Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo

Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo

Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo

Chào mừng các em học sinh đến với bài trắc nghiệm Bài 63: Rút gọn phân số môn Toán lớp 4, chương trình Chân trời sáng tạo. Bài trắc nghiệm này được thiết kế để giúp các em ôn luyện và củng cố kiến thức về cách rút gọn phân số.

Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, có đáp án chi tiết, giúp các em tự đánh giá năng lực và chuẩn bị tốt nhất cho các bài kiểm tra trên lớp.

Đề bài

    Câu 1 :

    Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 1

    Trong các phân số sau, phân số nào là phân số tối giản?

    A. \(\dfrac{6}{9}\)

    B. \(\dfrac{4}{7}\)

    C. \(\dfrac{{20}}{{15}}\)

    D. \(\dfrac{{15}}{{27}}\)

    Câu 2 :

    Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 2

    Rút gọn phân số sau thành phân số tối giản:

    $\frac{5}{20}=\frac{?}{?}$
    Câu 3 :

    Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 3

    \(\dfrac{{4 \times 5 \times 7}}{{7 \times 5 \times 9}} = \dfrac{4}{9}\) . Đúng hay sai?

    A. Đúng

    B. Sai

    Câu 4 :

    Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 4

    Trong các phân số sau, phân số nào chưa tối giản:

    • A.

      $\frac{1}{7}$

    • B.

      $\frac{{21}}{{35}}$

    • C.

      $\frac{{97}}{{90}}$

    • D.

      $\frac{{81}}{4}$

    Câu 5 :

    Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 5

    Trong các phân số sau phân số nào bằng phân số $\frac{{24}}{{120}}$

    • A.

      $\frac{{20}}{{100}}$

    • B.

      $\frac{4}{{25}}$

    • C.

      $\frac{4}{5}$

    • D.

      $\frac{7}{{28}}$

    Câu 6 :

    Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 6

    Rút gọn phân số \(\dfrac{{72}}{{180}}\) ta được phân số tối giản là:

    A. \(\dfrac{2}{5}\)

    B. \(\dfrac{3}{5}\)

    C. \(\dfrac{{18}}{{45}}\)

    D. \(\dfrac{8}{{20}}\)

    Câu 7 :

    Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 7

    Phân số bằng với phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất là phân số 

    $\frac{?}{?}$
    Câu 8 :

    Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 8

    Rút gọn phân số sau thành phân số tối giản:

    $\frac{2\times 9\times 44}{33\times 45\times 7}=\frac{?}{?}$

    Lời giải và đáp án

    Câu 1 :

    Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 9

    Trong các phân số sau, phân số nào là phân số tối giản?

    A. \(\dfrac{6}{9}\)

    B. \(\dfrac{4}{7}\)

    C. \(\dfrac{{20}}{{15}}\)

    D. \(\dfrac{{15}}{{27}}\)

    Đáp án

    B. \(\dfrac{4}{7}\)

    Phương pháp giải :

    - Rút gọn các phân số đã cho (nếu được)Phân số tối giản là phân số có tử số và mẫu số không cùng chia hết cho một số tự nhiên nào lớn hơn \(1\), hay phân số tối giản là phân số không thể rút gọn được nữa.

    Lời giải chi tiết :

    Ta có: \(\dfrac{6}{9} = \dfrac{{6:3}}{{9:3}} = \dfrac{2}{3}\,\,\,\, ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{{20}}{{15}} = \dfrac{{20:5}}{{15:5}} = \dfrac{4}{3}\,\,\, ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{{15}}{{27}} = \dfrac{{15:3}}{{27:3}} = \dfrac{5}{9}\)

    Phân số \(\dfrac{4}{7}\) có tử số và mẫu số không cùng chia hết cho một số tự nhiên nào lớn hơn \(1\), nên \(\dfrac{4}{7}\) là phân số tối giản.

    Vậy trong các phân số đã cho, phân số tối giản là phân số \(\dfrac{4}{7}\).

    Câu 2 :

    Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 10

    Rút gọn phân số sau thành phân số tối giản:

    $\frac{5}{20}=\frac{?}{?}$
    Đáp án
    $\frac{5}{20}=\frac{1}{4}$
    Phương pháp giải :

    Ta thấy \(5\) và \(20\) cùng chia hết cho \(5\) nên ta chia cả tử số và mẫu số của phân số \(\dfrac{5}{{20}}\) cho \(5\).

    Lời giải chi tiết :

    Ta thấy \(5\) và \(20\) cùng chia hết cho \(5\) nên ta có:

    \(\dfrac{5}{{20}} = \dfrac{{5:5}}{{20:5}} = \dfrac{1}{4}\)

    Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(1\,;\,\,4\).

    Câu 3 :

    Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 11

    \(\dfrac{{4 \times 5 \times 7}}{{7 \times 5 \times 9}} = \dfrac{4}{9}\) . Đúng hay sai?

    A. Đúng

    B. Sai

    Đáp án

    A. Đúng

    B. Sai

    Phương pháp giải :

    Tích ở tử số và mẫu số đều có thừa số chung là \(5\) và \(7\) nên ta cùng chia nhẩm tích ở tử số và mẫu số cho \(5\), rồi cùng chia nhẩm cho \(7\).

    Lời giải chi tiết :

    Ta có:

    Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 12

    Vậy phép tính đã cho là đúng.

    Câu 4 :

    Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 13

    Trong các phân số sau, phân số nào chưa tối giản:

    • A.

      $\frac{1}{7}$

    • B.

      $\frac{{21}}{{35}}$

    • C.

      $\frac{{97}}{{90}}$

    • D.

      $\frac{{81}}{4}$

    Đáp án : B

    Phương pháp giải :

    Phân số tối giản là phân số có tử số và mẫu số không cùng chia hết cho số tự nhiên nào lớn hơn 1.

    Lời giải chi tiết :

    Phân số chưa tối giản là $\frac{{21}}{{35}}$

    Câu 5 :

    Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 14

    Trong các phân số sau phân số nào bằng phân số $\frac{{24}}{{120}}$

    • A.

      $\frac{{20}}{{100}}$

    • B.

      $\frac{4}{{25}}$

    • C.

      $\frac{4}{5}$

    • D.

      $\frac{7}{{28}}$

    Đáp án : A

    Phương pháp giải :

    Rút gọn phân số đã cho để trả lời câu hỏi của bài toán

    Lời giải chi tiết :

    Ta có $\frac{{24}}{{120}} = \frac{1}{5} = \frac{{20}}{{100}}$

    Câu 6 :

    Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 15

    Rút gọn phân số \(\dfrac{{72}}{{180}}\) ta được phân số tối giản là:

    A. \(\dfrac{2}{5}\)

    B. \(\dfrac{3}{5}\)

    C. \(\dfrac{{18}}{{45}}\)

    D. \(\dfrac{8}{{20}}\)

    Đáp án

    A. \(\dfrac{2}{5}\)

    Phương pháp giải :

    Khi rút gọn phân số có thể làm như sau:

    - Xét xem tử số và mẫu số cùng chia hết cho số tự nhiên nào lớn hơn \(1\).

    - Chia tử số và mẫu số cho số đó.

    Cứ làm như thế cho đến khi nhận được phân số tối giản.

    Lời giải chi tiết :

    Ta thấy phân số \(\dfrac{{72}}{{180}}\) có tử số và mẫu số đều chia hết cho \(4\), nên ta có:

    \(\dfrac{{72}}{{180}} = \dfrac{{72:4}}{{180:4}} = \dfrac{{18}}{{45}}\)

    Ta thấy phân số \(\dfrac{{18}}{{45}}\) có tử số và mẫu số đều chia hết cho \(9\), nên ta có:

    \(\dfrac{{18}}{{45}} = \dfrac{{18:9}}{{45:9}} = \dfrac{2}{5}\)

    Ta thấy phân số \(\dfrac{2}{5}\) có tử số và mẫu số không cùng chia hết cho số tự nhiên nào lớn hơn \(1\) nên \(\dfrac{2}{5}\) là phân số tối giản.

    Vậy \(\dfrac{{72}}{{180}} = \dfrac{2}{5}\).

    Câu 7 :

    Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 16

    Phân số bằng với phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất là phân số 

    $\frac{?}{?}$
    Đáp án
    $\frac{3}{5}$
    Phương pháp giải :

    Phân số bằng với phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất chính là phân số tối giản sau khi rút gọn phân số \(\dfrac{{216}}{{360}}\).

    Lời giải chi tiết :

    Phân số cần tìm bằng phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất chính là phân số tối giản sau khi rút gọn phân số \(\dfrac{{216}}{{360}}\).

    Rút gọn phân số \(\dfrac{{216}}{{360}}\) để được phân số tối giản, ta có:

    \(\begin{array}{l}\dfrac{{216}}{{360}} = \dfrac{{216:4}}{{360:4}} = \dfrac{{54}}{{90}}\\\dfrac{{54}}{{90}} = \dfrac{{54:9}}{{90:9}} = \dfrac{6}{{10}}\\\dfrac{6}{{10}} = \dfrac{{6:2}}{{10:2}} = \dfrac{3}{5}\end{array}\)

    Ta thấy phân số \(\dfrac{3}{5}\) có tử số và mẫu số không cùng chia hết cho số tự nhiên nào lớn hơn \(1\) nên \(\dfrac{3}{5}\) là phân số tối giản.

    Do đó, phân số bằng với phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất là phân số \(\dfrac{3}{5}\).

    Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(3\,;\,\,5\).

    Câu 8 :

    Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 17

    Rút gọn phân số sau thành phân số tối giản:

    $\frac{2\times 9\times 44}{33\times 45\times 7}=\frac{?}{?}$
    Đáp án
    $\frac{2\times 9\times 44}{33\times 45\times 7}=\frac{8}{105}$
    Phương pháp giải :

    Phân tích tử số và mẫu số thành tích của các thừa số, sau đó chia nhẩm tích ở tử số và mẫu số cho các thừa số chung.

    Lời giải chi tiết :

    Tách \(44\) thành tích của \(11\) và \(4\), tách \(33\) thành tích của \(11\) và \(3\) , tách \(45\) thành tích của \(9\) và \(5\) , ta có:

    \(\dfrac{{2 \times 9 \times 44}}{{33 \times 45 \times 7}} = \dfrac{{2 \times 9 \times 11 \times 4}}{{11 \times 3 \times 9 \times 5 \times 7}}\)

    Ta thấy tích ở trên gạch ngang và tích ở dưới gạch ngang đều có chung các thừa số là \(9\) và \(11\).

    Cùng chia nhẩm tích ở trên gạch ngang và tích ở dưới gạch ngang cho \(9\) và \(11\) ta được: \(\dfrac{{2 \times 9 \times 44}}{{33 \times 45 \times 7}} = \dfrac{{2 \times 9 \times 11 \times 4}}{{11 \times 3 \times 9 \times 5 \times 7}} = \dfrac{{2 \times 4}}{{3 \times 5 \times 7}} = \dfrac{8}{{105}}\)

    Mà \(\dfrac{8}{{105}}\) là phân số tối giản vì có tử số và mẫu số không cùng chia hết cho số tự nhiên nào khác \(1\).

    Vậy \(\dfrac{{2 \times 9 \times 44}}{{33 \times 45 \times 7}} = \dfrac{8}{{105}}\)

    Đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(8\,;\,\,105\).

    Lời giải và đáp án

      Câu 1 :

      Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 1

      Trong các phân số sau, phân số nào là phân số tối giản?

      A. \(\dfrac{6}{9}\)

      B. \(\dfrac{4}{7}\)

      C. \(\dfrac{{20}}{{15}}\)

      D. \(\dfrac{{15}}{{27}}\)

      Câu 2 :

      Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 2

      Rút gọn phân số sau thành phân số tối giản:

      $\frac{5}{20}=\frac{?}{?}$
      Câu 3 :

      Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 3

      \(\dfrac{{4 \times 5 \times 7}}{{7 \times 5 \times 9}} = \dfrac{4}{9}\) . Đúng hay sai?

      A. Đúng

      B. Sai

      Câu 4 :

      Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 4

      Trong các phân số sau, phân số nào chưa tối giản:

      • A.

        $\frac{1}{7}$

      • B.

        $\frac{{21}}{{35}}$

      • C.

        $\frac{{97}}{{90}}$

      • D.

        $\frac{{81}}{4}$

      Câu 5 :

      Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 5

      Trong các phân số sau phân số nào bằng phân số $\frac{{24}}{{120}}$

      • A.

        $\frac{{20}}{{100}}$

      • B.

        $\frac{4}{{25}}$

      • C.

        $\frac{4}{5}$

      • D.

        $\frac{7}{{28}}$

      Câu 6 :

      Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 6

      Rút gọn phân số \(\dfrac{{72}}{{180}}\) ta được phân số tối giản là:

      A. \(\dfrac{2}{5}\)

      B. \(\dfrac{3}{5}\)

      C. \(\dfrac{{18}}{{45}}\)

      D. \(\dfrac{8}{{20}}\)

      Câu 7 :

      Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 7

      Phân số bằng với phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất là phân số 

      $\frac{?}{?}$
      Câu 8 :

      Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 8

      Rút gọn phân số sau thành phân số tối giản:

      $\frac{2\times 9\times 44}{33\times 45\times 7}=\frac{?}{?}$
      Câu 1 :

      Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 9

      Trong các phân số sau, phân số nào là phân số tối giản?

      A. \(\dfrac{6}{9}\)

      B. \(\dfrac{4}{7}\)

      C. \(\dfrac{{20}}{{15}}\)

      D. \(\dfrac{{15}}{{27}}\)

      Đáp án

      B. \(\dfrac{4}{7}\)

      Phương pháp giải :

      - Rút gọn các phân số đã cho (nếu được)Phân số tối giản là phân số có tử số và mẫu số không cùng chia hết cho một số tự nhiên nào lớn hơn \(1\), hay phân số tối giản là phân số không thể rút gọn được nữa.

      Lời giải chi tiết :

      Ta có: \(\dfrac{6}{9} = \dfrac{{6:3}}{{9:3}} = \dfrac{2}{3}\,\,\,\, ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{{20}}{{15}} = \dfrac{{20:5}}{{15:5}} = \dfrac{4}{3}\,\,\, ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{{15}}{{27}} = \dfrac{{15:3}}{{27:3}} = \dfrac{5}{9}\)

      Phân số \(\dfrac{4}{7}\) có tử số và mẫu số không cùng chia hết cho một số tự nhiên nào lớn hơn \(1\), nên \(\dfrac{4}{7}\) là phân số tối giản.

      Vậy trong các phân số đã cho, phân số tối giản là phân số \(\dfrac{4}{7}\).

      Câu 2 :

      Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 10

      Rút gọn phân số sau thành phân số tối giản:

      $\frac{5}{20}=\frac{?}{?}$
      Đáp án
      $\frac{5}{20}=\frac{1}{4}$
      Phương pháp giải :

      Ta thấy \(5\) và \(20\) cùng chia hết cho \(5\) nên ta chia cả tử số và mẫu số của phân số \(\dfrac{5}{{20}}\) cho \(5\).

      Lời giải chi tiết :

      Ta thấy \(5\) và \(20\) cùng chia hết cho \(5\) nên ta có:

      \(\dfrac{5}{{20}} = \dfrac{{5:5}}{{20:5}} = \dfrac{1}{4}\)

      Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(1\,;\,\,4\).

      Câu 3 :

      Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 11

      \(\dfrac{{4 \times 5 \times 7}}{{7 \times 5 \times 9}} = \dfrac{4}{9}\) . Đúng hay sai?

      A. Đúng

      B. Sai

      Đáp án

      A. Đúng

      B. Sai

      Phương pháp giải :

      Tích ở tử số và mẫu số đều có thừa số chung là \(5\) và \(7\) nên ta cùng chia nhẩm tích ở tử số và mẫu số cho \(5\), rồi cùng chia nhẩm cho \(7\).

      Lời giải chi tiết :

      Ta có:

      Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 12

      Vậy phép tính đã cho là đúng.

      Câu 4 :

      Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 13

      Trong các phân số sau, phân số nào chưa tối giản:

      • A.

        $\frac{1}{7}$

      • B.

        $\frac{{21}}{{35}}$

      • C.

        $\frac{{97}}{{90}}$

      • D.

        $\frac{{81}}{4}$

      Đáp án : B

      Phương pháp giải :

      Phân số tối giản là phân số có tử số và mẫu số không cùng chia hết cho số tự nhiên nào lớn hơn 1.

      Lời giải chi tiết :

      Phân số chưa tối giản là $\frac{{21}}{{35}}$

      Câu 5 :

      Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 14

      Trong các phân số sau phân số nào bằng phân số $\frac{{24}}{{120}}$

      • A.

        $\frac{{20}}{{100}}$

      • B.

        $\frac{4}{{25}}$

      • C.

        $\frac{4}{5}$

      • D.

        $\frac{7}{{28}}$

      Đáp án : A

      Phương pháp giải :

      Rút gọn phân số đã cho để trả lời câu hỏi của bài toán

      Lời giải chi tiết :

      Ta có $\frac{{24}}{{120}} = \frac{1}{5} = \frac{{20}}{{100}}$

      Câu 6 :

      Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 15

      Rút gọn phân số \(\dfrac{{72}}{{180}}\) ta được phân số tối giản là:

      A. \(\dfrac{2}{5}\)

      B. \(\dfrac{3}{5}\)

      C. \(\dfrac{{18}}{{45}}\)

      D. \(\dfrac{8}{{20}}\)

      Đáp án

      A. \(\dfrac{2}{5}\)

      Phương pháp giải :

      Khi rút gọn phân số có thể làm như sau:

      - Xét xem tử số và mẫu số cùng chia hết cho số tự nhiên nào lớn hơn \(1\).

      - Chia tử số và mẫu số cho số đó.

      Cứ làm như thế cho đến khi nhận được phân số tối giản.

      Lời giải chi tiết :

      Ta thấy phân số \(\dfrac{{72}}{{180}}\) có tử số và mẫu số đều chia hết cho \(4\), nên ta có:

      \(\dfrac{{72}}{{180}} = \dfrac{{72:4}}{{180:4}} = \dfrac{{18}}{{45}}\)

      Ta thấy phân số \(\dfrac{{18}}{{45}}\) có tử số và mẫu số đều chia hết cho \(9\), nên ta có:

      \(\dfrac{{18}}{{45}} = \dfrac{{18:9}}{{45:9}} = \dfrac{2}{5}\)

      Ta thấy phân số \(\dfrac{2}{5}\) có tử số và mẫu số không cùng chia hết cho số tự nhiên nào lớn hơn \(1\) nên \(\dfrac{2}{5}\) là phân số tối giản.

      Vậy \(\dfrac{{72}}{{180}} = \dfrac{2}{5}\).

      Câu 7 :

      Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 16

      Phân số bằng với phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất là phân số 

      $\frac{?}{?}$
      Đáp án
      $\frac{3}{5}$
      Phương pháp giải :

      Phân số bằng với phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất chính là phân số tối giản sau khi rút gọn phân số \(\dfrac{{216}}{{360}}\).

      Lời giải chi tiết :

      Phân số cần tìm bằng phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất chính là phân số tối giản sau khi rút gọn phân số \(\dfrac{{216}}{{360}}\).

      Rút gọn phân số \(\dfrac{{216}}{{360}}\) để được phân số tối giản, ta có:

      \(\begin{array}{l}\dfrac{{216}}{{360}} = \dfrac{{216:4}}{{360:4}} = \dfrac{{54}}{{90}}\\\dfrac{{54}}{{90}} = \dfrac{{54:9}}{{90:9}} = \dfrac{6}{{10}}\\\dfrac{6}{{10}} = \dfrac{{6:2}}{{10:2}} = \dfrac{3}{5}\end{array}\)

      Ta thấy phân số \(\dfrac{3}{5}\) có tử số và mẫu số không cùng chia hết cho số tự nhiên nào lớn hơn \(1\) nên \(\dfrac{3}{5}\) là phân số tối giản.

      Do đó, phân số bằng với phân số \(\dfrac{{216}}{{360}}\) và có mẫu số bé nhất là phân số \(\dfrac{3}{5}\).

      Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(3\,;\,\,5\).

      Câu 8 :

      Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo 0 17

      Rút gọn phân số sau thành phân số tối giản:

      $\frac{2\times 9\times 44}{33\times 45\times 7}=\frac{?}{?}$
      Đáp án
      $\frac{2\times 9\times 44}{33\times 45\times 7}=\frac{8}{105}$
      Phương pháp giải :

      Phân tích tử số và mẫu số thành tích của các thừa số, sau đó chia nhẩm tích ở tử số và mẫu số cho các thừa số chung.

      Lời giải chi tiết :

      Tách \(44\) thành tích của \(11\) và \(4\), tách \(33\) thành tích của \(11\) và \(3\) , tách \(45\) thành tích của \(9\) và \(5\) , ta có:

      \(\dfrac{{2 \times 9 \times 44}}{{33 \times 45 \times 7}} = \dfrac{{2 \times 9 \times 11 \times 4}}{{11 \times 3 \times 9 \times 5 \times 7}}\)

      Ta thấy tích ở trên gạch ngang và tích ở dưới gạch ngang đều có chung các thừa số là \(9\) và \(11\).

      Cùng chia nhẩm tích ở trên gạch ngang và tích ở dưới gạch ngang cho \(9\) và \(11\) ta được: \(\dfrac{{2 \times 9 \times 44}}{{33 \times 45 \times 7}} = \dfrac{{2 \times 9 \times 11 \times 4}}{{11 \times 3 \times 9 \times 5 \times 7}} = \dfrac{{2 \times 4}}{{3 \times 5 \times 7}} = \dfrac{8}{{105}}\)

      Mà \(\dfrac{8}{{105}}\) là phân số tối giản vì có tử số và mẫu số không cùng chia hết cho số tự nhiên nào khác \(1\).

      Vậy \(\dfrac{{2 \times 9 \times 44}}{{33 \times 45 \times 7}} = \dfrac{8}{{105}}\)

      Đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(8\,;\,\,105\).

      Khai phá tiềm năng Toán lớp 4! Khám phá ngay Trắc nghiệm Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo – nội dung đột phá trong chuyên mục giải toán lớp 4 trên nền tảng đề thi toán. Với bộ bài tập Lý thuyết Toán tiểu học được biên soạn chuyên sâu, bám sát chặt chẽ chương trình sách giáo khoa hiện hành, đây chính là "chìa khóa" giúp học sinh lớp 4 tối ưu hóa quá trình ôn luyện, củng cố toàn diện kiến thức qua phương pháp tiếp cận trực quan, mang lại hiệu quả học tập vượt trội!

      Bài 63: Rút gọn phân số Toán 4 Chân trời sáng tạo - Tổng hợp kiến thức và bài tập

      Bài 63 trong chương trình Toán 4 Chân trời sáng tạo tập trung vào kỹ năng rút gọn phân số – một trong những kiến thức nền tảng quan trọng của toán học. Việc nắm vững phương pháp rút gọn phân số không chỉ giúp học sinh giải quyết các bài toán một cách nhanh chóng và chính xác mà còn là bước đệm quan trọng cho các kiến thức nâng cao hơn ở các lớp trên.

      1. Khái niệm phân số và rút gọn phân số

      Phân số là biểu thức của một hoặc nhiều phần bằng nhau của một đơn vị. Một phân số được biểu diễn dưới dạng a/b, trong đó a là tử số và b là mẫu số. Để rút gọn phân số, ta cần tìm ước chung lớn nhất (ƯCLN) của tử số và mẫu số, sau đó chia cả tử số và mẫu số cho ƯCLN đó.

      2. Tìm ước chung lớn nhất (ƯCLN)

      ƯCLN của hai hoặc nhiều số là số lớn nhất mà cả các số đó đều chia hết. Có nhiều phương pháp để tìm ƯCLN, trong đó phương pháp phân tích ra thừa số nguyên tố là phổ biến nhất.

      • Ví dụ: Tìm ƯCLN của 12 và 18.
      • 12 = 22 x 3
      • 18 = 2 x 32
      • ƯCLN(12, 18) = 2 x 3 = 6

      3. Quy tắc rút gọn phân số

      Để rút gọn phân số a/b, ta thực hiện các bước sau:

      1. Tìm ƯCLN của a và b.
      2. Chia cả tử số và mẫu số cho ƯCLN vừa tìm được.
      3. Phân số mới thu được là phân số tối giản (không thể rút gọn được nữa).

      Ví dụ: Rút gọn phân số 12/18.

      ƯCLN(12, 18) = 6

      12 : 6 = 2

      18 : 6 = 3

      Vậy, 12/18 = 2/3

      4. Bài tập trắc nghiệm minh họa

      Dưới đây là một số bài tập trắc nghiệm giúp các em luyện tập kỹ năng rút gọn phân số:

      1. Rút gọn phân số 15/25.
      2. Rút gọn phân số 24/36.
      3. Rút gọn phân số 30/45.
      4. Rút gọn phân số 48/60.
      5. Rút gọn phân số 63/81.

      Đáp án:

      • 15/25 = 3/5
      • 24/36 = 2/3
      • 30/45 = 2/3
      • 48/60 = 4/5
      • 63/81 = 7/9

      5. Mẹo và lưu ý khi rút gọn phân số

      • Luôn tìm ƯCLN của tử số và mẫu số trước khi rút gọn.
      • Nếu tử số và mẫu số không có ước chung nào khác 1, phân số đó đã là phân số tối giản.
      • Kiểm tra lại kết quả sau khi rút gọn để đảm bảo phân số mới là phân số tối giản.

      6. Ứng dụng của việc rút gọn phân số

      Việc rút gọn phân số có nhiều ứng dụng trong thực tế, chẳng hạn như:

      • So sánh hai phân số.
      • Thực hiện các phép toán với phân số (cộng, trừ, nhân, chia).
      • Giải các bài toán thực tế liên quan đến phân số.

      7. Luyện tập thêm với giaitoan.edu.vn

      Giaitoan.edu.vn cung cấp một hệ thống bài tập trắc nghiệm phong phú và đa dạng về chủ đề rút gọn phân số. Các bài tập được thiết kế theo mức độ khó tăng dần, giúp các em học sinh từ dễ dàng đến nâng cao kiến thức. Hãy truy cập giaitoan.edu.vn để luyện tập và củng cố kiến thức ngay hôm nay!

      Hy vọng với những kiến thức và bài tập trên, các em sẽ nắm vững kỹ năng rút gọn phân số và đạt kết quả tốt trong môn Toán.