Chào mừng các em học sinh đến với bài trắc nghiệm Bài 63: Rút gọn phân số môn Toán lớp 4, chương trình Chân trời sáng tạo. Bài trắc nghiệm này được thiết kế để giúp các em ôn luyện và củng cố kiến thức về cách rút gọn phân số.
Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, có đáp án chi tiết, giúp các em tự đánh giá năng lực và chuẩn bị tốt nhất cho các bài kiểm tra trên lớp.
Trong các phân số sau, phân số nào là phân số tối giản?
A. \(\dfrac{6}{9}\)
B. \(\dfrac{4}{7}\)
C. \(\dfrac{{20}}{{15}}\)
D. \(\dfrac{{15}}{{27}}\)
Rút gọn phân số sau thành phân số tối giản:
\(\dfrac{{4 \times 5 \times 7}}{{7 \times 5 \times 9}} = \dfrac{4}{9}\) . Đúng hay sai?
A. Đúng
B. Sai
Trong các phân số sau, phân số nào chưa tối giản:
$\frac{1}{7}$
$\frac{{21}}{{35}}$
$\frac{{97}}{{90}}$
$\frac{{81}}{4}$
Trong các phân số sau phân số nào bằng phân số $\frac{{24}}{{120}}$
$\frac{{20}}{{100}}$
$\frac{4}{{25}}$
$\frac{4}{5}$
$\frac{7}{{28}}$
Rút gọn phân số \(\dfrac{{72}}{{180}}\) ta được phân số tối giản là:
A. \(\dfrac{2}{5}\)
B. \(\dfrac{3}{5}\)
C. \(\dfrac{{18}}{{45}}\)
D. \(\dfrac{8}{{20}}\)
Phân số bằng với phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất là phân số
Rút gọn phân số sau thành phân số tối giản:
Lời giải và đáp án
Trong các phân số sau, phân số nào là phân số tối giản?
A. \(\dfrac{6}{9}\)
B. \(\dfrac{4}{7}\)
C. \(\dfrac{{20}}{{15}}\)
D. \(\dfrac{{15}}{{27}}\)
B. \(\dfrac{4}{7}\)
- Rút gọn các phân số đã cho (nếu được)Phân số tối giản là phân số có tử số và mẫu số không cùng chia hết cho một số tự nhiên nào lớn hơn \(1\), hay phân số tối giản là phân số không thể rút gọn được nữa.
Ta có: \(\dfrac{6}{9} = \dfrac{{6:3}}{{9:3}} = \dfrac{2}{3}\,\,\,\, ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{{20}}{{15}} = \dfrac{{20:5}}{{15:5}} = \dfrac{4}{3}\,\,\, ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{{15}}{{27}} = \dfrac{{15:3}}{{27:3}} = \dfrac{5}{9}\)
Phân số \(\dfrac{4}{7}\) có tử số và mẫu số không cùng chia hết cho một số tự nhiên nào lớn hơn \(1\), nên \(\dfrac{4}{7}\) là phân số tối giản.
Vậy trong các phân số đã cho, phân số tối giản là phân số \(\dfrac{4}{7}\).
Rút gọn phân số sau thành phân số tối giản:
Ta thấy \(5\) và \(20\) cùng chia hết cho \(5\) nên ta chia cả tử số và mẫu số của phân số \(\dfrac{5}{{20}}\) cho \(5\).
Ta thấy \(5\) và \(20\) cùng chia hết cho \(5\) nên ta có:
\(\dfrac{5}{{20}} = \dfrac{{5:5}}{{20:5}} = \dfrac{1}{4}\)
Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(1\,;\,\,4\).
\(\dfrac{{4 \times 5 \times 7}}{{7 \times 5 \times 9}} = \dfrac{4}{9}\) . Đúng hay sai?
A. Đúng
B. Sai
A. Đúng
B. Sai
Tích ở tử số và mẫu số đều có thừa số chung là \(5\) và \(7\) nên ta cùng chia nhẩm tích ở tử số và mẫu số cho \(5\), rồi cùng chia nhẩm cho \(7\).
Ta có:
Vậy phép tính đã cho là đúng.
Trong các phân số sau, phân số nào chưa tối giản:
$\frac{1}{7}$
$\frac{{21}}{{35}}$
$\frac{{97}}{{90}}$
$\frac{{81}}{4}$
Đáp án : B
Phân số tối giản là phân số có tử số và mẫu số không cùng chia hết cho số tự nhiên nào lớn hơn 1.
Phân số chưa tối giản là $\frac{{21}}{{35}}$
Trong các phân số sau phân số nào bằng phân số $\frac{{24}}{{120}}$
$\frac{{20}}{{100}}$
$\frac{4}{{25}}$
$\frac{4}{5}$
$\frac{7}{{28}}$
Đáp án : A
Rút gọn phân số đã cho để trả lời câu hỏi của bài toán
Ta có $\frac{{24}}{{120}} = \frac{1}{5} = \frac{{20}}{{100}}$
Rút gọn phân số \(\dfrac{{72}}{{180}}\) ta được phân số tối giản là:
A. \(\dfrac{2}{5}\)
B. \(\dfrac{3}{5}\)
C. \(\dfrac{{18}}{{45}}\)
D. \(\dfrac{8}{{20}}\)
A. \(\dfrac{2}{5}\)
Khi rút gọn phân số có thể làm như sau:
- Xét xem tử số và mẫu số cùng chia hết cho số tự nhiên nào lớn hơn \(1\).
- Chia tử số và mẫu số cho số đó.
Cứ làm như thế cho đến khi nhận được phân số tối giản.
Ta thấy phân số \(\dfrac{{72}}{{180}}\) có tử số và mẫu số đều chia hết cho \(4\), nên ta có:
\(\dfrac{{72}}{{180}} = \dfrac{{72:4}}{{180:4}} = \dfrac{{18}}{{45}}\)
Ta thấy phân số \(\dfrac{{18}}{{45}}\) có tử số và mẫu số đều chia hết cho \(9\), nên ta có:
\(\dfrac{{18}}{{45}} = \dfrac{{18:9}}{{45:9}} = \dfrac{2}{5}\)
Ta thấy phân số \(\dfrac{2}{5}\) có tử số và mẫu số không cùng chia hết cho số tự nhiên nào lớn hơn \(1\) nên \(\dfrac{2}{5}\) là phân số tối giản.
Vậy \(\dfrac{{72}}{{180}} = \dfrac{2}{5}\).
Phân số bằng với phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất là phân số
Phân số bằng với phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất chính là phân số tối giản sau khi rút gọn phân số \(\dfrac{{216}}{{360}}\).
Phân số cần tìm bằng phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất chính là phân số tối giản sau khi rút gọn phân số \(\dfrac{{216}}{{360}}\).
Rút gọn phân số \(\dfrac{{216}}{{360}}\) để được phân số tối giản, ta có:
\(\begin{array}{l}\dfrac{{216}}{{360}} = \dfrac{{216:4}}{{360:4}} = \dfrac{{54}}{{90}}\\\dfrac{{54}}{{90}} = \dfrac{{54:9}}{{90:9}} = \dfrac{6}{{10}}\\\dfrac{6}{{10}} = \dfrac{{6:2}}{{10:2}} = \dfrac{3}{5}\end{array}\)
Ta thấy phân số \(\dfrac{3}{5}\) có tử số và mẫu số không cùng chia hết cho số tự nhiên nào lớn hơn \(1\) nên \(\dfrac{3}{5}\) là phân số tối giản.
Do đó, phân số bằng với phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất là phân số \(\dfrac{3}{5}\).
Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(3\,;\,\,5\).
Rút gọn phân số sau thành phân số tối giản:
Phân tích tử số và mẫu số thành tích của các thừa số, sau đó chia nhẩm tích ở tử số và mẫu số cho các thừa số chung.
Tách \(44\) thành tích của \(11\) và \(4\), tách \(33\) thành tích của \(11\) và \(3\) , tách \(45\) thành tích của \(9\) và \(5\) , ta có:
\(\dfrac{{2 \times 9 \times 44}}{{33 \times 45 \times 7}} = \dfrac{{2 \times 9 \times 11 \times 4}}{{11 \times 3 \times 9 \times 5 \times 7}}\)
Ta thấy tích ở trên gạch ngang và tích ở dưới gạch ngang đều có chung các thừa số là \(9\) và \(11\).
Cùng chia nhẩm tích ở trên gạch ngang và tích ở dưới gạch ngang cho \(9\) và \(11\) ta được: \(\dfrac{{2 \times 9 \times 44}}{{33 \times 45 \times 7}} = \dfrac{{2 \times 9 \times 11 \times 4}}{{11 \times 3 \times 9 \times 5 \times 7}} = \dfrac{{2 \times 4}}{{3 \times 5 \times 7}} = \dfrac{8}{{105}}\)
Mà \(\dfrac{8}{{105}}\) là phân số tối giản vì có tử số và mẫu số không cùng chia hết cho số tự nhiên nào khác \(1\).
Vậy \(\dfrac{{2 \times 9 \times 44}}{{33 \times 45 \times 7}} = \dfrac{8}{{105}}\)
Đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(8\,;\,\,105\).
Trong các phân số sau, phân số nào là phân số tối giản?
A. \(\dfrac{6}{9}\)
B. \(\dfrac{4}{7}\)
C. \(\dfrac{{20}}{{15}}\)
D. \(\dfrac{{15}}{{27}}\)
Rút gọn phân số sau thành phân số tối giản:
\(\dfrac{{4 \times 5 \times 7}}{{7 \times 5 \times 9}} = \dfrac{4}{9}\) . Đúng hay sai?
A. Đúng
B. Sai
Trong các phân số sau, phân số nào chưa tối giản:
$\frac{1}{7}$
$\frac{{21}}{{35}}$
$\frac{{97}}{{90}}$
$\frac{{81}}{4}$
Trong các phân số sau phân số nào bằng phân số $\frac{{24}}{{120}}$
$\frac{{20}}{{100}}$
$\frac{4}{{25}}$
$\frac{4}{5}$
$\frac{7}{{28}}$
Rút gọn phân số \(\dfrac{{72}}{{180}}\) ta được phân số tối giản là:
A. \(\dfrac{2}{5}\)
B. \(\dfrac{3}{5}\)
C. \(\dfrac{{18}}{{45}}\)
D. \(\dfrac{8}{{20}}\)
Phân số bằng với phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất là phân số
Rút gọn phân số sau thành phân số tối giản:
Trong các phân số sau, phân số nào là phân số tối giản?
A. \(\dfrac{6}{9}\)
B. \(\dfrac{4}{7}\)
C. \(\dfrac{{20}}{{15}}\)
D. \(\dfrac{{15}}{{27}}\)
B. \(\dfrac{4}{7}\)
- Rút gọn các phân số đã cho (nếu được)Phân số tối giản là phân số có tử số và mẫu số không cùng chia hết cho một số tự nhiên nào lớn hơn \(1\), hay phân số tối giản là phân số không thể rút gọn được nữa.
Ta có: \(\dfrac{6}{9} = \dfrac{{6:3}}{{9:3}} = \dfrac{2}{3}\,\,\,\, ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{{20}}{{15}} = \dfrac{{20:5}}{{15:5}} = \dfrac{4}{3}\,\,\, ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{{15}}{{27}} = \dfrac{{15:3}}{{27:3}} = \dfrac{5}{9}\)
Phân số \(\dfrac{4}{7}\) có tử số và mẫu số không cùng chia hết cho một số tự nhiên nào lớn hơn \(1\), nên \(\dfrac{4}{7}\) là phân số tối giản.
Vậy trong các phân số đã cho, phân số tối giản là phân số \(\dfrac{4}{7}\).
Rút gọn phân số sau thành phân số tối giản:
Ta thấy \(5\) và \(20\) cùng chia hết cho \(5\) nên ta chia cả tử số và mẫu số của phân số \(\dfrac{5}{{20}}\) cho \(5\).
Ta thấy \(5\) và \(20\) cùng chia hết cho \(5\) nên ta có:
\(\dfrac{5}{{20}} = \dfrac{{5:5}}{{20:5}} = \dfrac{1}{4}\)
Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(1\,;\,\,4\).
\(\dfrac{{4 \times 5 \times 7}}{{7 \times 5 \times 9}} = \dfrac{4}{9}\) . Đúng hay sai?
A. Đúng
B. Sai
A. Đúng
B. Sai
Tích ở tử số và mẫu số đều có thừa số chung là \(5\) và \(7\) nên ta cùng chia nhẩm tích ở tử số và mẫu số cho \(5\), rồi cùng chia nhẩm cho \(7\).
Ta có:
Vậy phép tính đã cho là đúng.
Trong các phân số sau, phân số nào chưa tối giản:
$\frac{1}{7}$
$\frac{{21}}{{35}}$
$\frac{{97}}{{90}}$
$\frac{{81}}{4}$
Đáp án : B
Phân số tối giản là phân số có tử số và mẫu số không cùng chia hết cho số tự nhiên nào lớn hơn 1.
Phân số chưa tối giản là $\frac{{21}}{{35}}$
Trong các phân số sau phân số nào bằng phân số $\frac{{24}}{{120}}$
$\frac{{20}}{{100}}$
$\frac{4}{{25}}$
$\frac{4}{5}$
$\frac{7}{{28}}$
Đáp án : A
Rút gọn phân số đã cho để trả lời câu hỏi của bài toán
Ta có $\frac{{24}}{{120}} = \frac{1}{5} = \frac{{20}}{{100}}$
Rút gọn phân số \(\dfrac{{72}}{{180}}\) ta được phân số tối giản là:
A. \(\dfrac{2}{5}\)
B. \(\dfrac{3}{5}\)
C. \(\dfrac{{18}}{{45}}\)
D. \(\dfrac{8}{{20}}\)
A. \(\dfrac{2}{5}\)
Khi rút gọn phân số có thể làm như sau:
- Xét xem tử số và mẫu số cùng chia hết cho số tự nhiên nào lớn hơn \(1\).
- Chia tử số và mẫu số cho số đó.
Cứ làm như thế cho đến khi nhận được phân số tối giản.
Ta thấy phân số \(\dfrac{{72}}{{180}}\) có tử số và mẫu số đều chia hết cho \(4\), nên ta có:
\(\dfrac{{72}}{{180}} = \dfrac{{72:4}}{{180:4}} = \dfrac{{18}}{{45}}\)
Ta thấy phân số \(\dfrac{{18}}{{45}}\) có tử số và mẫu số đều chia hết cho \(9\), nên ta có:
\(\dfrac{{18}}{{45}} = \dfrac{{18:9}}{{45:9}} = \dfrac{2}{5}\)
Ta thấy phân số \(\dfrac{2}{5}\) có tử số và mẫu số không cùng chia hết cho số tự nhiên nào lớn hơn \(1\) nên \(\dfrac{2}{5}\) là phân số tối giản.
Vậy \(\dfrac{{72}}{{180}} = \dfrac{2}{5}\).
Phân số bằng với phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất là phân số
Phân số bằng với phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất chính là phân số tối giản sau khi rút gọn phân số \(\dfrac{{216}}{{360}}\).
Phân số cần tìm bằng phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất chính là phân số tối giản sau khi rút gọn phân số \(\dfrac{{216}}{{360}}\).
Rút gọn phân số \(\dfrac{{216}}{{360}}\) để được phân số tối giản, ta có:
\(\begin{array}{l}\dfrac{{216}}{{360}} = \dfrac{{216:4}}{{360:4}} = \dfrac{{54}}{{90}}\\\dfrac{{54}}{{90}} = \dfrac{{54:9}}{{90:9}} = \dfrac{6}{{10}}\\\dfrac{6}{{10}} = \dfrac{{6:2}}{{10:2}} = \dfrac{3}{5}\end{array}\)
Ta thấy phân số \(\dfrac{3}{5}\) có tử số và mẫu số không cùng chia hết cho số tự nhiên nào lớn hơn \(1\) nên \(\dfrac{3}{5}\) là phân số tối giản.
Do đó, phân số bằng với phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất là phân số \(\dfrac{3}{5}\).
Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(3\,;\,\,5\).
Rút gọn phân số sau thành phân số tối giản:
Phân tích tử số và mẫu số thành tích của các thừa số, sau đó chia nhẩm tích ở tử số và mẫu số cho các thừa số chung.
Tách \(44\) thành tích của \(11\) và \(4\), tách \(33\) thành tích của \(11\) và \(3\) , tách \(45\) thành tích của \(9\) và \(5\) , ta có:
\(\dfrac{{2 \times 9 \times 44}}{{33 \times 45 \times 7}} = \dfrac{{2 \times 9 \times 11 \times 4}}{{11 \times 3 \times 9 \times 5 \times 7}}\)
Ta thấy tích ở trên gạch ngang và tích ở dưới gạch ngang đều có chung các thừa số là \(9\) và \(11\).
Cùng chia nhẩm tích ở trên gạch ngang và tích ở dưới gạch ngang cho \(9\) và \(11\) ta được: \(\dfrac{{2 \times 9 \times 44}}{{33 \times 45 \times 7}} = \dfrac{{2 \times 9 \times 11 \times 4}}{{11 \times 3 \times 9 \times 5 \times 7}} = \dfrac{{2 \times 4}}{{3 \times 5 \times 7}} = \dfrac{8}{{105}}\)
Mà \(\dfrac{8}{{105}}\) là phân số tối giản vì có tử số và mẫu số không cùng chia hết cho số tự nhiên nào khác \(1\).
Vậy \(\dfrac{{2 \times 9 \times 44}}{{33 \times 45 \times 7}} = \dfrac{8}{{105}}\)
Đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(8\,;\,\,105\).
Bài 63 trong chương trình Toán 4 Chân trời sáng tạo tập trung vào kỹ năng rút gọn phân số – một trong những kiến thức nền tảng quan trọng của toán học. Việc nắm vững phương pháp rút gọn phân số không chỉ giúp học sinh giải quyết các bài toán một cách nhanh chóng và chính xác mà còn là bước đệm quan trọng cho các kiến thức nâng cao hơn ở các lớp trên.
Phân số là biểu thức của một hoặc nhiều phần bằng nhau của một đơn vị. Một phân số được biểu diễn dưới dạng a/b, trong đó a là tử số và b là mẫu số. Để rút gọn phân số, ta cần tìm ước chung lớn nhất (ƯCLN) của tử số và mẫu số, sau đó chia cả tử số và mẫu số cho ƯCLN đó.
ƯCLN của hai hoặc nhiều số là số lớn nhất mà cả các số đó đều chia hết. Có nhiều phương pháp để tìm ƯCLN, trong đó phương pháp phân tích ra thừa số nguyên tố là phổ biến nhất.
Để rút gọn phân số a/b, ta thực hiện các bước sau:
Ví dụ: Rút gọn phân số 12/18.
ƯCLN(12, 18) = 6
12 : 6 = 2
18 : 6 = 3
Vậy, 12/18 = 2/3
Dưới đây là một số bài tập trắc nghiệm giúp các em luyện tập kỹ năng rút gọn phân số:
Đáp án:
Việc rút gọn phân số có nhiều ứng dụng trong thực tế, chẳng hạn như:
Giaitoan.edu.vn cung cấp một hệ thống bài tập trắc nghiệm phong phú và đa dạng về chủ đề rút gọn phân số. Các bài tập được thiết kế theo mức độ khó tăng dần, giúp các em học sinh từ dễ dàng đến nâng cao kiến thức. Hãy truy cập giaitoan.edu.vn để luyện tập và củng cố kiến thức ngay hôm nay!
Hy vọng với những kiến thức và bài tập trên, các em sẽ nắm vững kỹ năng rút gọn phân số và đạt kết quả tốt trong môn Toán.