Logo Header
  1. Môn Toán
  2. Đề thi học kì 2 Toán 6 - Đề số 3 - Chân trời sáng tạo

Đề thi học kì 2 Toán 6 - Đề số 3 - Chân trời sáng tạo

Đề thi học kì 2 Toán 6 - Đề số 3 - Chân trời sáng tạo

Chào mừng các em học sinh đến với đề thi học kì 2 môn Toán lớp 6, đề số 3, chương trình Chân trời sáng tạo. Đề thi này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong học kì.

Giaitoan.edu.vn cung cấp đề thi kèm đáp án chi tiết, giúp các em tự học và kiểm tra kết quả một cách hiệu quả.

Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Đề bài

    Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

    Câu 1:Cho đoạn thẳng AB = 6 cm. Điểm K nằm giữa AB, biết KA = 4 cm thì đoạn thẳng KB bằng:

    A. 10 cm B. 6 cm C. 4 cm D. 2 cm

    Câu 2:Bạn Nam có một cái hộp đựng 1 chiếc bút xanh, 2 chiếc bút đỏ và 1 chiếc bút đen. Nam lấy ngẫu nhiên cùng lúc 3 chiếc bút trong hộp. Kết quả nào sau đây chắc chắn sẽ xảy ra?

    A. Luôn lấy được một chiếc bút đỏ. B. Luôn lấy được một chiếc bút xanh.

    C. Luôn lấy được một chiếc bút đen. D. Luôn lấy được 3 chiếc, ba màu khác nhau.

    Câu 3: Hình nào sau đây không có trục đối xứng?

    A. Hình chữ nhật B. Hình ngôi sao vàng 5 cánh

    C. Hình thoi D. Hình thang có hai cạnh bên không bằng nhau

    Câu 4:Cho \(\dfrac{3}{x} = \dfrac{y}{{12}} = \dfrac{1}{4}\) thì giá trị của \(x\) và \(y\) là:

    A. \(x = 4;y = 9\) B. \(x = - 4;y = - 9\) C. \(x = 12;y = 3\) D. \(x = - 12;y = - 3\)

    Phần II. Tự luận (8 điểm):

    Bài 1: (2 điểm) Thực hiện phép tính (Tính hợp lý nếu có thể)

    a) \(2\dfrac{1}{9} - \dfrac{1}{3}:\dfrac{3}{7}\) b) \(\dfrac{7}{{19}}.\dfrac{8}{{11}} + \dfrac{3}{{11}}.\dfrac{7}{{19}} + \dfrac{{ - 12}}{{19}}\)

    c) \(20\dfrac{8}{{23}} - \left( {5\dfrac{7}{{32}} + 14\dfrac{8}{{23}}} \right)\) d) \(75\% {\rm{\;}} - 1\dfrac{1}{2} + 0,5:\dfrac{5}{{12}} - {\left( { - \dfrac{1}{2}} \right)^2}\)

    Bài 2:(1,5 điểm)Tìm x biết:

    \(a)\,\,x - \dfrac{1}{3} = \dfrac{5}{{14}} \cdot \dfrac{{ - 7}}{6}\,\,\) \(b)\,\,\dfrac{3}{4} + \dfrac{1}{4} \cdot x = 0,2\) \(c)\,\,\dfrac{1}{{12}}.{x^2} = 1\dfrac{1}{3}\)

    Bài 3 (1,5 điểm) Một bác nông dân vừa thu hoạch 30,8 kg cà chua và 12 kg đậu đũa.

    a) Bác đem số cà chua đó đi bán hết, giá mỗi kg cà chua là 15 000 đồng. Hỏi bác nông dân nhận được bao nhiêu tiền?

    b) Số đậu đũa bác vừa thu hoạch chỉ bằng \(\dfrac{2}{5}\) số đậu đũa có trong vườn. Nếu bác thu hoạch hết tất cả thì thu được bao nhiêu kg đậu đũa?

    Bài 4: (2,5 điểm) Trên tia \(Ox\) lấy hai điểm \(A,{\kern 1pt} {\kern 1pt} B\) sao cho \(OA = 5cm,{\kern 1pt} {\kern 1pt} OB = 8cm\).

    a) Trong ba điểm \(O,{\kern 1pt} {\kern 1pt} A,{\kern 1pt} {\kern 1pt} B\) điểm nào nằm giữa hai điểm còn lại?

    b) Tính độ dài đoạn thẳng \(AB\).

    c) Điểm \(A\) có phải là trung điểm của đoạn thẳng \(OB\) không? Vì sao?

    d) Gọi \(M\) là trung điểm của \(OA\), \(N\) là trung điểm của \(AB\). Tính độ dài đoạn thẳng \(MN\)?

    Bài 5:(0,5 điểm)Tính nhanh : \(S = 1 + \dfrac{1}{{1 + 2}} + \dfrac{1}{{1 + 2 + 3}} + \dfrac{1}{{1 + 2 + 3 + 4}} + ... + \dfrac{1}{{1 + 2 + 3 + 4 + ... + 8}}\).

    Lời giải

      Phần I: Trắc nghiệm

      1. D

      2. A

      3. D

      4. C

      Câu 1

      Phương pháp:

      Dựa vào tính chất điểm nằm giữa hai điểm: Khi M nằm giữa A và B thì \(AM + MB = AB\)

      Cách giải:

      Vì K nằm giữa A và B nên ta có: \(AK + KB = AB\)

      Hay \(4 + KB = 6\)

      Suy ra: \(KB = 6 - 4 = 2\left( {cm} \right)\)

      Chọn D.

      Câu 2

      Phương pháp:

      Liệt kê các trường hợp có thể xảy ra

      Cách giải:

      Lấy ngẫu nhiên \(3\) chiếc bút có thể đưa ra các kết quả sau:

      + Trường hợp 1: \(1\) xanh, \(1\) đỏ, \(1\) đen.

      + Trường hợp 2: \(1\) xanh, \(2\) đỏ.

      + Trường hợp 3: \(2\) đỏ, \(1\) đen.

      Ta thấy trong cả 3 trường hợp trên ta luôn lấy được ít nhất \(1\) chiếc bút màu đỏ.

      Chọn A.

      Câu 3

      Phương pháp:

      Vẽ các hình đề bài cho và tìm trục đối xứng của mỗi hình.

      Cách giải:

      Hình chữ nhật, hình thoi, hình sao vàng 5 cánh đều là những hình có trục đối xứng.

      Hình thang cân có trục đối xứng, còn hình thang có hai cạnh bên không bằng nhau sẽ không có trục đối xứng.

      ChọnD.

      Câu 4

      Phương pháp:

      Quy đồng mẫu số để tìm y, quy đồng tử số để tìm x.

      Cách giải:

      Ta có: \(\dfrac{3}{x} = \dfrac{y}{{12}} = \dfrac{3}{{12}}\)

      Vậy: \(x = 12;y = 3\)

      Chọn C.

      Phần II: Tự luận

      Bài 1

      Phương pháp

      Áp dụng các quy tắc :

      - Thứ tự thực hiện các phép tính đối với biểu thức không có dấu ngoặc: Lũy thừa \( \to \) Nhân và chia \( \to \) Cộng và trừ.

      - Thứ tự thực hiện các phép tính đối với biểu thức có dấu ngoặc: \(({\kern 1pt} {\kern 1pt} ){\kern 1pt} {\kern 1pt} \to [{\kern 1pt} {\kern 1pt} ]{\kern 1pt} {\kern 1pt} \to \{ {\kern 1pt} {\kern 1pt} \} \)

      Cách giải:

      a) \(2\dfrac{1}{9} - \dfrac{1}{3}:\dfrac{3}{7}\)

      \(\begin{array}{l} = \dfrac{{19}}{9} - \dfrac{1}{3}.\dfrac{7}{3}\\ = \dfrac{{19}}{9} - \dfrac{7}{9}\\ = \dfrac{{12}}{9} = \dfrac{4}{3}\end{array}\)

      b) \(\dfrac{7}{{19}}.\dfrac{8}{{11}} + \dfrac{3}{{11}}.\dfrac{7}{{19}} + \dfrac{{ - 12}}{{19}}\)

      \(\begin{array}{l} = \dfrac{7}{{19}}.\left( {\dfrac{8}{{11}} + \dfrac{3}{{11}}} \right) + \dfrac{{ - 12}}{{19}}\\ = \dfrac{7}{{19}}.\dfrac{{11}}{{11}} + \dfrac{{ - 12}}{{19}}\\ = \dfrac{7}{{19}} + \dfrac{{ - 12}}{{19}} = \dfrac{{ - 5}}{{19}}\end{array}\)

      c) \(20\dfrac{8}{{23}} - \left( {5\dfrac{7}{{32}} + 14\dfrac{8}{{23}}} \right)\)

      \(\begin{array}{l} = 20 + \dfrac{8}{{23}} - \left( {5 + \dfrac{7}{{32}} + 14 + \dfrac{8}{{23}}} \right)\\ = 20 + \dfrac{8}{{23}} - 5 - \dfrac{7}{{32}} - 14 - \dfrac{8}{{23}}\\ = \left( {20 - 5 - 14} \right) + \left( {\dfrac{8}{{23}} - \dfrac{8}{{23}}} \right) - \dfrac{7}{{32}}\\ = 1 + 0 - \dfrac{7}{{32}}\\ = 1 - \dfrac{7}{{32}}\\ = \dfrac{{32}}{{32}} - \dfrac{7}{{32}}\\ = \dfrac{{25}}{{32}}\end{array}\)

      d) \(75\% - 1\dfrac{1}{2} + 0,5:\dfrac{5}{{12}} - {\left( { - \dfrac{1}{2}} \right)^2}\)

      \(\begin{array}{l} = \dfrac{3}{4} - \dfrac{3}{2} + \dfrac{1}{2}.\dfrac{{12}}{5} - \dfrac{1}{4}\\ = \dfrac{3}{4} - \dfrac{3}{2} + \dfrac{6}{5} - \dfrac{1}{4}\\ = \dfrac{3}{4} - \dfrac{1}{4} - \dfrac{3}{2} + \dfrac{6}{5}\\ = \dfrac{2}{4} - \dfrac{3}{2} + \dfrac{6}{5}\\ = \dfrac{1}{2} - \dfrac{3}{2} + \dfrac{6}{5}\\ = \dfrac{{ - 2}}{2} + \dfrac{6}{5}\\ = - 1 + \dfrac{6}{5}\\ = \dfrac{{ - 5}}{5} + \dfrac{6}{5} = \dfrac{1}{5}\end{array}\)

      Bài 2:

      Phương pháp: Áp dụng quy tắc chuyển vế: Khi chuyển một số hạng từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng đó: dấu “+” đổi thành dấu “–” và dấu “–” thành dấu “+”.

      Cách giải:

      \(\begin{array}{l}a)\,\,x - \dfrac{1}{3} = \dfrac{5}{{14}} \cdot \dfrac{{ - 7}}{6}\,\\\,\,\,\,\,\,x - \dfrac{1}{3} = \dfrac{{ - 5}}{{12}}\,\,\,\\\,\,\,\,\,\,x = \dfrac{{ - 5}}{{12}}\, + \dfrac{1}{3}\,\\\,\,\,\,\,\,x = \dfrac{{ - 1}}{{12}}\,\end{array}\)

      Vậy \(x = \dfrac{{ - 1}}{{12}}\)

      \(\begin{array}{l}\,b)\,\,\dfrac{3}{4} + \dfrac{1}{4} \cdot x = 0,2\,\\\,\,\,\,\,\,\,\dfrac{3}{4} + \dfrac{1}{4} \cdot x = \dfrac{1}{5}\,\,\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{1}{4} \cdot x = \dfrac{1}{5} - \dfrac{3}{4}\,\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{1}{4} \cdot x = \dfrac{{ - 11}}{{20}}\,\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \,\,\dfrac{{ - 11}}{{20}}:\dfrac{1}{4}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \,\dfrac{{ - 11}}{5}\end{array}\)

      Vậy \(x = \dfrac{{ - 11}}{5}\)

      \(\begin{array}{l}c)\,\,\dfrac{1}{{12}}.{x^2} = 1\dfrac{1}{3}\\\,\dfrac{1}{{12}}.{x^2} = \dfrac{4}{3}\\{x^2} = \dfrac{4}{3}:\dfrac{1}{{12}}\\{x^2} = 16\\ \Rightarrow \,\left[ \begin{array}{l}x = 4\\x = - 4\end{array} \right.\end{array}\)

      Vậy \(x \in \left\{ {4; - 4} \right\}\)

      Bài 3

      Phương pháp:

      Phương pháp:

      Lấy giá tiền 1 kg cà chua nhân với khối lượng cà chua.

      Cách giải:

      Số tiền bác nông dân nhận được là: \(15000.30,8 = 462000\)(đồng)

      b) (VD):

      Phương pháp:

      Lấy khối lượng đậu đũa vừa thu hoạch chia cho \(\dfrac{2}{5}\).

      Cách giải:

      Nếu thu hoạch hết thì thu được số ki-lô-gam đậu đũa là: \(12:\dfrac{2}{5} = 30\)(kg)

      Bài 4

      Phương pháp

      Áp dụng tính chất trung điểm của mốt đoạn thẳng và công thức cộng đoạn thẳng.

      Cách giải:

      Đề thi học kì 2 Toán 6 - Đề số 3 - Chân trời sáng tạo 1 1

      a) Ta có: \(A\) và \(B\) cùng thuộc tia \(Ox\) và \(OA < OB{\kern 1pt} {\kern 1pt} \left( {5cm < 8cm} \right)\) nên \(A\) nằm giữa \(O\) và \(B\).

      b) Vì \(A\) nằm giữa \(O\) và \(B\) nên ta có:

      \(OB = OA + AB\)

      \(AB = OB - OA\)

      \(AB = 8cm - 5cm\)

      \(AB = 3cm\)

      c) Vì \(AB = 3cm\) và \(OA = 5cm\) suy ra \(AB \ne OA\) nên \(A\) không phải là trung điểm của \(OB\).

      Vì \(M\) là trung điểm của \(AO\) nên \(MA = \dfrac{{OA}}{2} = \dfrac{5}{2} = 2,5{\kern 1pt} {\kern 1pt} \left( {cm} \right)\)

      Vì \(N\) là trung điểm của \(AB\) nên \(NA = \dfrac{{AB}}{2} = \dfrac{3}{2} = 1,5{\kern 1pt} {\kern 1pt} \left( {cm} \right)\)

      Vì \(A\) nằm giữa \(O\) và \(B\) nên \(AO\) và \(AB\) là hai tia đối nhau.

      Mặt khác, \(M\) là trung điểm của \(OA\) và \(N\) là trung điểm của \(AB\) nên \(A\) nằm giữa \(M\) và \(N\).

      Do đó, ta có: \(MN = MA + AN = 2,5cm + 1,5cm = 4cm\)

      Vậy \(MN = 4cm\).

      Bài 5

      Phương pháp

      Đưa tổng đã cho về dạng: \(S = 1 + \dfrac{1}{3} + \dfrac{1}{6} + \dfrac{1}{{10}} + ... + \dfrac{1}{{36}}.\)

      Tính \(\dfrac{1}{2}S\) sau đó suy ra giá trị của biểu thức \(S.\) 

      Cách giải:

      \(\begin{array}{*{20}{l}}{S = 1 + \dfrac{1}{{1 + 2}} + \dfrac{1}{{1 + 2 + 3}} + \dfrac{1}{{1 + 2 + 3 + 4}} + ... + \dfrac{1}{{1 + 2 + 3 + 4 + ... + 8}}}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 1 + \dfrac{1}{3} + \dfrac{1}{6} + \dfrac{1}{{10}} + ... + \dfrac{1}{{36}}}\\{ \Rightarrow \dfrac{1}{2}.S = \dfrac{1}{2}\left( {1 + \dfrac{1}{3} + \dfrac{1}{6} + \dfrac{1}{{10}} + ... + \dfrac{1}{{36}}} \right)}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{{12}} + \dfrac{1}{{20}} + ... + \dfrac{1}{{72}}}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \dfrac{1}{{4.5}} + ... + \dfrac{1}{{8.9}}}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \left( {1 - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{4} - \dfrac{1}{5} + ... + \dfrac{1}{8} - \dfrac{1}{9}} \right)}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 1 - \dfrac{1}{9} = \dfrac{8}{9}}\\{ \Rightarrow \dfrac{1}{2}S = \dfrac{8}{9}}\\{ \Rightarrow S = \dfrac{8}{9}:\dfrac{1}{2} = \dfrac{{16}}{9}.}\end{array}\)

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải
      • Tải về

        Tải về đề thi và đáp án Tải về đề thi Tải về đáp án

      Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

      Câu 1:Cho đoạn thẳng AB = 6 cm. Điểm K nằm giữa AB, biết KA = 4 cm thì đoạn thẳng KB bằng:

      A. 10 cm B. 6 cm C. 4 cm D. 2 cm

      Câu 2:Bạn Nam có một cái hộp đựng 1 chiếc bút xanh, 2 chiếc bút đỏ và 1 chiếc bút đen. Nam lấy ngẫu nhiên cùng lúc 3 chiếc bút trong hộp. Kết quả nào sau đây chắc chắn sẽ xảy ra?

      A. Luôn lấy được một chiếc bút đỏ. B. Luôn lấy được một chiếc bút xanh.

      C. Luôn lấy được một chiếc bút đen. D. Luôn lấy được 3 chiếc, ba màu khác nhau.

      Câu 3: Hình nào sau đây không có trục đối xứng?

      A. Hình chữ nhật B. Hình ngôi sao vàng 5 cánh

      C. Hình thoi D. Hình thang có hai cạnh bên không bằng nhau

      Câu 4:Cho \(\dfrac{3}{x} = \dfrac{y}{{12}} = \dfrac{1}{4}\) thì giá trị của \(x\) và \(y\) là:

      A. \(x = 4;y = 9\) B. \(x = - 4;y = - 9\) C. \(x = 12;y = 3\) D. \(x = - 12;y = - 3\)

      Phần II. Tự luận (8 điểm):

      Bài 1: (2 điểm) Thực hiện phép tính (Tính hợp lý nếu có thể)

      a) \(2\dfrac{1}{9} - \dfrac{1}{3}:\dfrac{3}{7}\) b) \(\dfrac{7}{{19}}.\dfrac{8}{{11}} + \dfrac{3}{{11}}.\dfrac{7}{{19}} + \dfrac{{ - 12}}{{19}}\)

      c) \(20\dfrac{8}{{23}} - \left( {5\dfrac{7}{{32}} + 14\dfrac{8}{{23}}} \right)\) d) \(75\% {\rm{\;}} - 1\dfrac{1}{2} + 0,5:\dfrac{5}{{12}} - {\left( { - \dfrac{1}{2}} \right)^2}\)

      Bài 2:(1,5 điểm)Tìm x biết:

      \(a)\,\,x - \dfrac{1}{3} = \dfrac{5}{{14}} \cdot \dfrac{{ - 7}}{6}\,\,\) \(b)\,\,\dfrac{3}{4} + \dfrac{1}{4} \cdot x = 0,2\) \(c)\,\,\dfrac{1}{{12}}.{x^2} = 1\dfrac{1}{3}\)

      Bài 3 (1,5 điểm) Một bác nông dân vừa thu hoạch 30,8 kg cà chua và 12 kg đậu đũa.

      a) Bác đem số cà chua đó đi bán hết, giá mỗi kg cà chua là 15 000 đồng. Hỏi bác nông dân nhận được bao nhiêu tiền?

      b) Số đậu đũa bác vừa thu hoạch chỉ bằng \(\dfrac{2}{5}\) số đậu đũa có trong vườn. Nếu bác thu hoạch hết tất cả thì thu được bao nhiêu kg đậu đũa?

      Bài 4: (2,5 điểm) Trên tia \(Ox\) lấy hai điểm \(A,{\kern 1pt} {\kern 1pt} B\) sao cho \(OA = 5cm,{\kern 1pt} {\kern 1pt} OB = 8cm\).

      a) Trong ba điểm \(O,{\kern 1pt} {\kern 1pt} A,{\kern 1pt} {\kern 1pt} B\) điểm nào nằm giữa hai điểm còn lại?

      b) Tính độ dài đoạn thẳng \(AB\).

      c) Điểm \(A\) có phải là trung điểm của đoạn thẳng \(OB\) không? Vì sao?

      d) Gọi \(M\) là trung điểm của \(OA\), \(N\) là trung điểm của \(AB\). Tính độ dài đoạn thẳng \(MN\)?

      Bài 5:(0,5 điểm)Tính nhanh : \(S = 1 + \dfrac{1}{{1 + 2}} + \dfrac{1}{{1 + 2 + 3}} + \dfrac{1}{{1 + 2 + 3 + 4}} + ... + \dfrac{1}{{1 + 2 + 3 + 4 + ... + 8}}\).

      Phần I: Trắc nghiệm

      1. D

      2. A

      3. D

      4. C

      Câu 1

      Phương pháp:

      Dựa vào tính chất điểm nằm giữa hai điểm: Khi M nằm giữa A và B thì \(AM + MB = AB\)

      Cách giải:

      Vì K nằm giữa A và B nên ta có: \(AK + KB = AB\)

      Hay \(4 + KB = 6\)

      Suy ra: \(KB = 6 - 4 = 2\left( {cm} \right)\)

      Chọn D.

      Câu 2

      Phương pháp:

      Liệt kê các trường hợp có thể xảy ra

      Cách giải:

      Lấy ngẫu nhiên \(3\) chiếc bút có thể đưa ra các kết quả sau:

      + Trường hợp 1: \(1\) xanh, \(1\) đỏ, \(1\) đen.

      + Trường hợp 2: \(1\) xanh, \(2\) đỏ.

      + Trường hợp 3: \(2\) đỏ, \(1\) đen.

      Ta thấy trong cả 3 trường hợp trên ta luôn lấy được ít nhất \(1\) chiếc bút màu đỏ.

      Chọn A.

      Câu 3

      Phương pháp:

      Vẽ các hình đề bài cho và tìm trục đối xứng của mỗi hình.

      Cách giải:

      Hình chữ nhật, hình thoi, hình sao vàng 5 cánh đều là những hình có trục đối xứng.

      Hình thang cân có trục đối xứng, còn hình thang có hai cạnh bên không bằng nhau sẽ không có trục đối xứng.

      ChọnD.

      Câu 4

      Phương pháp:

      Quy đồng mẫu số để tìm y, quy đồng tử số để tìm x.

      Cách giải:

      Ta có: \(\dfrac{3}{x} = \dfrac{y}{{12}} = \dfrac{3}{{12}}\)

      Vậy: \(x = 12;y = 3\)

      Chọn C.

      Phần II: Tự luận

      Bài 1

      Phương pháp

      Áp dụng các quy tắc :

      - Thứ tự thực hiện các phép tính đối với biểu thức không có dấu ngoặc: Lũy thừa \( \to \) Nhân và chia \( \to \) Cộng và trừ.

      - Thứ tự thực hiện các phép tính đối với biểu thức có dấu ngoặc: \(({\kern 1pt} {\kern 1pt} ){\kern 1pt} {\kern 1pt} \to [{\kern 1pt} {\kern 1pt} ]{\kern 1pt} {\kern 1pt} \to \{ {\kern 1pt} {\kern 1pt} \} \)

      Cách giải:

      a) \(2\dfrac{1}{9} - \dfrac{1}{3}:\dfrac{3}{7}\)

      \(\begin{array}{l} = \dfrac{{19}}{9} - \dfrac{1}{3}.\dfrac{7}{3}\\ = \dfrac{{19}}{9} - \dfrac{7}{9}\\ = \dfrac{{12}}{9} = \dfrac{4}{3}\end{array}\)

      b) \(\dfrac{7}{{19}}.\dfrac{8}{{11}} + \dfrac{3}{{11}}.\dfrac{7}{{19}} + \dfrac{{ - 12}}{{19}}\)

      \(\begin{array}{l} = \dfrac{7}{{19}}.\left( {\dfrac{8}{{11}} + \dfrac{3}{{11}}} \right) + \dfrac{{ - 12}}{{19}}\\ = \dfrac{7}{{19}}.\dfrac{{11}}{{11}} + \dfrac{{ - 12}}{{19}}\\ = \dfrac{7}{{19}} + \dfrac{{ - 12}}{{19}} = \dfrac{{ - 5}}{{19}}\end{array}\)

      c) \(20\dfrac{8}{{23}} - \left( {5\dfrac{7}{{32}} + 14\dfrac{8}{{23}}} \right)\)

      \(\begin{array}{l} = 20 + \dfrac{8}{{23}} - \left( {5 + \dfrac{7}{{32}} + 14 + \dfrac{8}{{23}}} \right)\\ = 20 + \dfrac{8}{{23}} - 5 - \dfrac{7}{{32}} - 14 - \dfrac{8}{{23}}\\ = \left( {20 - 5 - 14} \right) + \left( {\dfrac{8}{{23}} - \dfrac{8}{{23}}} \right) - \dfrac{7}{{32}}\\ = 1 + 0 - \dfrac{7}{{32}}\\ = 1 - \dfrac{7}{{32}}\\ = \dfrac{{32}}{{32}} - \dfrac{7}{{32}}\\ = \dfrac{{25}}{{32}}\end{array}\)

      d) \(75\% - 1\dfrac{1}{2} + 0,5:\dfrac{5}{{12}} - {\left( { - \dfrac{1}{2}} \right)^2}\)

      \(\begin{array}{l} = \dfrac{3}{4} - \dfrac{3}{2} + \dfrac{1}{2}.\dfrac{{12}}{5} - \dfrac{1}{4}\\ = \dfrac{3}{4} - \dfrac{3}{2} + \dfrac{6}{5} - \dfrac{1}{4}\\ = \dfrac{3}{4} - \dfrac{1}{4} - \dfrac{3}{2} + \dfrac{6}{5}\\ = \dfrac{2}{4} - \dfrac{3}{2} + \dfrac{6}{5}\\ = \dfrac{1}{2} - \dfrac{3}{2} + \dfrac{6}{5}\\ = \dfrac{{ - 2}}{2} + \dfrac{6}{5}\\ = - 1 + \dfrac{6}{5}\\ = \dfrac{{ - 5}}{5} + \dfrac{6}{5} = \dfrac{1}{5}\end{array}\)

      Bài 2:

      Phương pháp: Áp dụng quy tắc chuyển vế: Khi chuyển một số hạng từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng đó: dấu “+” đổi thành dấu “–” và dấu “–” thành dấu “+”.

      Cách giải:

      \(\begin{array}{l}a)\,\,x - \dfrac{1}{3} = \dfrac{5}{{14}} \cdot \dfrac{{ - 7}}{6}\,\\\,\,\,\,\,\,x - \dfrac{1}{3} = \dfrac{{ - 5}}{{12}}\,\,\,\\\,\,\,\,\,\,x = \dfrac{{ - 5}}{{12}}\, + \dfrac{1}{3}\,\\\,\,\,\,\,\,x = \dfrac{{ - 1}}{{12}}\,\end{array}\)

      Vậy \(x = \dfrac{{ - 1}}{{12}}\)

      \(\begin{array}{l}\,b)\,\,\dfrac{3}{4} + \dfrac{1}{4} \cdot x = 0,2\,\\\,\,\,\,\,\,\,\dfrac{3}{4} + \dfrac{1}{4} \cdot x = \dfrac{1}{5}\,\,\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{1}{4} \cdot x = \dfrac{1}{5} - \dfrac{3}{4}\,\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{1}{4} \cdot x = \dfrac{{ - 11}}{{20}}\,\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \,\,\dfrac{{ - 11}}{{20}}:\dfrac{1}{4}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \,\dfrac{{ - 11}}{5}\end{array}\)

      Vậy \(x = \dfrac{{ - 11}}{5}\)

      \(\begin{array}{l}c)\,\,\dfrac{1}{{12}}.{x^2} = 1\dfrac{1}{3}\\\,\dfrac{1}{{12}}.{x^2} = \dfrac{4}{3}\\{x^2} = \dfrac{4}{3}:\dfrac{1}{{12}}\\{x^2} = 16\\ \Rightarrow \,\left[ \begin{array}{l}x = 4\\x = - 4\end{array} \right.\end{array}\)

      Vậy \(x \in \left\{ {4; - 4} \right\}\)

      Bài 3

      Phương pháp:

      Phương pháp:

      Lấy giá tiền 1 kg cà chua nhân với khối lượng cà chua.

      Cách giải:

      Số tiền bác nông dân nhận được là: \(15000.30,8 = 462000\)(đồng)

      b) (VD):

      Phương pháp:

      Lấy khối lượng đậu đũa vừa thu hoạch chia cho \(\dfrac{2}{5}\).

      Cách giải:

      Nếu thu hoạch hết thì thu được số ki-lô-gam đậu đũa là: \(12:\dfrac{2}{5} = 30\)(kg)

      Bài 4

      Phương pháp

      Áp dụng tính chất trung điểm của mốt đoạn thẳng và công thức cộng đoạn thẳng.

      Cách giải:

      Đề thi học kì 2 Toán 6 - Đề số 3 - Chân trời sáng tạo 1

      a) Ta có: \(A\) và \(B\) cùng thuộc tia \(Ox\) và \(OA < OB{\kern 1pt} {\kern 1pt} \left( {5cm < 8cm} \right)\) nên \(A\) nằm giữa \(O\) và \(B\).

      b) Vì \(A\) nằm giữa \(O\) và \(B\) nên ta có:

      \(OB = OA + AB\)

      \(AB = OB - OA\)

      \(AB = 8cm - 5cm\)

      \(AB = 3cm\)

      c) Vì \(AB = 3cm\) và \(OA = 5cm\) suy ra \(AB \ne OA\) nên \(A\) không phải là trung điểm của \(OB\).

      Vì \(M\) là trung điểm của \(AO\) nên \(MA = \dfrac{{OA}}{2} = \dfrac{5}{2} = 2,5{\kern 1pt} {\kern 1pt} \left( {cm} \right)\)

      Vì \(N\) là trung điểm của \(AB\) nên \(NA = \dfrac{{AB}}{2} = \dfrac{3}{2} = 1,5{\kern 1pt} {\kern 1pt} \left( {cm} \right)\)

      Vì \(A\) nằm giữa \(O\) và \(B\) nên \(AO\) và \(AB\) là hai tia đối nhau.

      Mặt khác, \(M\) là trung điểm của \(OA\) và \(N\) là trung điểm của \(AB\) nên \(A\) nằm giữa \(M\) và \(N\).

      Do đó, ta có: \(MN = MA + AN = 2,5cm + 1,5cm = 4cm\)

      Vậy \(MN = 4cm\).

      Bài 5

      Phương pháp

      Đưa tổng đã cho về dạng: \(S = 1 + \dfrac{1}{3} + \dfrac{1}{6} + \dfrac{1}{{10}} + ... + \dfrac{1}{{36}}.\)

      Tính \(\dfrac{1}{2}S\) sau đó suy ra giá trị của biểu thức \(S.\) 

      Cách giải:

      \(\begin{array}{*{20}{l}}{S = 1 + \dfrac{1}{{1 + 2}} + \dfrac{1}{{1 + 2 + 3}} + \dfrac{1}{{1 + 2 + 3 + 4}} + ... + \dfrac{1}{{1 + 2 + 3 + 4 + ... + 8}}}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 1 + \dfrac{1}{3} + \dfrac{1}{6} + \dfrac{1}{{10}} + ... + \dfrac{1}{{36}}}\\{ \Rightarrow \dfrac{1}{2}.S = \dfrac{1}{2}\left( {1 + \dfrac{1}{3} + \dfrac{1}{6} + \dfrac{1}{{10}} + ... + \dfrac{1}{{36}}} \right)}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{{12}} + \dfrac{1}{{20}} + ... + \dfrac{1}{{72}}}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \dfrac{1}{{4.5}} + ... + \dfrac{1}{{8.9}}}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \left( {1 - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{4} - \dfrac{1}{5} + ... + \dfrac{1}{8} - \dfrac{1}{9}} \right)}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 1 - \dfrac{1}{9} = \dfrac{8}{9}}\\{ \Rightarrow \dfrac{1}{2}S = \dfrac{8}{9}}\\{ \Rightarrow S = \dfrac{8}{9}:\dfrac{1}{2} = \dfrac{{16}}{9}.}\end{array}\)

      Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Đề thi học kì 2 Toán 6 - Đề số 3 - Chân trời sáng tạo – nội dung then chốt trong chuyên mục toán lớp 6 trên nền tảng học toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

      Đề thi học kì 2 Toán 6 - Đề số 3 - Chân trời sáng tạo: Tổng quan và Hướng dẫn Giải chi tiết

      Đề thi học kì 2 Toán 6 - Đề số 3 chương trình Chân trời sáng tạo là một bài kiểm tra quan trọng, đánh giá mức độ nắm vững kiến thức và kỹ năng giải toán của học sinh sau một học kì học tập. Đề thi bao gồm các dạng bài tập khác nhau, tập trung vào các chủ đề chính đã được học trong chương trình.

      Cấu trúc đề thi học kì 2 Toán 6 - Đề số 3

      Thông thường, đề thi học kì 2 Toán 6 - Đề số 3 chương trình Chân trời sáng tạo sẽ bao gồm các phần sau:

      • Phần trắc nghiệm: Kiểm tra kiến thức cơ bản, khả năng nhận biết và vận dụng các khái niệm toán học.
      • Phần tự luận: Yêu cầu học sinh trình bày lời giải chi tiết cho các bài toán, thể hiện khả năng phân tích, suy luận và giải quyết vấn đề.

      Các chủ đề chính trong đề thi

      Đề thi thường tập trung vào các chủ đề sau:

      1. Số tự nhiên: Các phép toán cộng, trừ, nhân, chia, tính chất chia hết, ước và bội.
      2. Phân số: Khái niệm phân số, so sánh phân số, các phép toán với phân số, rút gọn phân số.
      3. Số thập phân: Khái niệm số thập phân, so sánh số thập phân, các phép toán với số thập phân.
      4. Tỉ số và phần trăm: Khái niệm tỉ số, phần trăm, giải toán về tỉ số và phần trăm.
      5. Hình học: Các khái niệm cơ bản về điểm, đường thẳng, đoạn thẳng, góc, tam giác, hình vuông, hình chữ nhật.

      Hướng dẫn giải một số dạng bài tập thường gặp

      Dạng 1: Giải các bài toán về số tự nhiên

      Để giải các bài toán về số tự nhiên, học sinh cần nắm vững các phép toán cộng, trừ, nhân, chia và các tính chất của chúng. Ngoài ra, cần chú ý đến tính chất chia hết, ước và bội để giải quyết các bài toán liên quan.

      Ví dụ: Tìm tất cả các ước của 12.

      Giải: Các ước của 12 là: 1, 2, 3, 4, 6, 12.

      Dạng 2: Giải các bài toán về phân số

      Để giải các bài toán về phân số, học sinh cần nắm vững khái niệm phân số, cách so sánh phân số và các phép toán với phân số. Ngoài ra, cần chú ý đến việc rút gọn phân số để đưa về dạng tối giản.

      Ví dụ: Tính: 1/2 + 1/3

      Giải: 1/2 + 1/3 = 3/6 + 2/6 = 5/6

      Dạng 3: Giải các bài toán về số thập phân

      Để giải các bài toán về số thập phân, học sinh cần nắm vững khái niệm số thập phân, cách so sánh số thập phân và các phép toán với số thập phân. Ngoài ra, cần chú ý đến việc chuyển đổi giữa số thập phân và phân số.

      Ví dụ: Tính: 2,5 + 3,7

      Giải: 2,5 + 3,7 = 6,2

      Luyện tập và ôn tập hiệu quả

      Để đạt kết quả tốt trong kỳ thi học kì 2, học sinh cần luyện tập thường xuyên và ôn tập đầy đủ các kiến thức đã học. Giaitoan.edu.vn cung cấp nhiều đề thi thử và bài tập luyện tập khác nhau, giúp học sinh làm quen với các dạng bài tập và rèn luyện kỹ năng giải toán.

      Lời khuyên khi làm bài thi

      • Đọc kỹ đề bài trước khi làm.
      • Lập kế hoạch làm bài và phân bổ thời gian hợp lý.
      • Trình bày lời giải rõ ràng, mạch lạc.
      • Kiểm tra lại bài làm trước khi nộp.

      Tài liệu tham khảo hữu ích

      Ngoài sách giáo khoa, học sinh có thể tham khảo thêm các tài liệu sau:

      • Sách bài tập Toán 6
      • Các trang web học toán online
      • Các video hướng dẫn giải toán

      Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi học kì 2!

      Tài liệu, đề thi và đáp án Toán 6