Chào mừng các em học sinh đến với đề thi học kì 2 môn Toán lớp 6, đề số 7, chương trình Chân trời sáng tạo. Đề thi này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong học kì.
Giaitoan.edu.vn cung cấp đề thi kèm đáp án chi tiết, giúp các em tự học và kiểm tra kết quả một cách hiệu quả.
Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.
Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.
Câu 1: Hình thang cân có bao nhiêu tâm đối xứng?
A. 0 B. 1 C. 2 D. 3
Câu 2: Số 60,986 làm tròn đến chữ số hàng đơn vị là:
A. 61 B. 60 C. 60,9 D. 60,99
Câu 3: Cho đoạn thẳng AB dài 50cm, đoạn thẳng MN dài 15 dm. Tính tỉ số độ dài của đoạn thẳng AB và đoạn thẳng MN.
A. \(\dfrac{{50}}{{15}}\) B. \(\dfrac{{15}}{{50}}\) C. \(\dfrac{1}{3}\) D. 3
Câu 4: Cho hình vẽ, khẳng định nào dưới đây đúng?
A. A là trung điểm của BC B. F là trung điểm của BC
C. F là trung điểm của GH D. B là trung điểm của GC
Phần II. Tự luận (8 điểm):
Bài 1 (1,5 điểm) Thực hiện phép tính:
a) \(\dfrac{{ - 6}}{{21}} + \dfrac{{34}}{{21}}\) b) \( - 3,5 + 4,6 + 3,5 + \left( { - 1,6} \right)\) c) \(\dfrac{5}{{11}}.\dfrac{{18}}{{29}} - \dfrac{5}{{11}}.\dfrac{8}{{29}} + \dfrac{5}{{11}}.\dfrac{{19}}{{29}}\)
Bài 2 (1,5 điểm) Tìm x biết:
a) \(\dfrac{3}{7} + x = \dfrac{4}{5}\) b) \(\dfrac{x}{6} - \dfrac{1}{2} = \dfrac{2}{3}\) c) \(\left( {3x - 1} \right)\left( {\dfrac{{ - 1}}{2}x + 5} \right) = 0\)
Bài 3 (1 điểm) Tung hai đồng xu cân đối 50 lần, bạn An được kết quả dưới đây, trong đó bạn quên không điền thống kê số lần cả hai đồng xu cùng xuất hiện mặt ngửa:
Sự kiện | Hai đồng ngửa | Một đồng ngửa, một đồng sấp | Hai đồng sấp |
Số lần | ? | 26 | 14 |
a) Tính xác suất thực nghiệm của sự kiện xuất hiện hai đồng xu cùng ngửa.
b) Tính số lần cả hai đồng xu cùng xuất hiện mặt ngửa, từ đó tính xác suất thực nghiệm của sự kiện hai đồng xu cùng ngửa.
Bài 4 (1,5 điểm) Mẹ mua cho An một hộp sữa tươi loại 1 lít. Ngày đầu An uống 0,25 lít, ngày tiếp theo An uống tiếp 0,3 lít.
a) Hỏi sau hai ngày An uống bao nhiêu lít sữa?
b) Tính tỉ số % lượng sữa tươi An đã uống của ngày thứ hai so với ngày thứ nhất?
Bài 5 (2 điểm) Vẽ hình theo diễn đạt sau:
- Vẽ tia Ox, lấy điểm A nằm trên tia Ox sao cho OA = 6cm.
- Vẽ điểm I là trung điểm của đoạn OA.
a) Kể tên hai tia trùng nhau gốc I và hai tia đối nhau gốc I.
b) Tính độ dài đoạn OI và IA
Bài 6 (0,5 điểm) Tìm \(x,y \in \mathbb{Z}\)biết: \(\left( {x - 1} \right).\left( {y + 2} \right) = 11.\)
Phần I: Trắc nghiệm
1. A | 2. B | 3. C | 4. B |
Câu 1
Phương pháp:
Sử dụng định nghĩa tâm đối xứng
Cách giải:
- Hình thang cân không có tâm đối xứng.
Chọn A.
Câu 2
Phương pháp:
So sánh chữ số hàng phần mười với 5. Nếu chữ số đó bé hơn 5 thì làm tròn xuống, còn lại thì làm tròn lên.
Cách giải:
Số 60,986 làm tròn đến chữ số hàng đơn vị là: 61.
Chọn A.
Câu 3
Phương pháp:
Viết phân số có tử là độ dài đoạn AB, mẫu số là độ dài đoạn MN. Rút gọn phân số đó.
Chú ý: Đưa về cùng đơn vị đo.
Cách giải:
Đoạn thẳng AB dài 50cm hay 5dm.
Đoạn thẳng MN dài 15 dm.
Vậy tỉ số độ dài của đoạn thẳng AB và đoạn thẳng MN là: \(\dfrac{5}{{15}} = \dfrac{1}{3}\).
Chọn C.
Câu 4
Phương pháp:
I là trung điểm của AB nếu I nằm giữa hai điểm A, B và IA = IB.
Cách giải:
F là trung điểm của BC.
Chọn B.
Phần II: Tự luận
Bài 1
Phương pháp:
a) Thực hiện cộng hai phân số cùng mẫu số.
b) Nhóm các số hạng có phần thập phân giống nhau, sau đó thực hiện tính.
c) Sử dụng tính chất phân phối của phép nhân và phép cộng.
Cách giải:
a) \(\dfrac{{ - 6}}{{21}} + \dfrac{{34}}{{21}} = \dfrac{{ - 6 + 34}}{{21}} = \dfrac{{28}}{{21}} = \dfrac{4}{3}\) b) \(\begin{array}{l}\,\,\,\, - 3,5 + 4,6 + 3,5 + \left( { - 1,6} \right)\\ = \left( { - 3,5 + 3,5} \right) + \left( {4,6 + \left( { - 1,6} \right)} \right)\\ = 0 + 3\\ = 3\end{array}\) | c) \(\begin{array}{l}\,\,\,\dfrac{5}{{11}}.\dfrac{{18}}{{29}} - \dfrac{5}{{11}}.\dfrac{8}{{29}} + \dfrac{5}{{11}}.\dfrac{{19}}{{29}}\\ = \dfrac{5}{{11}}.\left( {\dfrac{{18}}{{29}} - \dfrac{8}{{29}} + \dfrac{{19}}{{29}}} \right)\\ = \dfrac{5}{{11}}.1\\ = \dfrac{5}{{11}}\end{array}\) |
Câu 2
Phương pháp:
Thực hiện bài toán thứ tự thực hiện phép tính ngược để tìm x.
Cách giải:
a) \(\begin{array}{l}\dfrac{3}{7} + x = \dfrac{4}{5}\\\,\,\,\,\,\,\,\,\,x = \dfrac{4}{5} - \dfrac{3}{7}\\\,\,\,\,\,\,\,\,\,x = \dfrac{{13}}{{35}}\end{array}\) Vậy \(x = \dfrac{{13}}{{35}}\) | b) \(\begin{array}{l}\dfrac{x}{6} - \dfrac{1}{2} = \dfrac{2}{3}\\\dfrac{x}{6}\,\,\,\,\,\,\,\,\,\, = \dfrac{2}{3} + \dfrac{1}{2}\,\\\dfrac{x}{6}\,\,\,\,\,\,\,\,\,\, = \dfrac{5}{6}\,\\x\,\,\,\,\,\,\,\,\,\,\, = 5\end{array}\) Vậy \(x = 5\) | c) \(\left( {3x - 1} \right)\left( {\dfrac{{ - 1}}{2}x + 5} \right) = 0\) TH1: \(\begin{array}{l}3x - 1 = 0\\x\,\,\,\,\,\,\,\,\,\,\, = 1\\x\,\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{3}\end{array}\) TH2: \(\begin{array}{l}\dfrac{{ - 1}}{2}x + 5 = 0\\\dfrac{{ - 1}}{2}x\,\,\,\,\,\,\,\,\,\,\, = - 5\\\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\,\, = - 5:\dfrac{{ - 1}}{2}\\\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\,\, = 10\end{array}\)1 Vậy \(x = \dfrac{1}{3}\) hoặc \(x = 10\) |
Câu 3
Phương pháp:
a) Xác suất thực nghiệm của sự kiện = Số lần xảy ra sự kiện : Số lần thực hiện
b) Tính số lần cả hai đồng xu cùng xuất hiện mặt ngửa, sau đó tính xác suất của sự kiện xuất hiện hai đồng ngửa.
Cách giải:
a) Xác suất thực nghiệm của sự kiện xuất hiện một đồng ngửa, một đồng sấp là: \(\dfrac{{26}}{{50}} = \dfrac{{13}}{{25}}\)
b) Số lần xuất hiện hai đồng ngửa là: \(50 - 26 - 14 = 10\)(lần)
Xác suất thực nghiệm của sự kiện xuất hiện hai đồng xu cùng ngửa là: \(\dfrac{{10}}{{50}} = \dfrac{1}{5}\)
Câu 4
Phương pháp:
a) Tính tổng số lít sữa An uống sau hai ngày.
b) Tính tỉ số phần trăm: Lấy số thứ hai chia cho số thứ nhất rồi nhân với 100.
Cách giải:
a) Sau 2 ngày An uống số lít sữa là: \(0,25 + 0,3 = 0,55\)(lít)
b) Tỉ số phần trăm lượng sữa tươi An đã uống ngày 1 so với ngày thứ nhất là: \(0,3:0,25 = 1,2 = 120\% \)
Câu 5
Phương pháp:
Sử dụng tính chất trung điểm của đoạn thẳng.
Cách giải:
a) Hai tia trùng nhau gốc I là: IA và Ix
Hai tia đối nhau gốc I là: IA và IO
b) Vì I là trung điểm của đoạn OA nên \(OI = IA = \dfrac{1}{2}OA = \dfrac{1}{2}.6 = 3\left( {cm} \right)\)
Câu 6
Phương pháp:
Tìm hai số nguyên có tích là 11. Lần lượt xét các trường hợp của \(x - 1\) và \(y + 2\).
Cách giải:
Vì \(11 = 11.1 = \left( { - 11} \right).\left( { - 1} \right)\)nên ta có bảng sau:
\(x - 1\) | - 11 | - 1 | 1 | 11 |
\(y + 2\) | - 1 | - 11 | 11 | 1 |
\(x\) | - 10 | 0 | 2 | 12 |
\(y\) | - 3 | - 13 | 9 | - 1 |
Vậy \(\left( {x;y} \right) = \left( { - 10; - 3} \right)\); \(\left( {x;y} \right) = \left( {0; - 13} \right)\); \(\left( {x;y} \right) = \left( {2;9} \right)\) hoặc \(\left( {x;y} \right) = \left( {12; - 1} \right)\).
Tải về
Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.
Câu 1: Hình thang cân có bao nhiêu tâm đối xứng?
A. 0 B. 1 C. 2 D. 3
Câu 2: Số 60,986 làm tròn đến chữ số hàng đơn vị là:
A. 61 B. 60 C. 60,9 D. 60,99
Câu 3: Cho đoạn thẳng AB dài 50cm, đoạn thẳng MN dài 15 dm. Tính tỉ số độ dài của đoạn thẳng AB và đoạn thẳng MN.
A. \(\dfrac{{50}}{{15}}\) B. \(\dfrac{{15}}{{50}}\) C. \(\dfrac{1}{3}\) D. 3
Câu 4: Cho hình vẽ, khẳng định nào dưới đây đúng?
A. A là trung điểm của BC B. F là trung điểm của BC
C. F là trung điểm của GH D. B là trung điểm của GC
Phần II. Tự luận (8 điểm):
Bài 1 (1,5 điểm) Thực hiện phép tính:
a) \(\dfrac{{ - 6}}{{21}} + \dfrac{{34}}{{21}}\) b) \( - 3,5 + 4,6 + 3,5 + \left( { - 1,6} \right)\) c) \(\dfrac{5}{{11}}.\dfrac{{18}}{{29}} - \dfrac{5}{{11}}.\dfrac{8}{{29}} + \dfrac{5}{{11}}.\dfrac{{19}}{{29}}\)
Bài 2 (1,5 điểm) Tìm x biết:
a) \(\dfrac{3}{7} + x = \dfrac{4}{5}\) b) \(\dfrac{x}{6} - \dfrac{1}{2} = \dfrac{2}{3}\) c) \(\left( {3x - 1} \right)\left( {\dfrac{{ - 1}}{2}x + 5} \right) = 0\)
Bài 3 (1 điểm) Tung hai đồng xu cân đối 50 lần, bạn An được kết quả dưới đây, trong đó bạn quên không điền thống kê số lần cả hai đồng xu cùng xuất hiện mặt ngửa:
Sự kiện | Hai đồng ngửa | Một đồng ngửa, một đồng sấp | Hai đồng sấp |
Số lần | ? | 26 | 14 |
a) Tính xác suất thực nghiệm của sự kiện xuất hiện hai đồng xu cùng ngửa.
b) Tính số lần cả hai đồng xu cùng xuất hiện mặt ngửa, từ đó tính xác suất thực nghiệm của sự kiện hai đồng xu cùng ngửa.
Bài 4 (1,5 điểm) Mẹ mua cho An một hộp sữa tươi loại 1 lít. Ngày đầu An uống 0,25 lít, ngày tiếp theo An uống tiếp 0,3 lít.
a) Hỏi sau hai ngày An uống bao nhiêu lít sữa?
b) Tính tỉ số % lượng sữa tươi An đã uống của ngày thứ hai so với ngày thứ nhất?
Bài 5 (2 điểm) Vẽ hình theo diễn đạt sau:
- Vẽ tia Ox, lấy điểm A nằm trên tia Ox sao cho OA = 6cm.
- Vẽ điểm I là trung điểm của đoạn OA.
a) Kể tên hai tia trùng nhau gốc I và hai tia đối nhau gốc I.
b) Tính độ dài đoạn OI và IA
Bài 6 (0,5 điểm) Tìm \(x,y \in \mathbb{Z}\)biết: \(\left( {x - 1} \right).\left( {y + 2} \right) = 11.\)
Phần I: Trắc nghiệm
1. A | 2. B | 3. C | 4. B |
Câu 1
Phương pháp:
Sử dụng định nghĩa tâm đối xứng
Cách giải:
- Hình thang cân không có tâm đối xứng.
Chọn A.
Câu 2
Phương pháp:
So sánh chữ số hàng phần mười với 5. Nếu chữ số đó bé hơn 5 thì làm tròn xuống, còn lại thì làm tròn lên.
Cách giải:
Số 60,986 làm tròn đến chữ số hàng đơn vị là: 61.
Chọn A.
Câu 3
Phương pháp:
Viết phân số có tử là độ dài đoạn AB, mẫu số là độ dài đoạn MN. Rút gọn phân số đó.
Chú ý: Đưa về cùng đơn vị đo.
Cách giải:
Đoạn thẳng AB dài 50cm hay 5dm.
Đoạn thẳng MN dài 15 dm.
Vậy tỉ số độ dài của đoạn thẳng AB và đoạn thẳng MN là: \(\dfrac{5}{{15}} = \dfrac{1}{3}\).
Chọn C.
Câu 4
Phương pháp:
I là trung điểm của AB nếu I nằm giữa hai điểm A, B và IA = IB.
Cách giải:
F là trung điểm của BC.
Chọn B.
Phần II: Tự luận
Bài 1
Phương pháp:
a) Thực hiện cộng hai phân số cùng mẫu số.
b) Nhóm các số hạng có phần thập phân giống nhau, sau đó thực hiện tính.
c) Sử dụng tính chất phân phối của phép nhân và phép cộng.
Cách giải:
a) \(\dfrac{{ - 6}}{{21}} + \dfrac{{34}}{{21}} = \dfrac{{ - 6 + 34}}{{21}} = \dfrac{{28}}{{21}} = \dfrac{4}{3}\) b) \(\begin{array}{l}\,\,\,\, - 3,5 + 4,6 + 3,5 + \left( { - 1,6} \right)\\ = \left( { - 3,5 + 3,5} \right) + \left( {4,6 + \left( { - 1,6} \right)} \right)\\ = 0 + 3\\ = 3\end{array}\) | c) \(\begin{array}{l}\,\,\,\dfrac{5}{{11}}.\dfrac{{18}}{{29}} - \dfrac{5}{{11}}.\dfrac{8}{{29}} + \dfrac{5}{{11}}.\dfrac{{19}}{{29}}\\ = \dfrac{5}{{11}}.\left( {\dfrac{{18}}{{29}} - \dfrac{8}{{29}} + \dfrac{{19}}{{29}}} \right)\\ = \dfrac{5}{{11}}.1\\ = \dfrac{5}{{11}}\end{array}\) |
Câu 2
Phương pháp:
Thực hiện bài toán thứ tự thực hiện phép tính ngược để tìm x.
Cách giải:
a) \(\begin{array}{l}\dfrac{3}{7} + x = \dfrac{4}{5}\\\,\,\,\,\,\,\,\,\,x = \dfrac{4}{5} - \dfrac{3}{7}\\\,\,\,\,\,\,\,\,\,x = \dfrac{{13}}{{35}}\end{array}\) Vậy \(x = \dfrac{{13}}{{35}}\) | b) \(\begin{array}{l}\dfrac{x}{6} - \dfrac{1}{2} = \dfrac{2}{3}\\\dfrac{x}{6}\,\,\,\,\,\,\,\,\,\, = \dfrac{2}{3} + \dfrac{1}{2}\,\\\dfrac{x}{6}\,\,\,\,\,\,\,\,\,\, = \dfrac{5}{6}\,\\x\,\,\,\,\,\,\,\,\,\,\, = 5\end{array}\) Vậy \(x = 5\) | c) \(\left( {3x - 1} \right)\left( {\dfrac{{ - 1}}{2}x + 5} \right) = 0\) TH1: \(\begin{array}{l}3x - 1 = 0\\x\,\,\,\,\,\,\,\,\,\,\, = 1\\x\,\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{3}\end{array}\) TH2: \(\begin{array}{l}\dfrac{{ - 1}}{2}x + 5 = 0\\\dfrac{{ - 1}}{2}x\,\,\,\,\,\,\,\,\,\,\, = - 5\\\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\,\, = - 5:\dfrac{{ - 1}}{2}\\\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\,\, = 10\end{array}\)1 Vậy \(x = \dfrac{1}{3}\) hoặc \(x = 10\) |
Câu 3
Phương pháp:
a) Xác suất thực nghiệm của sự kiện = Số lần xảy ra sự kiện : Số lần thực hiện
b) Tính số lần cả hai đồng xu cùng xuất hiện mặt ngửa, sau đó tính xác suất của sự kiện xuất hiện hai đồng ngửa.
Cách giải:
a) Xác suất thực nghiệm của sự kiện xuất hiện một đồng ngửa, một đồng sấp là: \(\dfrac{{26}}{{50}} = \dfrac{{13}}{{25}}\)
b) Số lần xuất hiện hai đồng ngửa là: \(50 - 26 - 14 = 10\)(lần)
Xác suất thực nghiệm của sự kiện xuất hiện hai đồng xu cùng ngửa là: \(\dfrac{{10}}{{50}} = \dfrac{1}{5}\)
Câu 4
Phương pháp:
a) Tính tổng số lít sữa An uống sau hai ngày.
b) Tính tỉ số phần trăm: Lấy số thứ hai chia cho số thứ nhất rồi nhân với 100.
Cách giải:
a) Sau 2 ngày An uống số lít sữa là: \(0,25 + 0,3 = 0,55\)(lít)
b) Tỉ số phần trăm lượng sữa tươi An đã uống ngày 1 so với ngày thứ nhất là: \(0,3:0,25 = 1,2 = 120\% \)
Câu 5
Phương pháp:
Sử dụng tính chất trung điểm của đoạn thẳng.
Cách giải:
a) Hai tia trùng nhau gốc I là: IA và Ix
Hai tia đối nhau gốc I là: IA và IO
b) Vì I là trung điểm của đoạn OA nên \(OI = IA = \dfrac{1}{2}OA = \dfrac{1}{2}.6 = 3\left( {cm} \right)\)
Câu 6
Phương pháp:
Tìm hai số nguyên có tích là 11. Lần lượt xét các trường hợp của \(x - 1\) và \(y + 2\).
Cách giải:
Vì \(11 = 11.1 = \left( { - 11} \right).\left( { - 1} \right)\)nên ta có bảng sau:
\(x - 1\) | - 11 | - 1 | 1 | 11 |
\(y + 2\) | - 1 | - 11 | 11 | 1 |
\(x\) | - 10 | 0 | 2 | 12 |
\(y\) | - 3 | - 13 | 9 | - 1 |
Vậy \(\left( {x;y} \right) = \left( { - 10; - 3} \right)\); \(\left( {x;y} \right) = \left( {0; - 13} \right)\); \(\left( {x;y} \right) = \left( {2;9} \right)\) hoặc \(\left( {x;y} \right) = \left( {12; - 1} \right)\).
Đề thi học kì 2 Toán 6 - Đề số 7 chương trình Chân trời sáng tạo là một bài kiểm tra quan trọng giúp học sinh đánh giá mức độ nắm vững kiến thức đã học trong suốt học kì. Đề thi bao gồm các dạng bài tập khác nhau, từ cơ bản đến nâng cao, đòi hỏi học sinh phải có khả năng vận dụng linh hoạt các kiến thức đã học để giải quyết vấn đề.
Thông thường, đề thi học kì 2 Toán 6 - Chân trời sáng tạo sẽ bao gồm các phần sau:
Đề thi học kì 2 Toán 6 - Đề số 7 - Chân trời sáng tạo thường tập trung vào các chủ đề sau:
Dưới đây là hướng dẫn giải một số dạng bài tập thường gặp trong đề thi học kì 2 Toán 6 - Đề số 7 - Chân trời sáng tạo:
Để giải các bài toán về số tự nhiên, học sinh cần nắm vững các phép toán cộng, trừ, nhân, chia và tính chất chia hết. Ví dụ:
Bài toán: Tìm tất cả các ước của 12.
Lời giải: Các ước của 12 là: 1, 2, 3, 4, 6, 12.
Để giải các bài toán về phân số, học sinh cần nắm vững khái niệm phân số, so sánh phân số và các phép toán với phân số. Ví dụ:
Bài toán: Tính: 1/2 + 1/3
Lời giải: 1/2 + 1/3 = 3/6 + 2/6 = 5/6
Để giải các bài toán về số thập phân, học sinh cần nắm vững khái niệm số thập phân, so sánh số thập phân và các phép toán với số thập phân. Ví dụ:
Bài toán: Tính: 2,5 + 3,7
Lời giải: 2,5 + 3,7 = 6,2
Để đạt kết quả tốt trong kỳ thi học kì 2 Toán 6 - Đề số 7 - Chân trời sáng tạo, học sinh cần:
Giaitoan.edu.vn là một nền tảng học toán online uy tín, cung cấp đầy đủ các tài liệu học tập, bài tập và đề thi Toán 6 chương trình Chân trời sáng tạo. Với đội ngũ giáo viên giàu kinh nghiệm và phương pháp giảng dạy hiện đại, Giaitoan.edu.vn sẽ giúp các em học sinh học toán một cách hiệu quả và thú vị.
Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi học kì 2 Toán 6 - Đề số 7 - Chân trời sáng tạo!