560;...} \right\}\)

    Mà \(x < 500 \Rightarrow x \in \left\{ {0;140;280;420} \right\}\)

    Vậy \(x \in \left\{ {0;140;280;420} \right\}\).

    Bài 4

    Phương pháp:

    Tính diện tích của hình bình hành \(ABCD\)

    Tính diện của hình thang cân \(BEFC\)

    \( \Rightarrow \) Tính diện tích của mảnh đất

    Tính chu vi của mảnh đất: \(AE + EF + FC + CD + DA\)

    Cách giải:

    Đề thi học kì 1 Toán 6 - Đề số 2 - Chân trời sáng tạo 1 1

    * Diện tích của hình bình hành \(ABCD\) là: \(DM.BC = 41.40 = 1640\left( {{m^2}} \right)\)

    Diện tích của hình thang cân\(BEFC\) là: \(\dfrac{{\left( {EF + BC} \right).EN}}{2} = \dfrac{{\left( {24 + 40} \right).42}}{2} = 1344\left( {{m^2}} \right)\)

    Diện tích của mảnh đất là: \(1640 + 1344 = 2984\left( {{m^2}} \right)\)

    * Ta có: \(AB = CD = 44\left( m \right);BE = CF = 45\left( m \right)\)

    Chu vi của mảnh đất là: \(AE + EF + FC + CD + DA\)

    \(\begin{array}{l} = AB + BE + EF + FC + CD + DA\\ = 44 + 45 + 24 + 45 + 44 + 40 = 242\left( {{m^2}} \right)\end{array}\)

    Bài 5

    Phương pháp:

    Sử dụng tính chất chia hết của một tích, nhóm các hạng tử để xuất hiện thừa số \(13\).

    Cách giải:

    \(\begin{array}{l}A\; = 1 + 3 + {3^2} + {3^{3\;}} + \ldots + {3^{11}}\\A\; = \left( {1 + 3 + {3^2}} \right) + \left( {{3^3} + {3^4} + {3^5}} \right) + \ldots + \left( {{3^9} + {3^{10}}{\rm{ + }}{3^{11}}} \right)\\A\; = \left( {1 + 3 + {3^2}} \right) + {3^3}.\left( {1 + 3 + {3^2}} \right) + \ldots + {3^9}.\left( {1 + 3 + {3^2}} \right)\\A\; = 13\; + \;{3^3}.13\; + \ldots + {3^9}.13\\A\; = 13.\left( {1 + {3^3} + \ldots + {3^9}} \right)\;\\ \Rightarrow A\,\, \vdots \,\,13\end{array}\)

    Đề bài

      Phần I: Trắc nghiệm (4 điểm).

      Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

      Câu 1. Tìm cách viết đúng trong các cách viết sau?

      A. \(3,2 \in \mathbb{N}\)

      B. \(0 \in {\mathbb{N}^*}\)

      C. \(0 \in \mathbb{N}\)

      D. \(0 \not \in \mathbb{N}\)

      Câu 2. Số nào sau đây chia hết cho \(2\,;\,3\,;\,5\,;\,9\)?

      A. \(39595\)

      B. \(39590\)

      C. \(39690\)

      D.\(39592\)

      Câu 3. Kết quả của phép tính: \({3^{15}}:{9^3}\) là:

      A. \({3^9}\)

      B. \({3^{12}}\)

      C. \({3^{18}}\)

      D.\({3^{21}}\)

      Câu 4. Số nguyên \(x\) thỏa mãn: \(x - \left( { - 199} \right) = - 1\)

      A. \(x = 198\)

      B. \(x = - 200\)

      C. \(x = 200\)

      D.\(x = - 198\)

      Câu 5. Kết quả của phép tính nào dưới đây là số nguyên tố?

      A. \({5^3} - {5^2}\)

      B. \({4^2} - {3^2}\)

      C. \({6^2} - {3^2}\)

      D. \({5^2} - {3^2}\)

      Câu 6. Khẳng định nào dưới đây là không đúng?

      A. \(6 > 5\)

      B. \( - 6 < - 5\)

      C. \(6 > - 5\)

      D. \( - 6 > - 5\)

      Câu 7. Hình vuông có cạnh là \(10\,\,cm\) thì chu vi của nó là:

      A. \(40\,\,cm\)

      B. \(40\,\,c{m^2}\)

      C. \(100\,\,cm\)

      D.\(100\,\,c{m^2}\)

      Câu 8: Một hiên nhà được thiết kế như hình vẽ bên. Hãy tính chi phí làm hiên nhà biết chi phí làm \(1\,\,{m^2}\) là \(120\,000\) đồng.

      Đề thi học kì 1 Toán 6 - Đề số 2 - Chân trời sáng tạo 0 1

      A. \(7\,440\,000\) đồng

      B. \(144\,000\,000\) đồng 

      C. \(36\,000\,000\) đồng

      D.\(72\,000\,000\) đồng

      Câu 9. Trong các hình sau hình nào có diện tích bé nhất?

      Đề thi học kì 1 Toán 6 - Đề số 2 - Chân trời sáng tạo 0 2

      A. Hình 1

      B. Hình 2

      C. Hình 3

      D. Hình 4

      Câu 10. Cho biểu đồ cột kép biểu diễn số tiền Việt Nam thu được khi xuất khẩu cà phê và xuất khẩu gạo trong ba năm 2017, 2018, 2019.

      Đề thi học kì 1 Toán 6 - Đề số 2 - Chân trời sáng tạo 0 3

      Số tiền thu được khi xuất khẩu cà phê năm 2018 nhiều hơn số tiên thu được khi xuất khẩu cà phê năm 2019 là bao nhiêu?

      A. \(0,67\) tỉ đô la Mỹ

      B. \(0,68\) tỉ đô la Mỹ

      C. \(0,69\) tỉ đô la Mỹ

      D. \(0,70\) tỉ đô la Mỹ

      Phần II. Tự luận (6 điểm):

      Bài 1. (1,5 điểm)

      Thực hiện phép tính:

      a) \(12:\left[ {450:\left( {125 + 25.4} \right)} \right]\)

      b) \({4.5^2} - {3^2}.\left( {{{2015}^0} + {1^{100}}} \right)\)

      c) \(98.12345 + 12345.101 + 12345\)

      Bài 2. (1,0 điểm)

      Tìm \(x\), biết:

      a) \(71 - \left( {33 + x} \right) = 26\)

      b) \({3^{4x + 1}} = {27^{x + 3}}\)

      Bài 3. (1,0 điểm)

      Tìm số tự nhiên \(x\), biết:

      a) \(x\) lớn nhất và \(480\,\, \vdots \,\,x\,;\,\,600\,\, \vdots \,\,x\).

      b) \(x\,\, \vdots \,\,20,\,\,x\,\, \vdots \,\,35\) và \(x < 500\)

      Bài 4. (2 điểm)

      Để tính diện tích và chu vi mảnh đất có dạng như hình vẽ, người ta chia nó thành hình bình hành \(ABCD\) và hình thang cân \(BEFC\) có kích thước như sau: \(AD = 40m;EF = 24m;DC = 44m;DM = 41m;\) \(EN = 42m;\)\(CF = 45m\). Tính chu vi và diện tích mảnh đất này?

      Đề thi học kì 1 Toán 6 - Đề số 2 - Chân trời sáng tạo 0 4

      Bài 5. (0,5 điểm)

      Cho: \(A = 1 + 3 + {3^2} + \ldots + {3^{11}}\). Chứng minh rằng: \(A\;\, \vdots \,\,13\)

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải
      • Tải về

      Phần I: Trắc nghiệm (4 điểm).

      Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

      Câu 1. Tìm cách viết đúng trong các cách viết sau?

      A. \(3,2 \in \mathbb{N}\)

      B. \(0 \in {\mathbb{N}^*}\)

      C. \(0 \in \mathbb{N}\)

      D. \(0 \not \in \mathbb{N}\)

      Câu 2. Số nào sau đây chia hết cho \(2\,;\,3\,;\,5\,;\,9\)?

      A. \(39595\)

      B. \(39590\)

      C. \(39690\)

      D.\(39592\)

      Câu 3. Kết quả của phép tính: \({3^{15}}:{9^3}\) là:

      A. \({3^9}\)

      B. \({3^{12}}\)

      C. \({3^{18}}\)

      D.\({3^{21}}\)

      Câu 4. Số nguyên \(x\) thỏa mãn: \(x - \left( { - 199} \right) = - 1\)

      A. \(x = 198\)

      B. \(x = - 200\)

      C. \(x = 200\)

      D.\(x = - 198\)

      Câu 5. Kết quả của phép tính nào dưới đây là số nguyên tố?

      A. \({5^3} - {5^2}\)

      B. \({4^2} - {3^2}\)

      C. \({6^2} - {3^2}\)

      D. \({5^2} - {3^2}\)

      Câu 6. Khẳng định nào dưới đây là không đúng?

      A. \(6 > 5\)

      B. \( - 6 < - 5\)

      C. \(6 > - 5\)

      D. \( - 6 > - 5\)

      Câu 7. Hình vuông có cạnh là \(10\,\,cm\) thì chu vi của nó là:

      A. \(40\,\,cm\)

      B. \(40\,\,c{m^2}\)

      C. \(100\,\,cm\)

      D.\(100\,\,c{m^2}\)

      Câu 8: Một hiên nhà được thiết kế như hình vẽ bên. Hãy tính chi phí làm hiên nhà biết chi phí làm \(1\,\,{m^2}\) là \(120\,000\) đồng.

      Đề thi học kì 1 Toán 6 - Đề số 2 - Chân trời sáng tạo 1

      A. \(7\,440\,000\) đồng

      B. \(144\,000\,000\) đồng 

      C. \(36\,000\,000\) đồng

      D.\(72\,000\,000\) đồng

      Câu 9. Trong các hình sau hình nào có diện tích bé nhất?

      Đề thi học kì 1 Toán 6 - Đề số 2 - Chân trời sáng tạo 2

      A. Hình 1

      B. Hình 2

      C. Hình 3

      D. Hình 4

      Câu 10. Cho biểu đồ cột kép biểu diễn số tiền Việt Nam thu được khi xuất khẩu cà phê và xuất khẩu gạo trong ba năm 2017, 2018, 2019.

      Đề thi học kì 1 Toán 6 - Đề số 2 - Chân trời sáng tạo 3

      Số tiền thu được khi xuất khẩu cà phê năm 2018 nhiều hơn số tiên thu được khi xuất khẩu cà phê năm 2019 là bao nhiêu?

      A. \(0,67\) tỉ đô la Mỹ

      B. \(0,68\) tỉ đô la Mỹ

      C. \(0,69\) tỉ đô la Mỹ

      D. \(0,70\) tỉ đô la Mỹ

      Phần II. Tự luận (6 điểm):

      Bài 1. (1,5 điểm)

      Thực hiện phép tính:

      a) \(12:\left[ {450:\left( {125 + 25.4} \right)} \right]\)

      b) \({4.5^2} - {3^2}.\left( {{{2015}^0} + {1^{100}}} \right)\)

      c) \(98.12345 + 12345.101 + 12345\)

      Bài 2. (1,0 điểm)

      Tìm \(x\), biết:

      a) \(71 - \left( {33 + x} \right) = 26\)

      b) \({3^{4x + 1}} = {27^{x + 3}}\)

      Bài 3. (1,0 điểm)

      Tìm số tự nhiên \(x\), biết:

      a) \(x\) lớn nhất và \(480\,\, \vdots \,\,x\,;\,\,600\,\, \vdots \,\,x\).

      b) \(x\,\, \vdots \,\,20,\,\,x\,\, \vdots \,\,35\) và \(x < 500\)

      Bài 4. (2 điểm)

      Để tính diện tích và chu vi mảnh đất có dạng như hình vẽ, người ta chia nó thành hình bình hành \(ABCD\) và hình thang cân \(BEFC\) có kích thước như sau: \(AD = 40m;EF = 24m;DC = 44m;DM = 41m;\) \(EN = 42m;\)\(CF = 45m\). Tính chu vi và diện tích mảnh đất này?

      Đề thi học kì 1 Toán 6 - Đề số 2 - Chân trời sáng tạo 4

      Bài 5. (0,5 điểm)

      Cho: \(A = 1 + 3 + {3^2} + \ldots + {3^{11}}\). Chứng minh rằng: \(A\;\, \vdots \,\,13\)

      Phần I: Trắc nghiệm

      1. C

      2. C

      3. A

      4. B

      5. B

      6. D

      7. A

      8. C

      9. D

      10. C

      Câu 1

      Phương pháp:

      Nhận biết các phần tử thuộc tập hợp số tự nhiên.

      Cách giải:

      Ta có: số \(0\) thuộc tập hợp số tự nhiên nên cách viết \(0 \in \mathbb{N}\) là cách viết đúng

      Chọn C.

      Câu 2

      Phương pháp:

      Vận dụng dấu hiệu chia hết cho \(2\,;\,3\,;\,5\,;\,9\).

      Cách giải:

      Số chia hết cho \(2\,;\,5\) có chữ số tận cùng là \(0\), nên loại đáp án A và D

      Ta kiểm tra hai số \(39590\) và \(39690\)

      Ta có: \(3 + 9 + 5 + 9 + 0 = 26\not \vdots 9\)

      \(3 + 9 + 6 + 9 + 0 = 27\not \vdots 9\) và \(27\not \vdots 3\)

      Vậy số cần tìm là: \(39690\)

      Chọn C.

      Câu 3

      Phương pháp:

      Vận dụng quy tắc: \({\left( {{a^m}} \right)^n} = {a^{mn}}\)

      Vận dụng quy tắc chia hai lũy thừa cùng cơ số: \({a^m}:{a^n} = {a^{m - n}}\,\,\left( {m \ge n} \right)\)

      Cách giải:

      Ta có: \({3^{15}}:{9^3} = {3^{15}}:{\left( {{3^2}} \right)^3} = {3^{15}}:{3^6} = {3^{15 - 6}} = {3^9}\)

      Chọn A.

      Câu 4

      Phương pháp:

      Vận dụng quy tắc bỏ ngoặc có dấu “\( - \)” ở trước, thực hiện phép trừ hai số nguyên âm.

      Cách giải:

      \(\begin{array}{l}x - \left( { - 199} \right) = - 1\\x + 199 = - 1\\x = \left( { - 1} \right) - 199\\x = \left( { - 1} \right) + \left( { - 199} \right)\\x = - 200\end{array}\)

      Vậy \(x = - 200\)

      Chọn B.

      Câu 5

      Phương pháp:

      Vận dụng định nghĩa hợp số, số nguyên tố của số tự nhiên để phân được các kết quả của phép tính.

      Cách giải:

      Ta có:

      \({5^3} - {5^2} = 125 - 25 = 100\) là hợp số nên không chọn đáp án A

      \({4^2} - {3^2} = 16 - 9 = 7\) là số nguyên tố nên chọn B

      \({6^2} - {3^2} = 36 - 9 = 27\) là hợp số nên không chọn đáp án C

      \({5^2} - {3^2} = 25 - 9 = 16\) là hợp số nên không chọn đáp án D.

      Chọn B.

      Câu 6

      Phương pháp:

      Vận dụng kiến thức về số nguyên âm, số nguyên dương và số sánh các số nguyên với nhau.

      Cách giải:

      Vì \(6 > 5\) nên \( - 6 < - 5\) do đó đáp án D sai.

      Chọn D.

      Câu 7

      Phương pháp:

      Sử dụng công thức tính chu vi của hình vuông có cạnh là \(a\) là: \(P = 4.a\)

      Cách giải:

      Chu vi của hình vuông là: \(4.10 = 40\,\,\left( {cm} \right)\)

      Chọn A.

      Câu 8

      Phương pháp:

      Sử dụng công thức tính diện diện tích hình thang có độ dài hai đáy là \(a\,,\,b\) và có chiều cao là \(h\). Khi đó: \(S = \dfrac{{\left( {a + b} \right).h}}{2}\), tính diện tích của hiên nhà.

      Chi phí làm hiên nhà = diện tích của hiên nhà \( \times \) chi phí của \(1\,{m^2}\)

      Cách giải:

      Diện tích của hiên nhà là: \(\dfrac{{\left( {14 + 36} \right).12}}{2} = 50.6 = 300\,\,\left( {{m^2}} \right)\)

      Chi phí làm hiên nhà là: \(300.120\,000 = 36\,000\,000\) (đồng)

      Chọn C.

      Câu 9

      Phương pháp:

      Vận dụng công thức tính diện tích:

      + Hình vuông có cạnh bằng \(a\) thì \(S = a.a\)

      + Hình bình hành có độ dài hai cạnh đáy là \(a,b\), độ dài đường cao tương ứng với cạnh \(a\) là \(h\) thì \(S = a.h\).

      + Hình chữ nhật có độ dài hai cạnh là \(a,b\) thì \(S = a.b\)

      + Hình thoi có độ dài hai đường chéo \(m,n\) là \(S = \dfrac{1}{2}m.n\).

      Cách giải:

      Diện tích hình 1 là: \(4.4 = 16\,\left( {c{m^2}} \right)\)

      Diện tích hình 2 là: \(2.5 = 10\,\left( {c{m^2}} \right)\)

      Diện tích hình 3 là: \(3.4 = 12\,\left( {c{m^2}} \right)\)

      Diện tích hình 4 là: \(\dfrac{1}{2}.3.6 = 9\,\left( {c{m^2}} \right)\)

      Ta có: \(9 < 10 < 12 < 16\)

      Vậy diện tích hình 4 là bé nhất.

      Chọn D.

      Câu 10

      Phương pháp:

      Sử dụng lý thuyết biểu đồ cột kép.

      Cách giải:

      Số tiền thu được khi xuất khẩu cà phê năm 2018 nhiều hơn số tiên thu được khi xuất khẩu cà phê năm 2019 là: \(3,54 - 2,85 = 0,69\) (tỉ đô la Mỹ) Chọn C.

      Phần II: Tự luận

      Bài 1

      Phương pháp:

      Sử dụng thứ tự thực hiện phép tính đối với biểu thức có dấu ngoặc: \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

      Vận dụng kiến thức lũy thừa của một số tự nhiên

      Cách giải:

      a) \(12:\left[ {450:\left( {125 + 25.4} \right)} \right]\)

      \(\begin{array}{l} = 12:\left[ {450:\left( {125 + 100} \right)} \right]\\ = 12:\left[ {450:225} \right]\\ = 12:2\\ = 6\end{array}\)

      b) \({4.5^2} - {3^2}.\left( {{{2015}^0} + {1^{100}}} \right)\)

      \(\begin{array}{l} = 4.25 - 9.\left( {1 + 1} \right)\\ = 100 - 9.2\\ = 100 - 18\\ = 82\end{array}\)

      c)

      \(\begin{array}{l}98.12345 + 12345.101 + 12345\\ = 12345.\left( {98 + 101 + 1} \right)\\ = 12345.200\\ = 2469000\end{array}\)

      Bài 2

      Phương pháp:

      Giải bài toán ngược để tìm \(x\)

      Vận dụng kiến thức về lũy thừa với số tự nhiên, so sánh lũy thừa cùng cơ số để tìm \(x\).

      Cách giải:

      a) \(71 - \left( {33 + x} \right) = 26\)

      \(\begin{array}{l}33 + x = 71 - 26\\33 + x = 45\\x = 45 - 33\\x = 12\end{array}\)

      Vậy \(x = 12\)

      b) \({3^{4x + 1}} = {27^{x + 3}}\)

      \(\begin{array}{l}{3^{4x + 1}} = {3^{3\left( {x + 3} \right)}}\\4x + 1 = 3(x + 3)\\4x + 1 = 3x + 9\\4x - 3x = 9 - 1\\x = 8\end{array}\)

      Vậy \(x = 8\).

      Bài 3

      Phương pháp:

      a) Vận dụng quy tắc tìm ước chung lớn nhất của hai số.

      b) Vận dụng quy tắc tìm bội chung nhỏ nhất của hai số.

      Cách giải:

      a) Vì \(x\) lớn nhất và \(480\,\, \vdots \,\,x\,;\,\,600\,\, \vdots \,\,x\) \( \Rightarrow x = \)ƯCLN\(\left( {480,600} \right)\)

      Ta có: \(\left\{ \begin{array}{l}480 = {2^5}.3.5\\600 = {2^3}{.3.5^2}\end{array} \right. \Rightarrow \)ƯCLN\(\left( {480,600} \right) = {2^3}.3.5 = 120\)

      Vậy \(x = 120\)

      b) Vì \(x\,\, \vdots \,\,20,\,\,x\,\, \vdots \,\,35\) \( \Rightarrow x \in \)BC\(\left( {20;35} \right)\)

      Ta có: \(\left\{ \begin{array}{l}20 = {2^2}.5\\35 = 5.7\end{array} \right. \Rightarrow \)BCNN\(\left( {20,35} \right) = {2^2}.5.7 = 140\)

      \( \Rightarrow \)BC\(\left( {20,35} \right) = \)B\(\left( {140} \right) = \left\{ {0;140;280;420;560;...} \right\}\)

      Mà \(x < 500 \Rightarrow x \in \left\{ {0;140;280;420} \right\}\)

      Vậy \(x \in \left\{ {0;140;280;420} \right\}\).

      Bài 4

      Phương pháp:

      Tính diện tích của hình bình hành \(ABCD\)

      Tính diện của hình thang cân \(BEFC\)

      \( \Rightarrow \) Tính diện tích của mảnh đất

      Tính chu vi của mảnh đất: \(AE + EF + FC + CD + DA\)

      Cách giải:

      Đề thi học kì 1 Toán 6 - Đề số 2 - Chân trời sáng tạo 5

      * Diện tích của hình bình hành \(ABCD\) là: \(DM.BC = 41.40 = 1640\left( {{m^2}} \right)\)

      Diện tích của hình thang cân\(BEFC\) là: \(\dfrac{{\left( {EF + BC} \right).EN}}{2} = \dfrac{{\left( {24 + 40} \right).42}}{2} = 1344\left( {{m^2}} \right)\)

      Diện tích của mảnh đất là: \(1640 + 1344 = 2984\left( {{m^2}} \right)\)

      * Ta có: \(AB = CD = 44\left( m \right);BE = CF = 45\left( m \right)\)

      Chu vi của mảnh đất là: \(AE + EF + FC + CD + DA\)

      \(\begin{array}{l} = AB + BE + EF + FC + CD + DA\\ = 44 + 45 + 24 + 45 + 44 + 40 = 242\left( {{m^2}} \right)\end{array}\)

      Bài 5

      Phương pháp:

      Sử dụng tính chất chia hết của một tích, nhóm các hạng tử để xuất hiện thừa số \(13\).

      Cách giải:

      \(\begin{array}{l}A\; = 1 + 3 + {3^2} + {3^{3\;}} + \ldots + {3^{11}}\\A\; = \left( {1 + 3 + {3^2}} \right) + \left( {{3^3} + {3^4} + {3^5}} \right) + \ldots + \left( {{3^9} + {3^{10}}{\rm{ + }}{3^{11}}} \right)\\A\; = \left( {1 + 3 + {3^2}} \right) + {3^3}.\left( {1 + 3 + {3^2}} \right) + \ldots + {3^9}.\left( {1 + 3 + {3^2}} \right)\\A\; = 13\; + \;{3^3}.13\; + \ldots + {3^9}.13\\A\; = 13.\left( {1 + {3^3} + \ldots + {3^9}} \right)\;\\ \Rightarrow A\,\, \vdots \,\,13\end{array}\)

      Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Đề thi học kì 1 Toán 6 - Đề số 2 - Chân trời sáng tạo – nội dung then chốt trong chuyên mục toán lớp 6 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

      Đề thi học kì 1 Toán 6 - Đề số 2 - Chân trời sáng tạo: Tổng quan và Hướng dẫn Giải chi tiết

      Đề thi học kì 1 Toán 6 - Đề số 2 chương trình Chân trời sáng tạo là một bài kiểm tra quan trọng giúp đánh giá mức độ nắm vững kiến thức của học sinh sau một học kì học tập. Đề thi bao gồm các dạng bài tập khác nhau, tập trung vào các chủ đề chính đã được học trong chương trình Toán 6, như số tự nhiên, phép tính với số tự nhiên, hình học cơ bản và các bài toán thực tế.

      Cấu trúc đề thi học kì 1 Toán 6 - Đề số 2

      Thông thường, đề thi học kì 1 Toán 6 - Đề số 2 chương trình Chân trời sáng tạo sẽ có cấu trúc gồm các phần sau:

      1. Phần trắc nghiệm: Kiểm tra khả năng hiểu và vận dụng kiến thức cơ bản.
      2. Phần tự luận: Yêu cầu học sinh trình bày chi tiết lời giải cho các bài toán.

      Các dạng bài tập thường xuất hiện trong đề thi bao gồm:

      • Bài tập về số tự nhiên: Thực hiện các phép tính cộng, trừ, nhân, chia, so sánh số tự nhiên.
      • Bài tập về ước và bội: Tìm ước và bội của một số, phân tích một số ra thừa số nguyên tố.
      • Bài tập về hình học: Tính chu vi, diện tích của các hình đơn giản như hình vuông, hình chữ nhật, hình tam giác.
      • Bài tập về giải toán: Giải các bài toán có liên quan đến thực tế.

      Hướng dẫn giải chi tiết Đề thi học kì 1 Toán 6 - Đề số 2

      Để giúp học sinh ôn tập và làm bài thi hiệu quả, giaitoan.edu.vn cung cấp đáp án chi tiết và lời giải cho từng bài tập trong đề thi học kì 1 Toán 6 - Đề số 2 chương trình Chân trời sáng tạo. Dưới đây là một số hướng dẫn giải chi tiết cho một số dạng bài tập thường gặp:

      Ví dụ 1: Bài tập về số tự nhiên

      Đề bài: Tính 1234 + 5678

      Lời giải:

      1234 + 5678 = 6912

      Ví dụ 2: Bài tập về ước và bội

      Đề bài: Tìm tất cả các ước của 12

      Lời giải:

      Các ước của 12 là: 1, 2, 3, 4, 6, 12

      Ví dụ 3: Bài tập về hình học

      Đề bài: Tính chu vi của hình chữ nhật có chiều dài 5cm và chiều rộng 3cm

      Lời giải:

      Chu vi của hình chữ nhật là: (5 + 3) x 2 = 16cm

      Lưu ý khi làm bài thi học kì 1 Toán 6

      • Đọc kỹ đề bài trước khi làm.
      • Sử dụng máy tính bỏ túi khi cần thiết.
      • Kiểm tra lại kết quả sau khi làm xong.
      • Phân bổ thời gian hợp lý cho từng phần của đề thi.

      Tầm quan trọng của việc luyện tập với đề thi

      Việc luyện tập với đề thi học kì 1 Toán 6 - Đề số 2 chương trình Chân trời sáng tạo là một cách hiệu quả để học sinh làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự tin hơn khi bước vào phòng thi. Giaitoan.edu.vn hy vọng rằng với những tài liệu và hướng dẫn chi tiết mà chúng tôi cung cấp, các em sẽ đạt được kết quả tốt nhất trong kỳ thi sắp tới.

      Các tài liệu ôn tập khác

      Ngoài đề thi học kì 1 Toán 6 - Đề số 2 chương trình Chân trời sáng tạo, giaitoan.edu.vn còn cung cấp nhiều tài liệu ôn tập khác, như bài tập trắc nghiệm, bài tập tự luận, các dạng bài tập thường gặp và các video hướng dẫn giải toán. Hãy truy cập website của chúng tôi để khám phá thêm nhiều tài liệu hữu ích khác nhé!

      Chủ đềLiên kết
      Số tự nhiênLink đến bài tập số tự nhiên
      Ước và bộiLink đến bài tập ước và bội
      Hình họcLink đến bài tập hình học

      Tài liệu, đề thi và đáp án Toán 6