Chào mừng các em học sinh lớp 4 đến với bài trắc nghiệm Quy đồng mẫu số các phân số thuộc chương trình Toán 4 Chân trời sáng tạo. Bài tập này được thiết kế để giúp các em củng cố kiến thức và rèn luyện kỹ năng giải toán một cách hiệu quả.
Tại giaitoan.edu.vn, chúng tôi cung cấp một nền tảng học toán online tiện lợi, với nhiều bài tập đa dạng và đáp án chi tiết, giúp các em tự tin hơn trong quá trình học tập.
Mẫu số chung nhỏ nhất của hai phân số \(\dfrac{5}{6}\) và \(\dfrac{7}{{18}}\) là:
A. \(12\)
B. \(18\)
C. \(36\)
D. \(54\)
Quy đồng mẫu số các phân số \(\dfrac{7}{{12}}\) và \(\dfrac{1}{2}\) ta được hai phân số \(\dfrac{7}{{12}}\) và \(\dfrac{6}{{12}}\). Đúng hay sai?
A. Đúng
B. Sai
Quy đồng mẫu số các phân số \(\dfrac{7}{9}\) và \(\dfrac{{35}}{{72}}\) ta được hai phân số là:
A. \(\dfrac{{504}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
B. \(\dfrac{{56}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
C. \(\dfrac{{79}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
D. \(\dfrac{{42}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
Quy đồng mẫu số \(3\) phân số \(\dfrac{1}{3}\,;\,\,\dfrac{3}{4}\,;\,\,\dfrac{7}{{12}}\) ta được \(3\) phân số lần lượt là:
Quy đồng mẫu số của phân số \(\dfrac{2}{3}\) và \(\dfrac{1}{4}\) ta được phân số \(\dfrac{8}{{12}}\) và phân số \(...\).
Phân số thích hợp điền vào chỗ chấm là:
A. \(\dfrac{3}{{12}}\)
B. \(\dfrac{4}{{12}}\)
C. \(\dfrac{5}{{12}}\)
D. \(\dfrac{6}{{12}}\)
Quy đồng mẫu số các phân số \(\dfrac{4}{5}\) và \(\dfrac{3}{7}\) ta được hai phân số lần lượt là:
A. \(\dfrac{{12}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
B. \(\dfrac{{11}}{{35}}\) và \(\dfrac{8}{{35}}\)
C. \(\dfrac{{35}}{{28}}\) và \(\dfrac{{35}}{{15}}\)
D. \(\dfrac{{28}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
Hai phân số lần lượt bằng \(\dfrac{5}{8}\) và \(\dfrac{7}{{12}}\) và có mẫu số chung bằng \(24\) là:
A. \(\dfrac{{20}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
B. \(\dfrac{{14}}{{24}}\) và \(\dfrac{{15}}{{24}}\)
C. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{21}}{{24}}\)
D. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
Quy đồng mẫu số \(3\) phân số \(\dfrac{3}{5}\,\,;\,\,\dfrac{2}{3}\,\,;\,\,\dfrac{8}{9}\) ta được các phân số lần lượt là:
A. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
B. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{38}}{{45}}\,\,\,;\,\,\,\,\dfrac{{38}}{{45}}\,\)
C. \(\dfrac{{25}}{{45}}\,\,\,;\,\,\,\,\dfrac{{35}}{{45}}\,\,\,;\,\,\,\,\dfrac{{42}}{{45}}\,\)
D. \(\dfrac{{20}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
Quy đồng mẫu số các phân số \(\dfrac{5}{8}\) và \(\dfrac{2}{3}\) (với mẫu số chung nhỏ nhất) ta được hai phân số lần lượt là:
Viết các phân số \(\dfrac{{63}}{{72}}\) và \(\dfrac{{45}}{{135}}\) thành \(2\) phân số đều có mẫu số là \(24\).
Vậy ta viết được các phân số lần lượt là:
A. \(\dfrac{{20}}{{24}}\) và \(\dfrac{8}{{24}}\)
B. \(\dfrac{{21}}{{24}}\) và \(\dfrac{8}{{24}}\)
C. \(\dfrac{{21}}{{24}}\) và \(\dfrac{6}{{24}}\)
D. \(\dfrac{{14}}{{24}}\) và \(\dfrac{{10}}{{24}}\)
Lời giải và đáp án
Mẫu số chung nhỏ nhất của hai phân số \(\dfrac{5}{6}\) và \(\dfrac{7}{{18}}\) là:
A. \(12\)
B. \(18\)
C. \(36\)
D. \(54\)
B. \(18\)
Mẫu số chung nhỏ nhất là mẫu số nhỏ nhất chia hết cho mẫu số của hai phân số đã cho.
Ta thấy: \(18; 36; 54\) chia hết cho cả \(6\) và \(18\).
\(18\) là mẫu số chung chia hết cho mẫu số của hai phân số \(\dfrac{5}{6}\) và \(\dfrac{7}{{18}}\) và là mẫu số chung nhỏ nhất.
Vậy đáp án đúng là \(18\).
Quy đồng mẫu số các phân số \(\dfrac{7}{{12}}\) và \(\dfrac{1}{2}\) ta được hai phân số \(\dfrac{7}{{12}}\) và \(\dfrac{6}{{12}}\). Đúng hay sai?
A. Đúng
B. Sai
A. Đúng
B. Sai
Ta thấy \(12:2 = 6\) nên chọn \(12\) là mẫu số chung. Ta quy đồng phân số \(\dfrac{1}{2}\) bằng cách nhân cả tử số và mẫu số với \(6\) và giữ nguyên phân số \(\dfrac{7}{{12}}\).
Ta thấy \(12:2 = 6\) nên chọn \(MSC = 12\)
Quy đồng mẫu số hai phân số \(\dfrac{7}{{12}}\) và \(\dfrac{1}{2}\) ta được:
Giữ nguyên \(\dfrac{7}{{12}}\) ; \(\dfrac{1}{2} = \dfrac{{1 \times 6}}{{2 \times 6}} = \dfrac{6}{{12}}\)
Vậy quy đồng mẫu số của phân số \(\dfrac{7}{{12}}\) và \(\dfrac{1}{2}\) ta được hai phân số \(\dfrac{7}{{12}}\) và \(\dfrac{6}{{12}}\).
Quy đồng mẫu số các phân số \(\dfrac{7}{9}\) và \(\dfrac{{35}}{{72}}\) ta được hai phân số là:
A. \(\dfrac{{504}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
B. \(\dfrac{{56}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
C. \(\dfrac{{79}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
D. \(\dfrac{{42}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
B. \(\dfrac{{56}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
Ta thấy \(72:9 = 8\) nên chọn \(72\) là mẫu số chung. Ta quy đồng phân số \(\dfrac{7}{9}\) bằng cách nhân cả tử số và mẫu số với \(8\) và giữ nguyên phân số \(\dfrac{{35}}{{72}}\).
Ta thấy \(72:9 = 8\) nên chọn \(MSC = 72\).
Quy đồng mẫu số các phân số \(\dfrac{7}{9}\) và \(\dfrac{{35}}{{72}}\) như sau:
\(\dfrac{7}{9} = \dfrac{{7 \times 8}}{{9 \times 8}} = \dfrac{{56}}{{72}}\) ; Giữ nguyên phân số \(\dfrac{{35}}{{72}}\)
Vậy quy đồng mẫu số các phân số \(\dfrac{7}{9}\) và \(\dfrac{{35}}{{72}}\) ta được hai phân số \(\dfrac{{56}}{{72}}\) và \(\dfrac{{35}}{{72}}\).
Quy đồng mẫu số \(3\) phân số \(\dfrac{1}{3}\,;\,\,\dfrac{3}{4}\,;\,\,\dfrac{7}{{12}}\) ta được \(3\) phân số lần lượt là:
Ta thấy \(12:3 = 4\,\,;\,\,12:4 = 3\) nên chọn mẫu số chung nhỏ nhất là \(12\).
Ta quy đồng các phân số đã cho với mẫu số chung là \(12\).
Ta thấy \(12:3 = 4\,\,;\,\,12:4 = 3\) nên chọn mẫu số chung nhỏ nhất là \(12\).
Quy đồng mẫu số các phân số ta được:
\(\dfrac{1}{3} = \dfrac{{1 \times 4}}{{3 \times 4}} = \dfrac{4}{{12}}\,\,\,;\,\,\, \quad \quad \quad \dfrac{3}{4} = \dfrac{{3 \times 3}}{{4 \times 3}} = \dfrac{9}{{12}};\)
Giữ nguyên phân số \(\dfrac{7}{{12}}\).
Vậy quy đồng mẫu số \(3\) phân số \(\dfrac{1}{3}\,;\,\,\dfrac{3}{4}\,;\,\,\dfrac{7}{{12}}\) ta được \(3\) phân số lần lượt là \(\dfrac{4}{{12}}\,\,;\,\,\,\,\dfrac{9}{{12}}\) và \(\dfrac{7}{{12}}\).
Quy đồng mẫu số của phân số \(\dfrac{2}{3}\) và \(\dfrac{1}{4}\) ta được phân số \(\dfrac{8}{{12}}\) và phân số \(...\).
Phân số thích hợp điền vào chỗ chấm là:
A. \(\dfrac{3}{{12}}\)
B. \(\dfrac{4}{{12}}\)
C. \(\dfrac{5}{{12}}\)
D. \(\dfrac{6}{{12}}\)
A. \(\dfrac{3}{{12}}\)
Khi quy đồng mẫu số hai phân số có thể làm như sau:
- Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.
- Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.
Chọn \(MSC = 12\)
Quy đồng mẫu số hai phân số \(\dfrac{2}{3}\) và \(\dfrac{1}{4}\) ta được:
\(\dfrac{2}{3} = \dfrac{{2 \times 4}}{{3 \times 4}} = \dfrac{8}{{12}}\,\,\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{1}{4} = \dfrac{{1 \times 3}}{{4 \times 3}} = \dfrac{3}{{12}}\)
Vậy quy đồng mẫu số của phân số \(\dfrac{2}{3}\) và \(\dfrac{1}{4}\) ta được hai phân số \(\dfrac{8}{{12}}\) và \(\dfrac{3}{{12}}\).
Quy đồng mẫu số các phân số \(\dfrac{4}{5}\) và \(\dfrac{3}{7}\) ta được hai phân số lần lượt là:
A. \(\dfrac{{12}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
B. \(\dfrac{{11}}{{35}}\) và \(\dfrac{8}{{35}}\)
C. \(\dfrac{{35}}{{28}}\) và \(\dfrac{{35}}{{15}}\)
D. \(\dfrac{{28}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
D. \(\dfrac{{28}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
Khi quy đồng mẫu số hai phân số có thể làm như sau:
- Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.
- Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.
Chọn \(MSC = 35\)
Quy đồng mẫu số hai phân số \(\dfrac{4}{5}\) và \(\dfrac{3}{7}\) ta được:
\(\dfrac{4}{5} = \dfrac{{4 \times 7}}{{5 \times 7}} = \dfrac{{28}}{{35}}\,\,\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{3}{7} = \dfrac{{3 \times 5}}{{7 \times 5}} = \dfrac{{15}}{{36}}\)
Vậy quy đồng mẫu số của phân số \(\dfrac{4}{5}\) và \(\dfrac{3}{7}\) ta được hai phân số \(\dfrac{{28}}{{35}}\) và \(\dfrac{{15}}{{35}}\).
Hai phân số lần lượt bằng \(\dfrac{5}{8}\) và \(\dfrac{7}{{12}}\) và có mẫu số chung bằng \(24\) là:
A. \(\dfrac{{20}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
B. \(\dfrac{{14}}{{24}}\) và \(\dfrac{{15}}{{24}}\)
C. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{21}}{{24}}\)
D. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
D. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
Quy đồng hai phân số đã cho với mẫu số chung là \(24\).
Chọn \(MSC = 24\)
Quy đồng mẫu số hai phân số \(\dfrac{5}{8}\) và \(\dfrac{7}{{12}}\):
\(\dfrac{5}{8} = \dfrac{{5 \times 3}}{{8 \times 3}} = \dfrac{{15}}{{24}}\,\,\,\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\, \quad \dfrac{7}{{12}} = \dfrac{{7 \times 2}}{{12 \times 2}} = \dfrac{{14}}{{24}}\)
Vậy hai phân số lần lượt bằng \(\dfrac{5}{8}\) và \(\dfrac{7}{{12}}\) và có mẫu số chung bằng \(24\) là \(\dfrac{{15}}{{24}}\) và \(\dfrac{{14}}{{24}}\).
Quy đồng mẫu số \(3\) phân số \(\dfrac{3}{5}\,\,;\,\,\dfrac{2}{3}\,\,;\,\,\dfrac{8}{9}\) ta được các phân số lần lượt là:
A. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
B. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{38}}{{45}}\,\,\,;\,\,\,\,\dfrac{{38}}{{45}}\,\)
C. \(\dfrac{{25}}{{45}}\,\,\,;\,\,\,\,\dfrac{{35}}{{45}}\,\,\,;\,\,\,\,\dfrac{{42}}{{45}}\,\)
D. \(\dfrac{{20}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
A. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
Ta thấy \(45:5 = 9\,\,;\,\,45:3 = 15\,\,;\,\,45:9 = 5\) nên chọn mẫu số chung nhỏ nhất là \(45\).
Ta quy đồng các phân số đã cho với mẫu số chung là \(45\).
Ta thấy \(45:5 = 9\,\,;\,\,45:3 = 15\,\,;\,\,45:9 = 5\) nên chọn mẫu số chung nhỏ nhất là \(45\).
Quy đồng mẫu số các phân số ta được:
\(\dfrac{3}{5} = \dfrac{{3 \times 9}}{{5 \times 9}} = \dfrac{{27}}{{45}}\,\,\,\,;\,\,\,\,\,\,\,\dfrac{2}{3} = \dfrac{{2 \times 15}}{{3 \times 15}} = \dfrac{{30}}{{45}}\,\,\,\,;\,\,\,\,\,\,\,\dfrac{8}{9} = \dfrac{{8 \times 5}}{{9 \times 5}} = \dfrac{{40}}{{45}}\)
Vậy quy đồng mẫu số \(3\) phân số \(\dfrac{3}{5}\,\,;\,\,\dfrac{2}{3}\,\,;\,\,\dfrac{8}{9}\) ta được \(3\) phân số lần lượt là \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\).
Quy đồng mẫu số các phân số \(\dfrac{5}{8}\) và \(\dfrac{2}{3}\) (với mẫu số chung nhỏ nhất) ta được hai phân số lần lượt là:
Khi quy đồng mẫu số hai phân số có thể làm như sau:
- Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.
- Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.
Chọn \(MSC = 24\).
Quy đồng mẫu số hai phân số \(\dfrac{5}{8}\) và \(\dfrac{2}{3}\) ta được:
$\dfrac{5}{8} = \dfrac{{5 \times 3}}{{8 \times 3}} = \dfrac{{15}}{{24}}\,\,\,;\,\,\,\, \quad \dfrac{2}{3} = \dfrac{{2 \times 8}}{{3 \times 8}} = \dfrac{{16}}{{24}}$
Vậy quy đồng mẫu số các phân số \(\dfrac{5}{8}\) và \(\dfrac{2}{3}\) ta được hai phân số \(\dfrac{{15}}{{24}}\) và $\dfrac{{16}}{{24}}$.
Viết các phân số \(\dfrac{{63}}{{72}}\) và \(\dfrac{{45}}{{135}}\) thành \(2\) phân số đều có mẫu số là \(24\).
Vậy ta viết được các phân số lần lượt là:
A. \(\dfrac{{20}}{{24}}\) và \(\dfrac{8}{{24}}\)
B. \(\dfrac{{21}}{{24}}\) và \(\dfrac{8}{{24}}\)
C. \(\dfrac{{21}}{{24}}\) và \(\dfrac{6}{{24}}\)
D. \(\dfrac{{14}}{{24}}\) và \(\dfrac{{10}}{{24}}\)
B. \(\dfrac{{21}}{{24}}\) và \(\dfrac{8}{{24}}\)
Rút gọn các phân số đã cho thành phân số tối giản rồi quy đồng mẫu số các phân số đó.
Rút gọn \(2\) phân số \(\dfrac{{63}}{{72}}\) và \(\dfrac{{45}}{{135}}\) ta có:
\( \dfrac{{63}}{{72}} = \dfrac{{63:9}}{{72:9}} = \dfrac{7}{8}\);
\( \dfrac{{45}}{{135}} = \dfrac{{45:5}}{{135:5}} = \dfrac{9}{{27}} = \dfrac{{9:3}}{{27:3}} = \dfrac{1}{3}\).
Quy đồng mẫu số hai phân số \(\dfrac{7}{8}\) và \(\dfrac{1}{3}\) với mẫu số chung là \(24\) ta có:
$\dfrac{7}{8} = \dfrac{{7 \times 3}}{{8 \times 3}} = \dfrac{{21}}{{24}}\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\dfrac{1}{3} = \dfrac{{1 \times 8}}{{3 \times 8}} = \dfrac{8}{{24}}$
Vậy các phân số \(\dfrac{{63}}{{72}}\) và \(\dfrac{{45}}{{135}}\) được viết thành \(2\) phân số đều có mẫu số là \(24\) lần lượt là \(\dfrac{{21}}{{24}}\) và \(\dfrac{8}{{24}}\).
Mẫu số chung nhỏ nhất của hai phân số \(\dfrac{5}{6}\) và \(\dfrac{7}{{18}}\) là:
A. \(12\)
B. \(18\)
C. \(36\)
D. \(54\)
Quy đồng mẫu số các phân số \(\dfrac{7}{{12}}\) và \(\dfrac{1}{2}\) ta được hai phân số \(\dfrac{7}{{12}}\) và \(\dfrac{6}{{12}}\). Đúng hay sai?
A. Đúng
B. Sai
Quy đồng mẫu số các phân số \(\dfrac{7}{9}\) và \(\dfrac{{35}}{{72}}\) ta được hai phân số là:
A. \(\dfrac{{504}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
B. \(\dfrac{{56}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
C. \(\dfrac{{79}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
D. \(\dfrac{{42}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
Quy đồng mẫu số \(3\) phân số \(\dfrac{1}{3}\,;\,\,\dfrac{3}{4}\,;\,\,\dfrac{7}{{12}}\) ta được \(3\) phân số lần lượt là:
Quy đồng mẫu số của phân số \(\dfrac{2}{3}\) và \(\dfrac{1}{4}\) ta được phân số \(\dfrac{8}{{12}}\) và phân số \(...\).
Phân số thích hợp điền vào chỗ chấm là:
A. \(\dfrac{3}{{12}}\)
B. \(\dfrac{4}{{12}}\)
C. \(\dfrac{5}{{12}}\)
D. \(\dfrac{6}{{12}}\)
Quy đồng mẫu số các phân số \(\dfrac{4}{5}\) và \(\dfrac{3}{7}\) ta được hai phân số lần lượt là:
A. \(\dfrac{{12}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
B. \(\dfrac{{11}}{{35}}\) và \(\dfrac{8}{{35}}\)
C. \(\dfrac{{35}}{{28}}\) và \(\dfrac{{35}}{{15}}\)
D. \(\dfrac{{28}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
Hai phân số lần lượt bằng \(\dfrac{5}{8}\) và \(\dfrac{7}{{12}}\) và có mẫu số chung bằng \(24\) là:
A. \(\dfrac{{20}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
B. \(\dfrac{{14}}{{24}}\) và \(\dfrac{{15}}{{24}}\)
C. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{21}}{{24}}\)
D. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
Quy đồng mẫu số \(3\) phân số \(\dfrac{3}{5}\,\,;\,\,\dfrac{2}{3}\,\,;\,\,\dfrac{8}{9}\) ta được các phân số lần lượt là:
A. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
B. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{38}}{{45}}\,\,\,;\,\,\,\,\dfrac{{38}}{{45}}\,\)
C. \(\dfrac{{25}}{{45}}\,\,\,;\,\,\,\,\dfrac{{35}}{{45}}\,\,\,;\,\,\,\,\dfrac{{42}}{{45}}\,\)
D. \(\dfrac{{20}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
Quy đồng mẫu số các phân số \(\dfrac{5}{8}\) và \(\dfrac{2}{3}\) (với mẫu số chung nhỏ nhất) ta được hai phân số lần lượt là:
Viết các phân số \(\dfrac{{63}}{{72}}\) và \(\dfrac{{45}}{{135}}\) thành \(2\) phân số đều có mẫu số là \(24\).
Vậy ta viết được các phân số lần lượt là:
A. \(\dfrac{{20}}{{24}}\) và \(\dfrac{8}{{24}}\)
B. \(\dfrac{{21}}{{24}}\) và \(\dfrac{8}{{24}}\)
C. \(\dfrac{{21}}{{24}}\) và \(\dfrac{6}{{24}}\)
D. \(\dfrac{{14}}{{24}}\) và \(\dfrac{{10}}{{24}}\)
Mẫu số chung nhỏ nhất của hai phân số \(\dfrac{5}{6}\) và \(\dfrac{7}{{18}}\) là:
A. \(12\)
B. \(18\)
C. \(36\)
D. \(54\)
B. \(18\)
Mẫu số chung nhỏ nhất là mẫu số nhỏ nhất chia hết cho mẫu số của hai phân số đã cho.
Ta thấy: \(18; 36; 54\) chia hết cho cả \(6\) và \(18\).
\(18\) là mẫu số chung chia hết cho mẫu số của hai phân số \(\dfrac{5}{6}\) và \(\dfrac{7}{{18}}\) và là mẫu số chung nhỏ nhất.
Vậy đáp án đúng là \(18\).
Quy đồng mẫu số các phân số \(\dfrac{7}{{12}}\) và \(\dfrac{1}{2}\) ta được hai phân số \(\dfrac{7}{{12}}\) và \(\dfrac{6}{{12}}\). Đúng hay sai?
A. Đúng
B. Sai
A. Đúng
B. Sai
Ta thấy \(12:2 = 6\) nên chọn \(12\) là mẫu số chung. Ta quy đồng phân số \(\dfrac{1}{2}\) bằng cách nhân cả tử số và mẫu số với \(6\) và giữ nguyên phân số \(\dfrac{7}{{12}}\).
Ta thấy \(12:2 = 6\) nên chọn \(MSC = 12\)
Quy đồng mẫu số hai phân số \(\dfrac{7}{{12}}\) và \(\dfrac{1}{2}\) ta được:
Giữ nguyên \(\dfrac{7}{{12}}\) ; \(\dfrac{1}{2} = \dfrac{{1 \times 6}}{{2 \times 6}} = \dfrac{6}{{12}}\)
Vậy quy đồng mẫu số của phân số \(\dfrac{7}{{12}}\) và \(\dfrac{1}{2}\) ta được hai phân số \(\dfrac{7}{{12}}\) và \(\dfrac{6}{{12}}\).
Quy đồng mẫu số các phân số \(\dfrac{7}{9}\) và \(\dfrac{{35}}{{72}}\) ta được hai phân số là:
A. \(\dfrac{{504}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
B. \(\dfrac{{56}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
C. \(\dfrac{{79}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
D. \(\dfrac{{42}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
B. \(\dfrac{{56}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
Ta thấy \(72:9 = 8\) nên chọn \(72\) là mẫu số chung. Ta quy đồng phân số \(\dfrac{7}{9}\) bằng cách nhân cả tử số và mẫu số với \(8\) và giữ nguyên phân số \(\dfrac{{35}}{{72}}\).
Ta thấy \(72:9 = 8\) nên chọn \(MSC = 72\).
Quy đồng mẫu số các phân số \(\dfrac{7}{9}\) và \(\dfrac{{35}}{{72}}\) như sau:
\(\dfrac{7}{9} = \dfrac{{7 \times 8}}{{9 \times 8}} = \dfrac{{56}}{{72}}\) ; Giữ nguyên phân số \(\dfrac{{35}}{{72}}\)
Vậy quy đồng mẫu số các phân số \(\dfrac{7}{9}\) và \(\dfrac{{35}}{{72}}\) ta được hai phân số \(\dfrac{{56}}{{72}}\) và \(\dfrac{{35}}{{72}}\).
Quy đồng mẫu số \(3\) phân số \(\dfrac{1}{3}\,;\,\,\dfrac{3}{4}\,;\,\,\dfrac{7}{{12}}\) ta được \(3\) phân số lần lượt là:
Ta thấy \(12:3 = 4\,\,;\,\,12:4 = 3\) nên chọn mẫu số chung nhỏ nhất là \(12\).
Ta quy đồng các phân số đã cho với mẫu số chung là \(12\).
Ta thấy \(12:3 = 4\,\,;\,\,12:4 = 3\) nên chọn mẫu số chung nhỏ nhất là \(12\).
Quy đồng mẫu số các phân số ta được:
\(\dfrac{1}{3} = \dfrac{{1 \times 4}}{{3 \times 4}} = \dfrac{4}{{12}}\,\,\,;\,\,\, \quad \quad \quad \dfrac{3}{4} = \dfrac{{3 \times 3}}{{4 \times 3}} = \dfrac{9}{{12}};\)
Giữ nguyên phân số \(\dfrac{7}{{12}}\).
Vậy quy đồng mẫu số \(3\) phân số \(\dfrac{1}{3}\,;\,\,\dfrac{3}{4}\,;\,\,\dfrac{7}{{12}}\) ta được \(3\) phân số lần lượt là \(\dfrac{4}{{12}}\,\,;\,\,\,\,\dfrac{9}{{12}}\) và \(\dfrac{7}{{12}}\).
Quy đồng mẫu số của phân số \(\dfrac{2}{3}\) và \(\dfrac{1}{4}\) ta được phân số \(\dfrac{8}{{12}}\) và phân số \(...\).
Phân số thích hợp điền vào chỗ chấm là:
A. \(\dfrac{3}{{12}}\)
B. \(\dfrac{4}{{12}}\)
C. \(\dfrac{5}{{12}}\)
D. \(\dfrac{6}{{12}}\)
A. \(\dfrac{3}{{12}}\)
Khi quy đồng mẫu số hai phân số có thể làm như sau:
- Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.
- Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.
Chọn \(MSC = 12\)
Quy đồng mẫu số hai phân số \(\dfrac{2}{3}\) và \(\dfrac{1}{4}\) ta được:
\(\dfrac{2}{3} = \dfrac{{2 \times 4}}{{3 \times 4}} = \dfrac{8}{{12}}\,\,\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{1}{4} = \dfrac{{1 \times 3}}{{4 \times 3}} = \dfrac{3}{{12}}\)
Vậy quy đồng mẫu số của phân số \(\dfrac{2}{3}\) và \(\dfrac{1}{4}\) ta được hai phân số \(\dfrac{8}{{12}}\) và \(\dfrac{3}{{12}}\).
Quy đồng mẫu số các phân số \(\dfrac{4}{5}\) và \(\dfrac{3}{7}\) ta được hai phân số lần lượt là:
A. \(\dfrac{{12}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
B. \(\dfrac{{11}}{{35}}\) và \(\dfrac{8}{{35}}\)
C. \(\dfrac{{35}}{{28}}\) và \(\dfrac{{35}}{{15}}\)
D. \(\dfrac{{28}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
D. \(\dfrac{{28}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
Khi quy đồng mẫu số hai phân số có thể làm như sau:
- Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.
- Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.
Chọn \(MSC = 35\)
Quy đồng mẫu số hai phân số \(\dfrac{4}{5}\) và \(\dfrac{3}{7}\) ta được:
\(\dfrac{4}{5} = \dfrac{{4 \times 7}}{{5 \times 7}} = \dfrac{{28}}{{35}}\,\,\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{3}{7} = \dfrac{{3 \times 5}}{{7 \times 5}} = \dfrac{{15}}{{36}}\)
Vậy quy đồng mẫu số của phân số \(\dfrac{4}{5}\) và \(\dfrac{3}{7}\) ta được hai phân số \(\dfrac{{28}}{{35}}\) và \(\dfrac{{15}}{{35}}\).
Hai phân số lần lượt bằng \(\dfrac{5}{8}\) và \(\dfrac{7}{{12}}\) và có mẫu số chung bằng \(24\) là:
A. \(\dfrac{{20}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
B. \(\dfrac{{14}}{{24}}\) và \(\dfrac{{15}}{{24}}\)
C. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{21}}{{24}}\)
D. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
D. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
Quy đồng hai phân số đã cho với mẫu số chung là \(24\).
Chọn \(MSC = 24\)
Quy đồng mẫu số hai phân số \(\dfrac{5}{8}\) và \(\dfrac{7}{{12}}\):
\(\dfrac{5}{8} = \dfrac{{5 \times 3}}{{8 \times 3}} = \dfrac{{15}}{{24}}\,\,\,\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\, \quad \dfrac{7}{{12}} = \dfrac{{7 \times 2}}{{12 \times 2}} = \dfrac{{14}}{{24}}\)
Vậy hai phân số lần lượt bằng \(\dfrac{5}{8}\) và \(\dfrac{7}{{12}}\) và có mẫu số chung bằng \(24\) là \(\dfrac{{15}}{{24}}\) và \(\dfrac{{14}}{{24}}\).
Quy đồng mẫu số \(3\) phân số \(\dfrac{3}{5}\,\,;\,\,\dfrac{2}{3}\,\,;\,\,\dfrac{8}{9}\) ta được các phân số lần lượt là:
A. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
B. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{38}}{{45}}\,\,\,;\,\,\,\,\dfrac{{38}}{{45}}\,\)
C. \(\dfrac{{25}}{{45}}\,\,\,;\,\,\,\,\dfrac{{35}}{{45}}\,\,\,;\,\,\,\,\dfrac{{42}}{{45}}\,\)
D. \(\dfrac{{20}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
A. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
Ta thấy \(45:5 = 9\,\,;\,\,45:3 = 15\,\,;\,\,45:9 = 5\) nên chọn mẫu số chung nhỏ nhất là \(45\).
Ta quy đồng các phân số đã cho với mẫu số chung là \(45\).
Ta thấy \(45:5 = 9\,\,;\,\,45:3 = 15\,\,;\,\,45:9 = 5\) nên chọn mẫu số chung nhỏ nhất là \(45\).
Quy đồng mẫu số các phân số ta được:
\(\dfrac{3}{5} = \dfrac{{3 \times 9}}{{5 \times 9}} = \dfrac{{27}}{{45}}\,\,\,\,;\,\,\,\,\,\,\,\dfrac{2}{3} = \dfrac{{2 \times 15}}{{3 \times 15}} = \dfrac{{30}}{{45}}\,\,\,\,;\,\,\,\,\,\,\,\dfrac{8}{9} = \dfrac{{8 \times 5}}{{9 \times 5}} = \dfrac{{40}}{{45}}\)
Vậy quy đồng mẫu số \(3\) phân số \(\dfrac{3}{5}\,\,;\,\,\dfrac{2}{3}\,\,;\,\,\dfrac{8}{9}\) ta được \(3\) phân số lần lượt là \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\).
Quy đồng mẫu số các phân số \(\dfrac{5}{8}\) và \(\dfrac{2}{3}\) (với mẫu số chung nhỏ nhất) ta được hai phân số lần lượt là:
Khi quy đồng mẫu số hai phân số có thể làm như sau:
- Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.
- Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.
Chọn \(MSC = 24\).
Quy đồng mẫu số hai phân số \(\dfrac{5}{8}\) và \(\dfrac{2}{3}\) ta được:
$\dfrac{5}{8} = \dfrac{{5 \times 3}}{{8 \times 3}} = \dfrac{{15}}{{24}}\,\,\,;\,\,\,\, \quad \dfrac{2}{3} = \dfrac{{2 \times 8}}{{3 \times 8}} = \dfrac{{16}}{{24}}$
Vậy quy đồng mẫu số các phân số \(\dfrac{5}{8}\) và \(\dfrac{2}{3}\) ta được hai phân số \(\dfrac{{15}}{{24}}\) và $\dfrac{{16}}{{24}}$.
Viết các phân số \(\dfrac{{63}}{{72}}\) và \(\dfrac{{45}}{{135}}\) thành \(2\) phân số đều có mẫu số là \(24\).
Vậy ta viết được các phân số lần lượt là:
A. \(\dfrac{{20}}{{24}}\) và \(\dfrac{8}{{24}}\)
B. \(\dfrac{{21}}{{24}}\) và \(\dfrac{8}{{24}}\)
C. \(\dfrac{{21}}{{24}}\) và \(\dfrac{6}{{24}}\)
D. \(\dfrac{{14}}{{24}}\) và \(\dfrac{{10}}{{24}}\)
B. \(\dfrac{{21}}{{24}}\) và \(\dfrac{8}{{24}}\)
Rút gọn các phân số đã cho thành phân số tối giản rồi quy đồng mẫu số các phân số đó.
Rút gọn \(2\) phân số \(\dfrac{{63}}{{72}}\) và \(\dfrac{{45}}{{135}}\) ta có:
\( \dfrac{{63}}{{72}} = \dfrac{{63:9}}{{72:9}} = \dfrac{7}{8}\);
\( \dfrac{{45}}{{135}} = \dfrac{{45:5}}{{135:5}} = \dfrac{9}{{27}} = \dfrac{{9:3}}{{27:3}} = \dfrac{1}{3}\).
Quy đồng mẫu số hai phân số \(\dfrac{7}{8}\) và \(\dfrac{1}{3}\) với mẫu số chung là \(24\) ta có:
$\dfrac{7}{8} = \dfrac{{7 \times 3}}{{8 \times 3}} = \dfrac{{21}}{{24}}\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\dfrac{1}{3} = \dfrac{{1 \times 8}}{{3 \times 8}} = \dfrac{8}{{24}}$
Vậy các phân số \(\dfrac{{63}}{{72}}\) và \(\dfrac{{45}}{{135}}\) được viết thành \(2\) phân số đều có mẫu số là \(24\) lần lượt là \(\dfrac{{21}}{{24}}\) và \(\dfrac{8}{{24}}\).
Bài 65 trong chương trình Toán 4 Chân trời sáng tạo tập trung vào kỹ năng quan trọng: quy đồng mẫu số các phân số. Đây là bước cơ bản để thực hiện các phép toán cộng, trừ phân số một cách chính xác. Việc nắm vững phương pháp quy đồng mẫu số không chỉ giúp học sinh giải quyết các bài toán trong sách giáo khoa mà còn là nền tảng cho các kiến thức toán học nâng cao hơn.
Trước khi cộng hoặc trừ các phân số, chúng ta cần đảm bảo rằng chúng có cùng mẫu số. Điều này là do các phân số chỉ có thể cộng hoặc trừ trực tiếp khi chúng biểu diễn cùng một đơn vị. Quy đồng mẫu số giúp chúng ta chuyển đổi các phân số về cùng một đơn vị, từ đó cho phép thực hiện các phép toán một cách dễ dàng.
Có hai phương pháp chính để quy đồng mẫu số:
Hãy quy đồng mẫu số các phân số sau: 1/2 và 1/3
Vậy, hai phân số 1/2 và 1/3 sau khi quy đồng mẫu số trở thành 3/6 và 2/6.
Trong bài 65, các em sẽ gặp các dạng bài tập sau:
Trắc nghiệm Bài 65: Quy đồng mẫu số các phân số Toán 4 Chân trời sáng tạo tại giaitoan.edu.vn được thiết kế với nhiều câu hỏi khác nhau, từ dễ đến khó, giúp các em kiểm tra và đánh giá mức độ hiểu bài của mình. Các câu hỏi trắc nghiệm bao gồm:
Để nắm vững kiến thức về quy đồng mẫu số, các em cần luyện tập thường xuyên. Việc giải nhiều bài tập khác nhau sẽ giúp các em hiểu rõ hơn về phương pháp và áp dụng nó một cách linh hoạt trong các tình huống khác nhau. giaitoan.edu.vn cung cấp một nguồn tài liệu phong phú và đa dạng để các em luyện tập và nâng cao kỹ năng của mình.
Quy đồng mẫu số là một kỹ năng quan trọng trong chương trình Toán 4. Hy vọng rằng, với bài trắc nghiệm và các kiến thức được cung cấp trong bài viết này, các em sẽ tự tin hơn trong việc giải các bài toán liên quan đến phân số. Chúc các em học tập tốt!