Logo Header
  1. Môn Toán
  2. Đề thi học kì 2 Toán 6 - Đề số 6 - Chân trời sáng tạo

Đề thi học kì 2 Toán 6 - Đề số 6 - Chân trời sáng tạo

Đề thi học kì 2 Toán 6 - Đề số 6 - Chân trời sáng tạo

Chào mừng các em học sinh đến với đề thi học kì 2 môn Toán lớp 6, đề số 6, chương trình Chân trời sáng tạo. Đề thi này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong học kì.

Giaitoan.edu.vn cung cấp đề thi kèm đáp án chi tiết, giúp các em tự học và kiểm tra kết quả một cách hiệu quả.

Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Đề bài

    Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

    Câu 1. Trong các hình sau, hình có tâm đối xứng là:

    G

    Hình a

    V

    Hình b

    O

    Hình c

     A

    Hình d

    A. Hình a B. Hình b C. Hình c D. Hình d

    Câu 2. Một hộp có 1 quả bóng xanh, 1 quả bóng đỏ, 1 quả bóng vàng kích thước, khối lượng như nhau. Mỗi lần Hà lấy ngẫu nhiên 1 quả bóng trong hộp, ghi lại màu của quả bóng đó và bỏ lại quả bóng đó vào hộp. Bạn Hà lấy 15 lần liên tiếp, có 5 lần xuất hiện màu vàng thì xác suất thực nghiệm xuất hiện màu vàng bằng bao nhiêu?

    A. \(\dfrac{1}{3}\) B. \(\dfrac{1}{4}\) C. \(\dfrac{2}{5}\) D. \(\dfrac{1}{5}\)

    Câu 3. \(\dfrac{2}{5}\) của x bằng 20. Giá trị của x là:

    A. 50 B. 8 C. 10 D. 5

    Câu 4. Kim phút và kim giờ của đồng hồ tạo thành góc bẹt tại thời điểm:

    A. 12 giờ B. 6 giờ 30 phút C. 15 giờ D. 6 giờ

    Phần II. Tự luận (8 điểm):

    Bài 1 (2,0 điểm) Thực hiện phép tính (tính hợp lý nếu có thể)

    a) \(\dfrac{1}{6} + \dfrac{{ - 5}}{3}\)

    b) \(\left( {2022,19 + 152,3} \right) - \left( {2022,19 - 7,7} \right)\)

    c) \(\dfrac{{ - 7}}{9}.\dfrac{3}{{11}} + \dfrac{{ - 7}}{{11}}:\dfrac{9}{8} + 5\dfrac{7}{9}\)

    Bài 2 (2,0 điểm) Tìm x biết:

    a) \(x - \dfrac{1}{2} = \dfrac{{ - 2}}{3}\)

    b) \(\dfrac{2}{3}:x = 1,4 - \dfrac{{12}}{5}\)

    c) \({\left( {\dfrac{1}{3} - \dfrac{2}{3}x} \right)^2} + \dfrac{5}{9} = {2022^0}\)

    Bài 3 (1,5 điểm) Lớp 6A có 48 học sinh gồm ba loại giỏi, khá và trung bình, trong đó số học sinh giỏi chiếm 25% số học sinh cả lớp, số học sinh khá bằng \(1\dfrac{1}{3}\), số học sinh giỏi, còn lại là học sinh trung bình.

    a) Tính số học sinh mỗi loại của lớp 6A?

    b) Tính tỉ số phần trăm giữa số học sinh trung bình với số học sinh cả lớp? (làm tròn đến chữ số thập phân thứ hai).

    Bài 4 (2,0 điểm) Cho đường thẳng xy. Trên đường thẳng xy lấy điểm O. Vẽ điểm A thuộc tia Ox sao cho OA = 4cm, điểm B thuộc tia Oy sao cho OB = 2cm.

    a) Viết các trường hợp hai tia đối nhau gốc A, hai tia trùng nhau gốc B.

    b) Tính AB.

    c) Gọi I là trung điểm của đoạn thẳng OA. Điểm O có là trung điểm của đoạn thẳng IB không? Vì sao?

    Bài 5 (0,5 điểm) Tìm số tự nhiên n để phân số \[B{\rm{ }} = \dfrac{{10n - 3}}{{4n - 10}}\] đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó.

    Lời giải

      Phần I: Trắc nghiệm

      1. C

      2. A

      3. A

      4. D

      Câu 1

      Phương pháp:

      Dựa vào khái niệm tâm đối xứng.

      Cách giải:

      Hình chữ O có tâm đối xứng.

      Chọn C.

      Câu 2

      Phương pháp:

      Xác suất thực nghiệm xuất hiện màu vàng = Số lần xuất hiện màu vàng : Số lần thử

      Cách giải:

      Xác suất thực nghiệm xuất hiện màu vàng là: \(\dfrac{5}{{15}} = \dfrac{1}{3}\)

      Chọn A.

      Câu 3

      Phương pháp:

      Lấy giá trị chia cho phân số tương ứng.

      Cách giải:

      \(\begin{array}{l}\dfrac{2}{5}.x = 20\\\,\,\,\,\,x = 20:\dfrac{2}{5}\\\,\,\,\,\,x = 50\end{array}\)

      Chọn A.

      Câu 4

      Phương pháp:

      Kim phút và kim giờ của đồng hồ tạo thành góc bẹt tại thời điểm 6 giờ.

      Cách giải:

      Kim phút và kim giờ của đồng hồ tạo thành góc bẹt tại thời điểm 6 giờ.

      Chọn D.

      Phần II: Tự luận

      Bài 1

      Phương pháp

      a) Thực hiện phép cộng hai phân số.

      b) Nhóm thích hợp.

      c) Sử dụng tính chất phân phối của phép nhân với phép cộng.

      Cách giải:

      a) \[\dfrac{1}{6} + \dfrac{{ - 5}}{3} = \dfrac{1}{6} + \dfrac{{ - 10}}{6} = \dfrac{{ - 9}}{6} = \dfrac{{ - 3}}{2}\]

      b)

      \(\begin{array}{l}\left( {2022,19 + 152,3} \right) - \left( {2022,19 - 7,7} \right)\\ = 2022,19 + 152,3 - 2022,19 + 7,7\\ = \left( {2022,19 - 2022,19} \right) + \left( {152,3 + 7,7} \right)\\ = 0 + 160 = 160\end{array}\)

      c)

      \[\begin{array}{l}\dfrac{{ - 7}}{9}.\dfrac{3}{{11}} + \dfrac{{ - 7}}{{11}}:\dfrac{9}{8} + 5\dfrac{7}{9}\\ = \dfrac{{ - 7}}{9}.\dfrac{3}{{11}} + \dfrac{{ - 7}}{{11}}.\dfrac{8}{9} + 5\dfrac{7}{9}\\ = \dfrac{{ - 7}}{9}.\dfrac{3}{{11}} + \dfrac{{ - 7}}{9}.\dfrac{8}{{11}} + 5\dfrac{7}{9}\\ = \dfrac{{ - 7}}{9}.\left( {\dfrac{3}{{11}} + \dfrac{8}{{11}}} \right) + 5 + \dfrac{7}{9}\\ = \dfrac{{ - 7}}{9} + \dfrac{7}{9} + 5\\ = 0 + 5 = 5\end{array}\]

      Bài 2

      Phương pháp:

      Chuyển vế và đổi dấu để tìm x.

      Cách giải:

      a)

      \(\begin{array}{l}x - \dfrac{1}{2} = \dfrac{{ - 2}}{3}\\x\,\,\,\,\,\,\,\,\,\, = \dfrac{{ - 2}}{3}\, + \dfrac{1}{2}\\x\,\,\,\,\,\,\,\,\,\, = \dfrac{{ - 1}}{6}\end{array}\)

      b)

      \(\begin{array}{l}\dfrac{2}{3}:x = 1,4 - \dfrac{{12}}{5}\\\dfrac{2}{3}:x = \dfrac{7}{5} - \dfrac{{12}}{5}\\\dfrac{2}{3}:x = - 1\\\,\,\,\,\,\,\,x = \dfrac{2}{3}:\left( { - 1} \right)\\\,\,\,\,\,\,\,x = \dfrac{{ - 2}}{3}\end{array}\)

      c)

      \(\begin{array}{l}{\left( {\dfrac{1}{3} - \dfrac{2}{3}x} \right)^2} + \dfrac{5}{9} = {2022^0}\\{\left( {\dfrac{1}{3} - \dfrac{2}{3}x} \right)^2} + \dfrac{5}{9} = 1\\{\left( {\dfrac{1}{3} - \dfrac{2}{3}x} \right)^2}\,\,\,\,\,\,\,\,\,\,\, = 1 - \dfrac{5}{9}\\{\left( {\dfrac{1}{3} - \dfrac{2}{3}x} \right)^2}\,\,\,\,\,\,\,\,\,\,\, = \dfrac{4}{9}\\{\left( {\dfrac{1}{3} - \dfrac{2}{3}x} \right)^2}\,\,\,\,\,\,\,\,\,\,\, = {\left( {\dfrac{2}{3}} \right)^2}\end{array}\)

      TH1:

      \(\begin{array}{l}\dfrac{1}{3} - \dfrac{2}{3}x = \dfrac{2}{3}\\\,\,\,\,\,\,\,\,\,\dfrac{2}{3}x = \dfrac{1}{3} - \dfrac{2}{3}\\\,\,\,\,\,\,\,\,\,\dfrac{2}{3}x = - \dfrac{1}{3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,x = - \dfrac{1}{3}\,:\dfrac{2}{3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,x = - \dfrac{1}{2}\end{array}\)

      TH2:

      \[\begin{array}{l}\dfrac{1}{3} - \dfrac{2}{3}x = \dfrac{{ - 2}}{3}\\\,\,\,\,\,\,\,\,\,\dfrac{2}{3}x = \dfrac{1}{3} - \dfrac{{ - 2}}{3}\\\,\,\,\,\,\,\,\,\,\dfrac{2}{3}x = 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,x = 1\,:\dfrac{2}{3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,x = \dfrac{3}{2}\end{array}\]

      Bài 3

      Phương pháp:

      a) Lần lượt tính số học sinh giỏi, số học sinh khá và số học sinh trung bình.

      b) Tỉ số phần trăm học sinh trung bình = Số học sinh trung bình : Số học sinh cả lớp × 100 (%)

      Cách giải:

      a) Số học sinh giỏi của lớp 6A là: \(48.\dfrac{{25}}{{100}} = 12\) (học sinh)

      Số học sinh khá của lớp 6A là: \(12.1\dfrac{1}{3} = 12.\dfrac{4}{3} = 16\) (học sinh)

      Số học sinh trung bình của lớp 6A là: \(48 - 12 - 16 = 20\) (học sinh)

      b) Tỉ số phần trăm giữa số học sinh trung bình với số học sinh cả lớp là: \(\dfrac{{20}}{{48}}.100\% \approx 41,67\% \)

      Bài 4

      Phương pháp:

      Sử dụng tính chất điểm nằm giữa, trung điểm của đoạn thẳng.

      Cách giải:

      Đề thi học kì 2 Toán 6 - Đề số 6 - Chân trời sáng tạo 1 1

      a) Hai tia đối nhau gốc A là: Ax và Ay

      Hai tia trùng nhau gốc B là: BO và Bx

      b) Vì O nằm giữa A và B nên ta có: \(AB = OA + AB = 4 + 2 = 6\left( {cm} \right)\)

      c) Vì I là trung điểm của OA nên \(OI = \dfrac{1}{2}OA = \dfrac{1}{2}.4 = 2\left( {cm} \right)\)

      Điểm O nằm giữa I và B, \(OI = OB = 2cm\) nên O là trung điểm của đoạn thẳng IB.

      Bài 5

      Phương pháp:

      Biến đổi \[B = \dfrac{{10n - 3}}{{2\left( {2n - 5} \right)}} = \dfrac{5}{2} + \dfrac{{11}}{{2n - 5}}\].

      B đạt giá trị lớn nhất khi và chỉ khi \(2n - 5 > 0\) và đạt giá trị nhỏ nhất

      Từ đó suy ra n và giá trị lớn nhất của B.

      Cách giải:

      Ta có: \[B = \dfrac{{10n - 3}}{{2\left( {2n - 5} \right)}} = \dfrac{{10n - 25 + 22}}{{2\left( {2n - 5} \right)}} = \dfrac{{5\left( {2n - 5} \right) + 22}}{{2\left( {2n - 5} \right)}} = \dfrac{5}{2} + \dfrac{{11}}{{2n - 5}}\]

      B đạt giá trị lớn nhất khi và chỉ khi \(\dfrac{{11}}{{2n - 5}}\) đạt giá trị lớn nhất.

      \(\dfrac{{11}}{{2n - 5}}\) đạt giá trị lớn nhất khi và chỉ khi \(2n - 5 > 0\) và đạt giá trị nhỏ nhất

      Suy ra: \(2n - 5 = 1\).

      \(\begin{array}{l}2n = 6\\\,\,n = 3\end{array}\)

      Khi đó: \(B = \dfrac{5}{2} + 11 = \dfrac{{27}}{2}\)

      Vậy \(n = 3\) thì B đạt giá trị lớn nhất là \(\dfrac{{27}}{2}\).

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải
      • Tải về

        Tải về đề thi và đáp án Tải về đề thi Tải về đáp án

      Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

      Câu 1. Trong các hình sau, hình có tâm đối xứng là:

      G

      Hình a

      V

      Hình b

      O

      Hình c

       A

      Hình d

      A. Hình a B. Hình b C. Hình c D. Hình d

      Câu 2. Một hộp có 1 quả bóng xanh, 1 quả bóng đỏ, 1 quả bóng vàng kích thước, khối lượng như nhau. Mỗi lần Hà lấy ngẫu nhiên 1 quả bóng trong hộp, ghi lại màu của quả bóng đó và bỏ lại quả bóng đó vào hộp. Bạn Hà lấy 15 lần liên tiếp, có 5 lần xuất hiện màu vàng thì xác suất thực nghiệm xuất hiện màu vàng bằng bao nhiêu?

      A. \(\dfrac{1}{3}\) B. \(\dfrac{1}{4}\) C. \(\dfrac{2}{5}\) D. \(\dfrac{1}{5}\)

      Câu 3. \(\dfrac{2}{5}\) của x bằng 20. Giá trị của x là:

      A. 50 B. 8 C. 10 D. 5

      Câu 4. Kim phút và kim giờ của đồng hồ tạo thành góc bẹt tại thời điểm:

      A. 12 giờ B. 6 giờ 30 phút C. 15 giờ D. 6 giờ

      Phần II. Tự luận (8 điểm):

      Bài 1 (2,0 điểm) Thực hiện phép tính (tính hợp lý nếu có thể)

      a) \(\dfrac{1}{6} + \dfrac{{ - 5}}{3}\)

      b) \(\left( {2022,19 + 152,3} \right) - \left( {2022,19 - 7,7} \right)\)

      c) \(\dfrac{{ - 7}}{9}.\dfrac{3}{{11}} + \dfrac{{ - 7}}{{11}}:\dfrac{9}{8} + 5\dfrac{7}{9}\)

      Bài 2 (2,0 điểm) Tìm x biết:

      a) \(x - \dfrac{1}{2} = \dfrac{{ - 2}}{3}\)

      b) \(\dfrac{2}{3}:x = 1,4 - \dfrac{{12}}{5}\)

      c) \({\left( {\dfrac{1}{3} - \dfrac{2}{3}x} \right)^2} + \dfrac{5}{9} = {2022^0}\)

      Bài 3 (1,5 điểm) Lớp 6A có 48 học sinh gồm ba loại giỏi, khá và trung bình, trong đó số học sinh giỏi chiếm 25% số học sinh cả lớp, số học sinh khá bằng \(1\dfrac{1}{3}\), số học sinh giỏi, còn lại là học sinh trung bình.

      a) Tính số học sinh mỗi loại của lớp 6A?

      b) Tính tỉ số phần trăm giữa số học sinh trung bình với số học sinh cả lớp? (làm tròn đến chữ số thập phân thứ hai).

      Bài 4 (2,0 điểm) Cho đường thẳng xy. Trên đường thẳng xy lấy điểm O. Vẽ điểm A thuộc tia Ox sao cho OA = 4cm, điểm B thuộc tia Oy sao cho OB = 2cm.

      a) Viết các trường hợp hai tia đối nhau gốc A, hai tia trùng nhau gốc B.

      b) Tính AB.

      c) Gọi I là trung điểm của đoạn thẳng OA. Điểm O có là trung điểm của đoạn thẳng IB không? Vì sao?

      Bài 5 (0,5 điểm) Tìm số tự nhiên n để phân số \[B{\rm{ }} = \dfrac{{10n - 3}}{{4n - 10}}\] đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó.

      Phần I: Trắc nghiệm

      1. C

      2. A

      3. A

      4. D

      Câu 1

      Phương pháp:

      Dựa vào khái niệm tâm đối xứng.

      Cách giải:

      Hình chữ O có tâm đối xứng.

      Chọn C.

      Câu 2

      Phương pháp:

      Xác suất thực nghiệm xuất hiện màu vàng = Số lần xuất hiện màu vàng : Số lần thử

      Cách giải:

      Xác suất thực nghiệm xuất hiện màu vàng là: \(\dfrac{5}{{15}} = \dfrac{1}{3}\)

      Chọn A.

      Câu 3

      Phương pháp:

      Lấy giá trị chia cho phân số tương ứng.

      Cách giải:

      \(\begin{array}{l}\dfrac{2}{5}.x = 20\\\,\,\,\,\,x = 20:\dfrac{2}{5}\\\,\,\,\,\,x = 50\end{array}\)

      Chọn A.

      Câu 4

      Phương pháp:

      Kim phút và kim giờ của đồng hồ tạo thành góc bẹt tại thời điểm 6 giờ.

      Cách giải:

      Kim phút và kim giờ của đồng hồ tạo thành góc bẹt tại thời điểm 6 giờ.

      Chọn D.

      Phần II: Tự luận

      Bài 1

      Phương pháp

      a) Thực hiện phép cộng hai phân số.

      b) Nhóm thích hợp.

      c) Sử dụng tính chất phân phối của phép nhân với phép cộng.

      Cách giải:

      a) \[\dfrac{1}{6} + \dfrac{{ - 5}}{3} = \dfrac{1}{6} + \dfrac{{ - 10}}{6} = \dfrac{{ - 9}}{6} = \dfrac{{ - 3}}{2}\]

      b)

      \(\begin{array}{l}\left( {2022,19 + 152,3} \right) - \left( {2022,19 - 7,7} \right)\\ = 2022,19 + 152,3 - 2022,19 + 7,7\\ = \left( {2022,19 - 2022,19} \right) + \left( {152,3 + 7,7} \right)\\ = 0 + 160 = 160\end{array}\)

      c)

      \[\begin{array}{l}\dfrac{{ - 7}}{9}.\dfrac{3}{{11}} + \dfrac{{ - 7}}{{11}}:\dfrac{9}{8} + 5\dfrac{7}{9}\\ = \dfrac{{ - 7}}{9}.\dfrac{3}{{11}} + \dfrac{{ - 7}}{{11}}.\dfrac{8}{9} + 5\dfrac{7}{9}\\ = \dfrac{{ - 7}}{9}.\dfrac{3}{{11}} + \dfrac{{ - 7}}{9}.\dfrac{8}{{11}} + 5\dfrac{7}{9}\\ = \dfrac{{ - 7}}{9}.\left( {\dfrac{3}{{11}} + \dfrac{8}{{11}}} \right) + 5 + \dfrac{7}{9}\\ = \dfrac{{ - 7}}{9} + \dfrac{7}{9} + 5\\ = 0 + 5 = 5\end{array}\]

      Bài 2

      Phương pháp:

      Chuyển vế và đổi dấu để tìm x.

      Cách giải:

      a)

      \(\begin{array}{l}x - \dfrac{1}{2} = \dfrac{{ - 2}}{3}\\x\,\,\,\,\,\,\,\,\,\, = \dfrac{{ - 2}}{3}\, + \dfrac{1}{2}\\x\,\,\,\,\,\,\,\,\,\, = \dfrac{{ - 1}}{6}\end{array}\)

      b)

      \(\begin{array}{l}\dfrac{2}{3}:x = 1,4 - \dfrac{{12}}{5}\\\dfrac{2}{3}:x = \dfrac{7}{5} - \dfrac{{12}}{5}\\\dfrac{2}{3}:x = - 1\\\,\,\,\,\,\,\,x = \dfrac{2}{3}:\left( { - 1} \right)\\\,\,\,\,\,\,\,x = \dfrac{{ - 2}}{3}\end{array}\)

      c)

      \(\begin{array}{l}{\left( {\dfrac{1}{3} - \dfrac{2}{3}x} \right)^2} + \dfrac{5}{9} = {2022^0}\\{\left( {\dfrac{1}{3} - \dfrac{2}{3}x} \right)^2} + \dfrac{5}{9} = 1\\{\left( {\dfrac{1}{3} - \dfrac{2}{3}x} \right)^2}\,\,\,\,\,\,\,\,\,\,\, = 1 - \dfrac{5}{9}\\{\left( {\dfrac{1}{3} - \dfrac{2}{3}x} \right)^2}\,\,\,\,\,\,\,\,\,\,\, = \dfrac{4}{9}\\{\left( {\dfrac{1}{3} - \dfrac{2}{3}x} \right)^2}\,\,\,\,\,\,\,\,\,\,\, = {\left( {\dfrac{2}{3}} \right)^2}\end{array}\)

      TH1:

      \(\begin{array}{l}\dfrac{1}{3} - \dfrac{2}{3}x = \dfrac{2}{3}\\\,\,\,\,\,\,\,\,\,\dfrac{2}{3}x = \dfrac{1}{3} - \dfrac{2}{3}\\\,\,\,\,\,\,\,\,\,\dfrac{2}{3}x = - \dfrac{1}{3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,x = - \dfrac{1}{3}\,:\dfrac{2}{3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,x = - \dfrac{1}{2}\end{array}\)

      TH2:

      \[\begin{array}{l}\dfrac{1}{3} - \dfrac{2}{3}x = \dfrac{{ - 2}}{3}\\\,\,\,\,\,\,\,\,\,\dfrac{2}{3}x = \dfrac{1}{3} - \dfrac{{ - 2}}{3}\\\,\,\,\,\,\,\,\,\,\dfrac{2}{3}x = 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,x = 1\,:\dfrac{2}{3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,x = \dfrac{3}{2}\end{array}\]

      Bài 3

      Phương pháp:

      a) Lần lượt tính số học sinh giỏi, số học sinh khá và số học sinh trung bình.

      b) Tỉ số phần trăm học sinh trung bình = Số học sinh trung bình : Số học sinh cả lớp × 100 (%)

      Cách giải:

      a) Số học sinh giỏi của lớp 6A là: \(48.\dfrac{{25}}{{100}} = 12\) (học sinh)

      Số học sinh khá của lớp 6A là: \(12.1\dfrac{1}{3} = 12.\dfrac{4}{3} = 16\) (học sinh)

      Số học sinh trung bình của lớp 6A là: \(48 - 12 - 16 = 20\) (học sinh)

      b) Tỉ số phần trăm giữa số học sinh trung bình với số học sinh cả lớp là: \(\dfrac{{20}}{{48}}.100\% \approx 41,67\% \)

      Bài 4

      Phương pháp:

      Sử dụng tính chất điểm nằm giữa, trung điểm của đoạn thẳng.

      Cách giải:

      Đề thi học kì 2 Toán 6 - Đề số 6 - Chân trời sáng tạo 1

      a) Hai tia đối nhau gốc A là: Ax và Ay

      Hai tia trùng nhau gốc B là: BO và Bx

      b) Vì O nằm giữa A và B nên ta có: \(AB = OA + AB = 4 + 2 = 6\left( {cm} \right)\)

      c) Vì I là trung điểm của OA nên \(OI = \dfrac{1}{2}OA = \dfrac{1}{2}.4 = 2\left( {cm} \right)\)

      Điểm O nằm giữa I và B, \(OI = OB = 2cm\) nên O là trung điểm của đoạn thẳng IB.

      Bài 5

      Phương pháp:

      Biến đổi \[B = \dfrac{{10n - 3}}{{2\left( {2n - 5} \right)}} = \dfrac{5}{2} + \dfrac{{11}}{{2n - 5}}\].

      B đạt giá trị lớn nhất khi và chỉ khi \(2n - 5 > 0\) và đạt giá trị nhỏ nhất

      Từ đó suy ra n và giá trị lớn nhất của B.

      Cách giải:

      Ta có: \[B = \dfrac{{10n - 3}}{{2\left( {2n - 5} \right)}} = \dfrac{{10n - 25 + 22}}{{2\left( {2n - 5} \right)}} = \dfrac{{5\left( {2n - 5} \right) + 22}}{{2\left( {2n - 5} \right)}} = \dfrac{5}{2} + \dfrac{{11}}{{2n - 5}}\]

      B đạt giá trị lớn nhất khi và chỉ khi \(\dfrac{{11}}{{2n - 5}}\) đạt giá trị lớn nhất.

      \(\dfrac{{11}}{{2n - 5}}\) đạt giá trị lớn nhất khi và chỉ khi \(2n - 5 > 0\) và đạt giá trị nhỏ nhất

      Suy ra: \(2n - 5 = 1\).

      \(\begin{array}{l}2n = 6\\\,\,n = 3\end{array}\)

      Khi đó: \(B = \dfrac{5}{2} + 11 = \dfrac{{27}}{2}\)

      Vậy \(n = 3\) thì B đạt giá trị lớn nhất là \(\dfrac{{27}}{2}\).

      Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Đề thi học kì 2 Toán 6 - Đề số 6 - Chân trời sáng tạo – nội dung then chốt trong chuyên mục giải toán lớp 6 trên nền tảng soạn toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

      Đề thi học kì 2 Toán 6 - Đề số 6 - Chân trời sáng tạo: Tổng quan và Hướng dẫn Giải chi tiết

      Đề thi học kì 2 Toán 6 - Đề số 6, chương trình Chân trời sáng tạo, là một bài kiểm tra quan trọng giúp học sinh đánh giá mức độ nắm vững kiến thức đã học trong suốt học kì. Đề thi bao gồm các dạng bài tập khác nhau, từ cơ bản đến nâng cao, đòi hỏi học sinh phải có khả năng vận dụng linh hoạt các kiến thức đã học để giải quyết vấn đề.

      Cấu trúc đề thi

      Đề thi thường bao gồm các phần sau:

      • Phần trắc nghiệm: Kiểm tra kiến thức lý thuyết và khả năng nhận biết các khái niệm toán học.
      • Phần tự luận: Yêu cầu học sinh trình bày lời giải chi tiết cho các bài toán, thể hiện khả năng tư duy logic và vận dụng kiến thức vào thực tế.

      Nội dung chính của đề thi

      Đề thi học kì 2 Toán 6 - Đề số 6, chương trình Chân trời sáng tạo, thường tập trung vào các nội dung sau:

      1. Số nguyên: Các phép toán với số nguyên, tính chất của số nguyên, so sánh số nguyên.
      2. Phân số: Các phép toán với phân số, so sánh phân số, rút gọn phân số.
      3. Số thập phân: Các phép toán với số thập phân, so sánh số thập phân, chuyển đổi giữa phân số và số thập phân.
      4. Tỉ số và phần trăm: Tính tỉ số, tính phần trăm, ứng dụng tỉ số và phần trăm vào giải quyết bài toán thực tế.
      5. Hình học: Các khái niệm cơ bản về hình học, tính diện tích và chu vi của các hình đơn giản.

      Hướng dẫn giải chi tiết một số bài toán tiêu biểu

      Dưới đây là hướng dẫn giải chi tiết một số bài toán thường gặp trong đề thi học kì 2 Toán 6 - Đề số 6, chương trình Chân trời sáng tạo:

      Bài toán 1: Tính giá trị của biểu thức

      Ví dụ: Tính giá trị của biểu thức: A = (-3) + 5 - (-2) + 7

      Lời giải:

      A = (-3) + 5 - (-2) + 7 = (-3) + 5 + 2 + 7 = 2 + 2 + 7 = 4 + 7 = 11

      Bài toán 2: Giải phương trình

      Ví dụ: Giải phương trình: x + 5 = 12

      Lời giải:

      x + 5 = 12

      x = 12 - 5

      x = 7

      Bài toán 3: Tính diện tích hình chữ nhật

      Ví dụ: Một hình chữ nhật có chiều dài 8cm và chiều rộng 5cm. Tính diện tích của hình chữ nhật đó.

      Lời giải:

      Diện tích hình chữ nhật = chiều dài x chiều rộng = 8cm x 5cm = 40cm2

      Mẹo làm bài thi hiệu quả

      Để đạt kết quả tốt trong kỳ thi học kì 2 Toán 6, các em cần lưu ý những điều sau:

      • Nắm vững kiến thức lý thuyết: Hiểu rõ các khái niệm, định nghĩa và tính chất toán học.
      • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.
      • Đọc kỹ đề bài: Hiểu rõ yêu cầu của đề bài trước khi bắt đầu giải.
      • Trình bày lời giải rõ ràng: Viết lời giải một cách logic và dễ hiểu.
      • Kiểm tra lại bài làm: Sau khi làm xong bài, hãy kiểm tra lại để đảm bảo không có sai sót.

      Tài liệu ôn thi hữu ích

      Ngoài đề thi học kì 2 Toán 6 - Đề số 6, chương trình Chân trời sáng tạo, các em có thể tham khảo thêm các tài liệu ôn thi sau:

      • Sách giáo khoa Toán 6
      • Sách bài tập Toán 6
      • Các đề thi thử Toán 6
      • Các trang web học toán online

      Kết luận

      Đề thi học kì 2 Toán 6 - Đề số 6, chương trình Chân trời sáng tạo, là một cơ hội tốt để các em kiểm tra và đánh giá kiến thức đã học. Hãy ôn tập kỹ lưỡng và tự tin làm bài để đạt kết quả tốt nhất!

      Tài liệu, đề thi và đáp án Toán 6