Logo Header
  1. Môn Toán
  2. Đề thi học kì 2 Toán 6 - Đề số 1 - Chân trời sáng tạo

Đề thi học kì 2 Toán 6 - Đề số 1 - Chân trời sáng tạo

Đề thi học kì 2 Toán 6 - Đề số 1 - Chân trời sáng tạo

Chào mừng các em học sinh lớp 6 đến với đề thi học kì 2 môn Toán, đề số 1, chương trình Chân trời sáng tạo. Đề thi này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong học kì.

Giaitoan.edu.vn cung cấp đề thi kèm đáp án chi tiết, giúp các em tự học và hiểu rõ các dạng bài tập thường gặp trong các kỳ thi.

Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Lời giải

    Phần I: Trắc nghiệm

    1. B

    2. A

    3. D

    4. B

    Câu 1

    Phương pháp:

    Sử dụng công thức: quãng đường = vận tốc . thời gian.

    Cách giải:

    Độ dài quãng đường AB là: \(26\dfrac{1}{4}.2,4\, = \dfrac{{105}}{4}.\dfrac{{24}}{{10}} = 63\) (km)

    Thời gian người ấy đi xe máy đi từ B về A là: \(63:30 = \dfrac{{21}}{{10}} = 2\dfrac{1}{{10}}\) (giờ) \( = 2\) giờ \(6\) phút.

    Chọn B.

    Câu 2

    Phương pháp:

    Định nghĩa về góc bẹt.

    Cách giải:

    Góc bẹt có số đo bằng \({180^0}\).

    Chọn A.

    Câu 3

    Phương pháp:

    Sử dụng lý thuyết bảng dữ liệu ban đầu.

    Cách giải:

    Bảng dữ liệu trên điều tra về loài hoa yêu thích của 30 học sinh lớp 6A1.

    Chọn B.

    Câu 4

    Phương pháp:

    Quan sát hình vẽ để xác định một điểm thuộc hay không thuộc một đường thẳng.Cách giải:

    Từ hình vẽ ta thấy điểm A, C thuộc đường thẳng a; điểm B, C thuộc đường thẳng b.

    Vậy phát biểu sai là hai điểm A, B cùng thuộc đường thẳng a.

    Chọn B.

    Phần II: Tự luận

    Bài 1

    Phương pháp

    a) Nhóm các phân số có cùng mẫu số, rồi thực hiện phép tính cộng hai phân số có cùng mẫu số. Muốn cộng hai phân số có cùng mẫu số ta cộng tử với tử và giữ nguyên mẫu.

    b) Thực hiện nhóm như sau: \(\dfrac{1}{5}.\dfrac{{11}}{{16}} + \dfrac{1}{5}.\dfrac{5}{{16}} + \dfrac{4}{5} = \dfrac{1}{5}.\left( {\dfrac{{11}}{{16}} + \dfrac{5}{{16}}} \right) + \dfrac{4}{5}\) rồi sau đó thực hiện phép tính theo thứ tự ưu tiên. Thực hiện phép tính trong ngoặc trước, ngoài ngoặc sau. Nhân chia trước cộng trừ sau.

    c) Viết số phần trăm, hỗn số, số thập phân dưới dạng phân số, rồi thực hiện phép tính theo thứ tự nhân chia trước, cộng trừ sau.

    d) Thực hiện phép tính lũy thừa, chuyển số phần trăm , hỗ số về phân số. Thực hiện phép tính theo thứ tự ưu tiên: nhân chia trước, cộng trừ sau. Trong ngoặc trước, ngoài ngoặc sau.

    Cách giải:

    a) \({\kern 1pt} \dfrac{1}{5} + \dfrac{{ - 5}}{{19}} + \dfrac{4}{5} + \dfrac{{ - 4}}{{19}}\)

    \(\begin{array}{l} = \left( {\dfrac{1}{5} + \dfrac{4}{5}} \right) + \left( {\dfrac{{ - 5}}{{19}} + \dfrac{{ - 4}}{{19}}} \right)\\ = 1 + \dfrac{{ - 9}}{{19}} = \dfrac{{10}}{{19}}\end{array}\)

    b) \(\dfrac{1}{5}.\dfrac{{11}}{{16}} + \dfrac{1}{5}.\dfrac{5}{{16}} + \dfrac{4}{5}\)

    \(\begin{array}{l}{\kern 1pt} = \dfrac{1}{5}.\left( {\dfrac{{11}}{{16}} + \dfrac{5}{{16}}} \right) + \dfrac{4}{5}\\ = \dfrac{1}{5}.1 + \dfrac{4}{5} = 1\end{array}\)

    c) \(25\% {\rm{\;}} - 1\dfrac{1}{2} + 0,5.\dfrac{3}{8}\)

    \(\begin{array}{l} = \dfrac{{25}}{{100}} - \dfrac{3}{2} + \dfrac{1}{2}.\dfrac{3}{8}\\ = \dfrac{1}{4} - \dfrac{3}{2} + \dfrac{3}{{16}}\\ = \dfrac{{1.4 - 3.8 + 3}}{{16}}\\ = \dfrac{{ - 17}}{{16}}\end{array}\)

    d) \({\left( {\frac{{ - 1}}{6}} \right)^2}:\frac{5}{{ - 24}} + \left( {\frac{7}{{25}} - 36\% } \right).\left| { - 8\frac{1}{3}} \right|\)

    \(=\frac{1}{{36}}:\frac{5}{{ - 24}} + \left( {\frac{7}{{25}} - \frac{{36}}{{100}}} \right).\frac{{25}}{3}\)

    \(=\frac{1}{{36}}.\frac{{ - 24}}{5} + \left( {\frac{7}{{25}} - \frac{9}{{25}}} \right).\frac{{25}}{3}\)

    \(=\frac{{ - 2}}{{15}} + {\frac{{ - 2}}{{25}}.\frac{{25}}{3}} \)

    \(=\frac{{ - 2}}{{15}} + \frac{{ - 2}}{3}\)

    \(=\frac{{ - 2}}{{15}} + \frac{{ - 10}}{{15}}\)

    \(=\frac{{ - 12}}{{15}}\)\(=\frac{{ - 4}}{5}\)

    Bài 2

    Phương pháp

    a) Muốn tìm số bị chia ta lấy thương nhân với số chia.

    b) Chuyển \( - \dfrac{1}{2}\) sang vế phải ta đổi dấu thành \( + \dfrac{1}{2}\) ,ta được biểu thức mới có dạng \(\dfrac{2}{3}x = 2\) , từ đó tìm được \(x\).

    c) Viết \(40\% \) dưới dạng số thập phân, sử dụng tính chất phân phối của phép nhân đối với phép cộng ta tìm được \(x\).

    Cách giải:

    a) \(x:\dfrac{2}{5} = \dfrac{{ - 15}}{4}\)

    \(\begin{array}{l}x{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {\kern 1pt} \dfrac{{ - 15}}{4}.\dfrac{2}{5}\\x{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {\kern 1pt} \dfrac{{ - 3}}{2}\end{array}\)

    Vậy \(x = \dfrac{{ - 3}}{2}\)

    b) \(\dfrac{2}{3}.x - \dfrac{1}{2} = 1\dfrac{1}{2}\)

    \(\begin{array}{l}\dfrac{2}{3}.x{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 1\dfrac{1}{2} + \dfrac{1}{2}\\\dfrac{2}{3}.x{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {\kern 1pt} 1 + \dfrac{1}{2} + \dfrac{1}{2}\\\dfrac{2}{3}.x{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {\kern 1pt} 2\\\,\,\,\,\,x{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 2:\dfrac{2}{3}\\\,\,\,\,\,x{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {\kern 1pt} 3\end{array}\)

    Vậy \(x = 3\)

    c) \(0,6.x + 40\% .x = 9\)

    \(\begin{array}{l}{\kern 1pt} 0,6.x{\kern 1pt} + {\kern 1pt} 0,4.x{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 9\\\left( {0,6 + 0,4} \right).x{\kern 1pt} {\kern 1pt} {\kern 1pt} = 9\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x{\kern 1pt} {\kern 1pt} {\kern 1pt} = 9\end{array}\)

    Vậy \(x{\kern 1pt} {\kern 1pt} {\kern 1pt} = 9\)

    Bài 3

    Phương pháp:Muốn tìm \(\dfrac{m}{n}\) của một số \(b\) cho trước, ta tính \(b.\dfrac{m}{n}\,\left( {m,n \in N,\,n \ne 0} \right)\)

    Cách giải:

    a) Số bài kiểm tra đạt loại giỏi là: \(\dfrac{1}{3}.45 = \dfrac{{45}}{3} = 15\) (bài)

    Số bài còn lại là: \(45 - 15 = 30\) (bài)

    Số bài đạt điểm khá là : \(90\% .30 = \dfrac{{90}}{{100}}.30 = 27\) (bài)

    Số bài đạt điểm trung bình là : \(30 - 27 = 3\) (bài)

    b) Tỷ số phần trăm số bài đạt điểm trung bình so với tổng số bài kiểm tra là : \(\dfrac{3}{{45}} \times 100 \simeq 6.7\% \)

    Đáp số : a)\(3\) bài. b) \(6,7\% \)

    Bài 4

    Phương pháp

    Vẽ tia, tia đối, vẽ điểm, trung điểm đoạn thẳng.

    Chứng minh một điểm nằm giữa hai điểm còn lại, tính độ dài đoạn thẳng, chứng minh trung điểm.

    Cách giải:

    Đề thi học kì 2 Toán 6 - Đề số 1 - Chân trời sáng tạo 1 1

    a) Hai điểm M,N cùng thuộc tia \(Ox\) và \(OM < ON(2cm < 5cm)\) nên điểm \(M\) nằm giữa hai điểm \(O\) và \(N\).

    Khi đó \(OM + MN = ON\) hay \(MN = ON - OM = 5 - 2 = 3cm\).

    b) \(MN = OP = 3cm\).

    c) \(I\) là trung điểm của \(OM\) nên \(IO = IM = \dfrac{{OM}}{2} = 1cm\).

    \(I\) là trung điểm của \(OM\) nên \(I\) thuộc tia \(Ox\).

    \(P\) thuộc tia đối của tia \(Ox\) nên \(O\) nằm giữa \(I\) và \(P\).

    Khi đó ta có \(OP + OI = IP\) hay \(IP = OP + OI = 3 + 1 = 4cm\).

    d) \(O\) và \(N\) nằm khác phía so với điềm \(I\); \(O\) và \({\rm{P}}\) nằm cùng phía so với điểm \(I\) nên \(N\) và \(P\) nằm khác phía so với điểm \(I\).

    Ta tính được \(IN = 4cm\).

    Do vậy \(IP = IN = 4cm\).

    Vậy \(I\) là trung điểm của đoạn thẳng \(NP.\)

    Bài 5

    Phương pháp: Ta chứng minh \(S > 2\) và \(S < 5\).

    Ta thấy :

     \(\begin{array}{l}S = \dfrac{5}{{{2^2}}} + \dfrac{5}{{{3^2}}} + \dfrac{5}{{{4^2}}} + ... + \dfrac{5}{{{{100}^2}}}.\\ = 5.\left( {\dfrac{1}{{2.2}} + \dfrac{1}{{3.3}} + \dfrac{1}{{4.4}} + ... + \dfrac{1}{{100.100}}} \right)\\ > 5.\left( {\dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \dfrac{1}{{4.5}} + ... + \dfrac{1}{{100.101}}} \right)\end{array}\)

    Rồi sử dụng : \(\dfrac{1}{{n.\left( {n + 1} \right)}} = \dfrac{1}{n} - \dfrac{1}{{n + 1}}\) để thu gọn S rồi so sánh S với 2.

    Tương tự khi so sánh S với 5.

    Cách giải:

    Ta có:

    \(\begin{array}{l}S = \dfrac{5}{{{2^2}}} + \dfrac{5}{{{3^2}}} + \dfrac{5}{{{4^2}}} + ... + \dfrac{5}{{{{100}^2}}}.\\ = 5.\left( {\dfrac{1}{{2.2}} + \dfrac{1}{{3.3}} + \dfrac{1}{{4.4}} + ... + \dfrac{1}{{100.100}}} \right) > 5.\left( {\dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \dfrac{1}{{4.5}} + ... + \dfrac{1}{{100.101}}} \right) > 5.\left( {\dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + ... + \dfrac{1}{{100}} - \dfrac{1}{{101}}} \right)\\ > 5.\left( {\dfrac{1}{2} - \dfrac{1}{{101}}} \right) > \dfrac{5}{2} > 2\\ \Rightarrow S > 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\end{array}\)

    \(\begin{array}{l}S = \dfrac{5}{{{2^2}}} + \dfrac{5}{{{3^2}}} + \dfrac{5}{{{4^2}}} + ... + \dfrac{5}{{{{100}^2}}}.\\ = 5.\left( {\dfrac{1}{{2.2}} + \dfrac{1}{{3.3}} + \dfrac{1}{{4.4}} + ... + \dfrac{1}{{100.100}}} \right) < 5.\left( {\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{99.100}}} \right)\\ < 5.\left( {1 - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + ... + \dfrac{1}{{99}} - \dfrac{1}{{100}}} \right) < 5.\left( {1 - \dfrac{1}{{100}}} \right) < 5\\ \Rightarrow S < 5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array}\)

    Từ (1) và (2) : \(2 < S < 5\) (đpcm).

    Đề bài

      Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

      Câu 1:Một người đi xe máy đoạn đường AB với vận tốc \(26\dfrac{1}{4}\) km/h hết \(2,4\) giờ. Lúc về, người ấy đi với vận tốc \(30\) km/h. Tính thời gian người ấy đi từ B đến A?

      A. \(2\) giờ \(5\) phút B. \(2\) giờ \(6\) phút C. \(2\) giờ D. \(2\) giờ \(4\) phút

      Câu 2:Góc bẹt có số đo bằng:

      A. \({180^0}\) B. \({90^0}\) C. \({60^0}\) D. \({0^0}\)

      Câu 3: Gieo một con xúc xắc \(4\) mặt \(50\) lần và quan sát số ghi trên đỉnh của con xúc xắc, ta được kết quả như sau:

      Đề thi học kì 2 Toán 6 - Đề số 1 - Chân trời sáng tạo 0 1

      Tính xác suất thực nghiệm để gieo được đỉnh có số chẵn:

      A. \(\dfrac{9}{{50}}\) B. \(\dfrac{{14}}{{50}}\) C. \(\dfrac{{15}}{{50}}\) D. \(\dfrac{{23}}{{50}}\)

      Câu 4:

      Đề thi học kì 2 Toán 6 - Đề số 1 - Chân trời sáng tạo 0 2

      Chọn phát biểu sai trong các phát biểu sau:

      A. Điểm A thuộc đường thẳng a

      B. Hai điểm A, B cùng thuộc đường thẳng a

      C. Điểm C thuộc đường thẳng b

      D. Hai điểm B, C cùng thuộc đường thẳng b

      Phần II. Tự luận (8 điểm):

      Bài 1: (2 điểm) Thực hiện phép tính (tính nhanh nếu có thể):

      a) \({\kern 1pt} \dfrac{1}{5} + \dfrac{{ - 5}}{{19}} + \dfrac{4}{5} + \dfrac{{ - 4}}{{19}}\) b) \({\kern 1pt} \dfrac{1}{5}.\dfrac{{11}}{{16}} + \dfrac{1}{5}.\dfrac{5}{{16}} + \dfrac{4}{5}\)

      c) \({\kern 1pt} 25\% {\rm{\;}} - 1\dfrac{1}{2} + 0,5.\dfrac{3}{8}\) d) \({\kern 1pt} {\left( {\dfrac{{ - 1}}{6}} \right)^2}:\dfrac{5}{{ - 24}} + \left( {\dfrac{7}{{25}} - 36\% } \right).\left| { - 8\dfrac{1}{3}} \right|\)

      Bài 2:(1,5 điểm)Tìm x, biết:

      Tìm \(x\), biết: 

      a) \({\kern 1pt} x:\dfrac{2}{5} = \dfrac{{ - 15}}{4}\)b) \({\kern 1pt} \dfrac{2}{3}.x - \dfrac{1}{2} = 1\dfrac{1}{2}\)c) \({\kern 1pt} 0,6.x + 40\% x = 9\)

      Bài 3:(1,5 điểm)Có một tập bài kiểm tra gồm 45 bài được xếp thành ba loại: Giỏi, khá và trung bình. Trong đó số bài đạt điểm giỏi bằng \(\dfrac{1}{3}\) tổng số bài kiểm tra. Số bài đạt điểm khá bằng \(90\% \) số bài còn lại.

      a) Tính số bài trung bình.

      b) Tính tỷ số phần trăm số bài đạt điểm trung bình so với tổng số bài kiểm tra.

      Bài 4: (2,5 điểm) Cho hai điểm \(M,N\) thuộc tia \(Ox\) sao cho \(OM = 2cm;ON = 5cm\). Điểm \(P\) thuộc tia đối của tia \(Ox\) sao cho \(OP = 3cm\).

      a) Điểm \(M\) có nằm giữa hai điểm \(O\) và \(N\) không? Tại sao? Tính \(MN.\)

      b) So sánh\(MN\) và \(OP.\)

      c) Gọi \(I\) là trung điểm của \(OM\). Tính \(IO\) và \(IP.\)

      d) Điểm \(I\) có là trung điểm của \(NP\) không? Tại sao?

      Bài 5:(0,5 điểm)Cho \(S = \dfrac{5}{{{2^2}}} + \dfrac{5}{{{3^2}}} + \dfrac{5}{{{4^2}}} + ... + \dfrac{5}{{{{100}^2}}}\)

      Chứng minh rằng \(2 < S < 5\)

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải
      • Tải về

        Tải về đề thi và đáp án Tải về đề thi Tải về đáp án

      Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

      Câu 1:Một người đi xe máy đoạn đường AB với vận tốc \(26\dfrac{1}{4}\) km/h hết \(2,4\) giờ. Lúc về, người ấy đi với vận tốc \(30\) km/h. Tính thời gian người ấy đi từ B đến A?

      A. \(2\) giờ \(5\) phút B. \(2\) giờ \(6\) phút C. \(2\) giờ D. \(2\) giờ \(4\) phút

      Câu 2:Góc bẹt có số đo bằng:

      A. \({180^0}\) B. \({90^0}\) C. \({60^0}\) D. \({0^0}\)

      Câu 3: Gieo một con xúc xắc \(4\) mặt \(50\) lần và quan sát số ghi trên đỉnh của con xúc xắc, ta được kết quả như sau:

      Đề thi học kì 2 Toán 6 - Đề số 1 - Chân trời sáng tạo 1

      Tính xác suất thực nghiệm để gieo được đỉnh có số chẵn:

      A. \(\dfrac{9}{{50}}\) B. \(\dfrac{{14}}{{50}}\) C. \(\dfrac{{15}}{{50}}\) D. \(\dfrac{{23}}{{50}}\)

      Câu 4:

      Đề thi học kì 2 Toán 6 - Đề số 1 - Chân trời sáng tạo 2

      Chọn phát biểu sai trong các phát biểu sau:

      A. Điểm A thuộc đường thẳng a

      B. Hai điểm A, B cùng thuộc đường thẳng a

      C. Điểm C thuộc đường thẳng b

      D. Hai điểm B, C cùng thuộc đường thẳng b

      Phần II. Tự luận (8 điểm):

      Bài 1: (2 điểm) Thực hiện phép tính (tính nhanh nếu có thể):

      a) \({\kern 1pt} \dfrac{1}{5} + \dfrac{{ - 5}}{{19}} + \dfrac{4}{5} + \dfrac{{ - 4}}{{19}}\) b) \({\kern 1pt} \dfrac{1}{5}.\dfrac{{11}}{{16}} + \dfrac{1}{5}.\dfrac{5}{{16}} + \dfrac{4}{5}\)

      c) \({\kern 1pt} 25\% {\rm{\;}} - 1\dfrac{1}{2} + 0,5.\dfrac{3}{8}\) d) \({\kern 1pt} {\left( {\dfrac{{ - 1}}{6}} \right)^2}:\dfrac{5}{{ - 24}} + \left( {\dfrac{7}{{25}} - 36\% } \right).\left| { - 8\dfrac{1}{3}} \right|\)

      Bài 2:(1,5 điểm)Tìm x, biết:

      Tìm \(x\), biết: 

      a) \({\kern 1pt} x:\dfrac{2}{5} = \dfrac{{ - 15}}{4}\)b) \({\kern 1pt} \dfrac{2}{3}.x - \dfrac{1}{2} = 1\dfrac{1}{2}\)c) \({\kern 1pt} 0,6.x + 40\% x = 9\)

      Bài 3:(1,5 điểm)Có một tập bài kiểm tra gồm 45 bài được xếp thành ba loại: Giỏi, khá và trung bình. Trong đó số bài đạt điểm giỏi bằng \(\dfrac{1}{3}\) tổng số bài kiểm tra. Số bài đạt điểm khá bằng \(90\% \) số bài còn lại.

      a) Tính số bài trung bình.

      b) Tính tỷ số phần trăm số bài đạt điểm trung bình so với tổng số bài kiểm tra.

      Bài 4: (2,5 điểm) Cho hai điểm \(M,N\) thuộc tia \(Ox\) sao cho \(OM = 2cm;ON = 5cm\). Điểm \(P\) thuộc tia đối của tia \(Ox\) sao cho \(OP = 3cm\).

      a) Điểm \(M\) có nằm giữa hai điểm \(O\) và \(N\) không? Tại sao? Tính \(MN.\)

      b) So sánh\(MN\) và \(OP.\)

      c) Gọi \(I\) là trung điểm của \(OM\). Tính \(IO\) và \(IP.\)

      d) Điểm \(I\) có là trung điểm của \(NP\) không? Tại sao?

      Bài 5:(0,5 điểm)Cho \(S = \dfrac{5}{{{2^2}}} + \dfrac{5}{{{3^2}}} + \dfrac{5}{{{4^2}}} + ... + \dfrac{5}{{{{100}^2}}}\)

      Chứng minh rằng \(2 < S < 5\)

      Phần I: Trắc nghiệm

      1. B

      2. A

      3. D

      4. B

      Câu 1

      Phương pháp:

      Sử dụng công thức: quãng đường = vận tốc . thời gian.

      Cách giải:

      Độ dài quãng đường AB là: \(26\dfrac{1}{4}.2,4\, = \dfrac{{105}}{4}.\dfrac{{24}}{{10}} = 63\) (km)

      Thời gian người ấy đi xe máy đi từ B về A là: \(63:30 = \dfrac{{21}}{{10}} = 2\dfrac{1}{{10}}\) (giờ) \( = 2\) giờ \(6\) phút.

      Chọn B.

      Câu 2

      Phương pháp:

      Định nghĩa về góc bẹt.

      Cách giải:

      Góc bẹt có số đo bằng \({180^0}\).

      Chọn A.

      Câu 3

      Phương pháp:

      Sử dụng lý thuyết bảng dữ liệu ban đầu.

      Cách giải:

      Bảng dữ liệu trên điều tra về loài hoa yêu thích của 30 học sinh lớp 6A1.

      Chọn B.

      Câu 4

      Phương pháp:

      Quan sát hình vẽ để xác định một điểm thuộc hay không thuộc một đường thẳng.Cách giải:

      Từ hình vẽ ta thấy điểm A, C thuộc đường thẳng a; điểm B, C thuộc đường thẳng b.

      Vậy phát biểu sai là hai điểm A, B cùng thuộc đường thẳng a.

      Chọn B.

      Phần II: Tự luận

      Bài 1

      Phương pháp

      a) Nhóm các phân số có cùng mẫu số, rồi thực hiện phép tính cộng hai phân số có cùng mẫu số. Muốn cộng hai phân số có cùng mẫu số ta cộng tử với tử và giữ nguyên mẫu.

      b) Thực hiện nhóm như sau: \(\dfrac{1}{5}.\dfrac{{11}}{{16}} + \dfrac{1}{5}.\dfrac{5}{{16}} + \dfrac{4}{5} = \dfrac{1}{5}.\left( {\dfrac{{11}}{{16}} + \dfrac{5}{{16}}} \right) + \dfrac{4}{5}\) rồi sau đó thực hiện phép tính theo thứ tự ưu tiên. Thực hiện phép tính trong ngoặc trước, ngoài ngoặc sau. Nhân chia trước cộng trừ sau.

      c) Viết số phần trăm, hỗn số, số thập phân dưới dạng phân số, rồi thực hiện phép tính theo thứ tự nhân chia trước, cộng trừ sau.

      d) Thực hiện phép tính lũy thừa, chuyển số phần trăm , hỗ số về phân số. Thực hiện phép tính theo thứ tự ưu tiên: nhân chia trước, cộng trừ sau. Trong ngoặc trước, ngoài ngoặc sau.

      Cách giải:

      a) \({\kern 1pt} \dfrac{1}{5} + \dfrac{{ - 5}}{{19}} + \dfrac{4}{5} + \dfrac{{ - 4}}{{19}}\)

      \(\begin{array}{l} = \left( {\dfrac{1}{5} + \dfrac{4}{5}} \right) + \left( {\dfrac{{ - 5}}{{19}} + \dfrac{{ - 4}}{{19}}} \right)\\ = 1 + \dfrac{{ - 9}}{{19}} = \dfrac{{10}}{{19}}\end{array}\)

      b) \(\dfrac{1}{5}.\dfrac{{11}}{{16}} + \dfrac{1}{5}.\dfrac{5}{{16}} + \dfrac{4}{5}\)

      \(\begin{array}{l}{\kern 1pt} = \dfrac{1}{5}.\left( {\dfrac{{11}}{{16}} + \dfrac{5}{{16}}} \right) + \dfrac{4}{5}\\ = \dfrac{1}{5}.1 + \dfrac{4}{5} = 1\end{array}\)

      c) \(25\% {\rm{\;}} - 1\dfrac{1}{2} + 0,5.\dfrac{3}{8}\)

      \(\begin{array}{l} = \dfrac{{25}}{{100}} - \dfrac{3}{2} + \dfrac{1}{2}.\dfrac{3}{8}\\ = \dfrac{1}{4} - \dfrac{3}{2} + \dfrac{3}{{16}}\\ = \dfrac{{1.4 - 3.8 + 3}}{{16}}\\ = \dfrac{{ - 17}}{{16}}\end{array}\)

      d) \({\left( {\frac{{ - 1}}{6}} \right)^2}:\frac{5}{{ - 24}} + \left( {\frac{7}{{25}} - 36\% } \right).\left| { - 8\frac{1}{3}} \right|\)

      \(=\frac{1}{{36}}:\frac{5}{{ - 24}} + \left( {\frac{7}{{25}} - \frac{{36}}{{100}}} \right).\frac{{25}}{3}\)

      \(=\frac{1}{{36}}.\frac{{ - 24}}{5} + \left( {\frac{7}{{25}} - \frac{9}{{25}}} \right).\frac{{25}}{3}\)

      \(=\frac{{ - 2}}{{15}} + {\frac{{ - 2}}{{25}}.\frac{{25}}{3}} \)

      \(=\frac{{ - 2}}{{15}} + \frac{{ - 2}}{3}\)

      \(=\frac{{ - 2}}{{15}} + \frac{{ - 10}}{{15}}\)

      \(=\frac{{ - 12}}{{15}}\)\(=\frac{{ - 4}}{5}\)

      Bài 2

      Phương pháp

      a) Muốn tìm số bị chia ta lấy thương nhân với số chia.

      b) Chuyển \( - \dfrac{1}{2}\) sang vế phải ta đổi dấu thành \( + \dfrac{1}{2}\) ,ta được biểu thức mới có dạng \(\dfrac{2}{3}x = 2\) , từ đó tìm được \(x\).

      c) Viết \(40\% \) dưới dạng số thập phân, sử dụng tính chất phân phối của phép nhân đối với phép cộng ta tìm được \(x\).

      Cách giải:

      a) \(x:\dfrac{2}{5} = \dfrac{{ - 15}}{4}\)

      \(\begin{array}{l}x{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {\kern 1pt} \dfrac{{ - 15}}{4}.\dfrac{2}{5}\\x{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {\kern 1pt} \dfrac{{ - 3}}{2}\end{array}\)

      Vậy \(x = \dfrac{{ - 3}}{2}\)

      b) \(\dfrac{2}{3}.x - \dfrac{1}{2} = 1\dfrac{1}{2}\)

      \(\begin{array}{l}\dfrac{2}{3}.x{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 1\dfrac{1}{2} + \dfrac{1}{2}\\\dfrac{2}{3}.x{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {\kern 1pt} 1 + \dfrac{1}{2} + \dfrac{1}{2}\\\dfrac{2}{3}.x{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {\kern 1pt} 2\\\,\,\,\,\,x{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 2:\dfrac{2}{3}\\\,\,\,\,\,x{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {\kern 1pt} 3\end{array}\)

      Vậy \(x = 3\)

      c) \(0,6.x + 40\% .x = 9\)

      \(\begin{array}{l}{\kern 1pt} 0,6.x{\kern 1pt} + {\kern 1pt} 0,4.x{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 9\\\left( {0,6 + 0,4} \right).x{\kern 1pt} {\kern 1pt} {\kern 1pt} = 9\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x{\kern 1pt} {\kern 1pt} {\kern 1pt} = 9\end{array}\)

      Vậy \(x{\kern 1pt} {\kern 1pt} {\kern 1pt} = 9\)

      Bài 3

      Phương pháp:Muốn tìm \(\dfrac{m}{n}\) của một số \(b\) cho trước, ta tính \(b.\dfrac{m}{n}\,\left( {m,n \in N,\,n \ne 0} \right)\)

      Cách giải:

      a) Số bài kiểm tra đạt loại giỏi là: \(\dfrac{1}{3}.45 = \dfrac{{45}}{3} = 15\) (bài)

      Số bài còn lại là: \(45 - 15 = 30\) (bài)

      Số bài đạt điểm khá là : \(90\% .30 = \dfrac{{90}}{{100}}.30 = 27\) (bài)

      Số bài đạt điểm trung bình là : \(30 - 27 = 3\) (bài)

      b) Tỷ số phần trăm số bài đạt điểm trung bình so với tổng số bài kiểm tra là : \(\dfrac{3}{{45}} \times 100 \simeq 6.7\% \)

      Đáp số : a)\(3\) bài. b) \(6,7\% \)

      Bài 4

      Phương pháp

      Vẽ tia, tia đối, vẽ điểm, trung điểm đoạn thẳng.

      Chứng minh một điểm nằm giữa hai điểm còn lại, tính độ dài đoạn thẳng, chứng minh trung điểm.

      Cách giải:

      Đề thi học kì 2 Toán 6 - Đề số 1 - Chân trời sáng tạo 3

      a) Hai điểm M,N cùng thuộc tia \(Ox\) và \(OM < ON(2cm < 5cm)\) nên điểm \(M\) nằm giữa hai điểm \(O\) và \(N\).

      Khi đó \(OM + MN = ON\) hay \(MN = ON - OM = 5 - 2 = 3cm\).

      b) \(MN = OP = 3cm\).

      c) \(I\) là trung điểm của \(OM\) nên \(IO = IM = \dfrac{{OM}}{2} = 1cm\).

      \(I\) là trung điểm của \(OM\) nên \(I\) thuộc tia \(Ox\).

      \(P\) thuộc tia đối của tia \(Ox\) nên \(O\) nằm giữa \(I\) và \(P\).

      Khi đó ta có \(OP + OI = IP\) hay \(IP = OP + OI = 3 + 1 = 4cm\).

      d) \(O\) và \(N\) nằm khác phía so với điềm \(I\); \(O\) và \({\rm{P}}\) nằm cùng phía so với điểm \(I\) nên \(N\) và \(P\) nằm khác phía so với điểm \(I\).

      Ta tính được \(IN = 4cm\).

      Do vậy \(IP = IN = 4cm\).

      Vậy \(I\) là trung điểm của đoạn thẳng \(NP.\)

      Bài 5

      Phương pháp: Ta chứng minh \(S > 2\) và \(S < 5\).

      Ta thấy :

       \(\begin{array}{l}S = \dfrac{5}{{{2^2}}} + \dfrac{5}{{{3^2}}} + \dfrac{5}{{{4^2}}} + ... + \dfrac{5}{{{{100}^2}}}.\\ = 5.\left( {\dfrac{1}{{2.2}} + \dfrac{1}{{3.3}} + \dfrac{1}{{4.4}} + ... + \dfrac{1}{{100.100}}} \right)\\ > 5.\left( {\dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \dfrac{1}{{4.5}} + ... + \dfrac{1}{{100.101}}} \right)\end{array}\)

      Rồi sử dụng : \(\dfrac{1}{{n.\left( {n + 1} \right)}} = \dfrac{1}{n} - \dfrac{1}{{n + 1}}\) để thu gọn S rồi so sánh S với 2.

      Tương tự khi so sánh S với 5.

      Cách giải:

      Ta có:

      \(\begin{array}{l}S = \dfrac{5}{{{2^2}}} + \dfrac{5}{{{3^2}}} + \dfrac{5}{{{4^2}}} + ... + \dfrac{5}{{{{100}^2}}}.\\ = 5.\left( {\dfrac{1}{{2.2}} + \dfrac{1}{{3.3}} + \dfrac{1}{{4.4}} + ... + \dfrac{1}{{100.100}}} \right) > 5.\left( {\dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \dfrac{1}{{4.5}} + ... + \dfrac{1}{{100.101}}} \right) > 5.\left( {\dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + ... + \dfrac{1}{{100}} - \dfrac{1}{{101}}} \right)\\ > 5.\left( {\dfrac{1}{2} - \dfrac{1}{{101}}} \right) > \dfrac{5}{2} > 2\\ \Rightarrow S > 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\end{array}\)

      \(\begin{array}{l}S = \dfrac{5}{{{2^2}}} + \dfrac{5}{{{3^2}}} + \dfrac{5}{{{4^2}}} + ... + \dfrac{5}{{{{100}^2}}}.\\ = 5.\left( {\dfrac{1}{{2.2}} + \dfrac{1}{{3.3}} + \dfrac{1}{{4.4}} + ... + \dfrac{1}{{100.100}}} \right) < 5.\left( {\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{99.100}}} \right)\\ < 5.\left( {1 - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + ... + \dfrac{1}{{99}} - \dfrac{1}{{100}}} \right) < 5.\left( {1 - \dfrac{1}{{100}}} \right) < 5\\ \Rightarrow S < 5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array}\)

      Từ (1) và (2) : \(2 < S < 5\) (đpcm).

      Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Đề thi học kì 2 Toán 6 - Đề số 1 - Chân trời sáng tạo – nội dung then chốt trong chuyên mục giải sgk toán 6 trên nền tảng toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

      Đề thi học kì 2 Toán 6 - Đề số 1 - Chân trời sáng tạo: Tổng quan và Hướng dẫn Giải chi tiết

      Đề thi học kì 2 Toán 6 - Đề số 1 chương trình Chân trời sáng tạo là một bài kiểm tra quan trọng, đánh giá mức độ nắm vững kiến thức và kỹ năng giải toán của học sinh sau một học kì học tập. Đề thi bao gồm các dạng bài tập khác nhau, tập trung vào các chủ đề chính đã được học trong chương trình.

      Cấu trúc đề thi học kì 2 Toán 6 - Đề số 1 - Chân trời sáng tạo

      Thông thường, đề thi học kì 2 Toán 6 - Đề số 1 - Chân trời sáng tạo sẽ bao gồm các phần sau:

      • Phần trắc nghiệm: Kiểm tra kiến thức cơ bản, khả năng nhận biết và vận dụng các khái niệm toán học.
      • Phần tự luận: Yêu cầu học sinh trình bày lời giải chi tiết cho các bài toán, thể hiện khả năng phân tích, suy luận và giải quyết vấn đề.

      Các chủ đề chính trong đề thi

      Các chủ đề thường xuất hiện trong đề thi học kì 2 Toán 6 - Đề số 1 - Chân trời sáng tạo bao gồm:

      1. Số nguyên: Các phép toán với số nguyên, tính chất của số nguyên, so sánh số nguyên.
      2. Phân số: Các phép toán với phân số, so sánh phân số, rút gọn phân số.
      3. Số thập phân: Các phép toán với số thập phân, so sánh số thập phân, chuyển đổi giữa phân số và số thập phân.
      4. Tỉ số và phần trăm: Tính tỉ số, tính phần trăm, ứng dụng tỉ số và phần trăm vào giải toán.
      5. Hình học: Các khái niệm cơ bản về hình học, tính diện tích và chu vi của các hình đơn giản.

      Hướng dẫn giải chi tiết một số dạng bài tập thường gặp

      Dạng 1: Bài toán về số nguyên

      Ví dụ: Tính (-5) + 3 - (-2). Giải: (-5) + 3 - (-2) = -5 + 3 + 2 = 0

      Để giải các bài toán về số nguyên, học sinh cần nắm vững các quy tắc cộng, trừ, nhân, chia số nguyên.

      Dạng 2: Bài toán về phân số

      Ví dụ: Tính 2/3 + 1/4. Giải: 2/3 + 1/4 = 8/12 + 3/12 = 11/12

      Để giải các bài toán về phân số, học sinh cần nắm vững các quy tắc cộng, trừ, nhân, chia phân số, quy đồng mẫu số và rút gọn phân số.

      Dạng 3: Bài toán về số thập phân

      Ví dụ: Tính 2,5 x 3,2. Giải: 2,5 x 3,2 = 8

      Để giải các bài toán về số thập phân, học sinh cần nắm vững các quy tắc cộng, trừ, nhân, chia số thập phân.

      Luyện tập và ôn tập hiệu quả

      Để đạt kết quả tốt trong kỳ thi học kì 2 Toán 6, học sinh cần:

      • Học thuộc lý thuyết: Nắm vững các khái niệm, định nghĩa, tính chất và quy tắc toán học.
      • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng giải toán.
      • Ôn tập kiến thức: Hệ thống lại kiến thức đã học, tập trung vào các chủ đề quan trọng.
      • Tìm kiếm sự giúp đỡ: Hỏi thầy cô giáo hoặc bạn bè khi gặp khó khăn.

      Giaitoan.edu.vn – Nền tảng học toán online uy tín

      Giaitoan.edu.vn là một nền tảng học toán online uy tín, cung cấp đầy đủ các tài liệu học tập, bài tập và đề thi Toán 6, bao gồm cả Đề thi học kì 2 Toán 6 - Đề số 1 - Chân trời sáng tạo. Với đội ngũ giáo viên giàu kinh nghiệm và phương pháp giảng dạy hiện đại, Giaitoan.edu.vn sẽ giúp các em học toán hiệu quả và đạt kết quả cao.

      Lời khuyên cho kỳ thi

      Trước khi vào phòng thi, hãy:

      • Đọc kỹ đề thi và xác định yêu cầu của từng câu hỏi.
      • Lập kế hoạch giải bài và phân bổ thời gian hợp lý.
      • Kiểm tra lại bài làm trước khi nộp.

      Chúc các em học sinh đạt kết quả tốt nhất trong kỳ thi học kì 2 Toán 6!

      Tài liệu, đề thi và đáp án Toán 6