Logo Header
  1. Môn Toán
  2. Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều

Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều

Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều: Chuẩn bị tốt nhất cho kỳ thi

Giaitoan.edu.vn xin giới thiệu Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều, một công cụ ôn tập hiệu quả giúp các em học sinh nắm vững kiến thức và tự tin bước vào kỳ thi. Đề thi được biên soạn theo chương trình học Toán 7, tập trung vào các dạng bài tập thường gặp và có đáp án chi tiết.

Đề thi này không chỉ giúp các em làm quen với cấu trúc đề thi mà còn rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và khả năng áp dụng kiến thức vào thực tế.

I. TRẮC NGHIỆM ( 3 điểm) Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Đề bài

    I. TRẮC NGHIỆM ( 3 điểm)

    Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

    Câu 1. Trong trò chơi gieo 2 đồng xu, các kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu là 4. Nếu k là số kết quả thuận lợi cho biến cố thì xác suất của biến cố đó bằng

    A. k

    B. 2k

    C. \(\dfrac{k}{4}\)

    D. \(\dfrac{4}{k}\)

    Câu 2. Biết 7x = 4y và y – x = 24. Khi đó, giá trị của x, y là

    A. x = −56, y = −32;

    B. x = 32, y = 56;

    C. x = 56, y = 32;

    D. x = 56, y = −32.

    Câu 3. Diện tích xung quanh của khối gỗ có kích thước như sau:

    Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều 0 1

    A. \(44c{m^2}\)

    B. \(220c{m^2}\)

    C. \(440c{m^2}\)

    D.\(22c{m^2}\)

    Câu 4. Cho x và y là hai đại lượng tỉ lệ nghịch với nhau và khi x = –12 thì y = 8. Khi x = 3 thì y bằng:

    A. –32;

    B. 32;

    C. –2;

    D. 2.

    Câu 5. Cho bảng thống kê số lượt khách du lịch (ước đạt) đến Ninh Bình trong các năm 2016, 2017, 2018.

    Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều 0 2

    Số lượt khách du lịch đến Ninh Bình trong năm 2018 tăng bao nhiêu phần trăm so với năm 2016 (làm tròn kết quả đến hàng phần trăm)?

    A. 13,33%

    B. 13,34%

    C. 13,35%

    D. 13,36%

    Câu 6. Hệ số tự do của đa thức M = -8x2 – 4x + 3 – 2x

    A. -2;

    B. 4;

    C. 3;

    D. 5.

    Câu 7. Cho hai đa thức P(x) = 6x3 − 3x− 2x + 4 và G(x) = 5x2 − 7x + 9. Giá trị P(x) − G(x) bằng

    A. x− 9x +13;

    B. 6x3 − 8x2 + 5x −5;

    C. x3 − 8x2 + 5x −5;

    D. 5x3 − 8x2 + 5x +13.

    Câu 8. Trong các giá trị sau đây, đâu là nghiệm của đa thức 5x− 3x – 2?

    A. \(x = 1\) và \(x = \frac{2}{5}\)

    B. \(x = - 1\) và \(x = \frac{2}{5}\)

    C. \(x = 1\) và \(x = \frac{{ - 2}}{5}\)

    D. \(x = - 1\) và \(x = \frac{{ - 2}}{5}\).

    Câu 9. Cho tam giác MNP có: \(\widehat N = 70^\circ ;\widehat P = 55^\circ \). Khẳng định nào sau đây là đúng?

    A. NP < MN;

    B. NP = MN;

    C. NP > MN;

    D. Không đủ dữ kiện so sánh.

    Câu 10. Trong các khẳng định sau, khẳng định nào sai?

    A. Hình lăng trụ đứng tam giác có 4 mặt, 6 đỉnh

    B. Hình lăng trụ đứng tam giác có 5 mặt, 6 đỉnh

    C. Công thức tính diện tích xung quanh của hình lăng trụ đứng tứ giác và tam giác là \({S_{xq}} = C.h\)

    D. Hình lăng trụ đứng tứ giác là lăng trụ đứng tứ giác có các mặt bên là các hình chữ nhật

    Câu 11. Bộ ba độ dài đoạn thẳng nào sau đây không thể tạo thành một tam giác?

    A. 18cm; 28cm; 10cm;

    B. 5cm; 4cm; 6cm;

    C. 15cm; 18cm; 20cm;

    D. 11cm; 9cm; 7cm.

    Câu 12. Cho tam giác ABC vuông tại A. Khẳng định nào dưới đây là đúng?

    A. A là tâm đường tròn ngoại tiếp tam giác ABC.

    B. A là trọng tâm tam giác ABC.

    C. A là trực tâm tam giác ABC.

    D. A là tâm đường tròn nội tiếp tam giác ABC.

    II. PHẦN TỰ LUẬN (7,0 điểm)

    Bài 1. (1,5 điểm) Tính chu vi của hình chữ nhật biết rằng chiều dài và chiều rộng của hình chữ nhật đó lần lượt tỉ lệ với \(5\,\,;\,\,3\) và hai lần chiều dài hơn ba lần chiều rộng là 8 cm.

    Bài 2. (1,5 điểm) Cho hai đa thức:

    \(M\left( x \right) = 2 - 5{x^2} + 3{x^4} - 4{x^2} + 3x + {x^4} - 4{x^6} - 7x\)

    \(N\left( x \right) = {\rm{ \;}} - 1 + 5{x^6} - 6{x^2} - 5 - 9{x^6} + 4{x^4} - 3{x^2}\)

    a) Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến.

    b) Tìm đa thức \(H\left( x \right)\) và \(G\left( x \right)\) biết \(H\left( x \right) = M\left( x \right) + N\left( x \right)\) và \(G\left( x \right) = M\left( x \right) - N\left( x \right)\).

    c) Tìm nghiệm của đa thức \(G\left( x \right)\).

    Bài 3. (3,5 điểm) Cho \(\Delta ABC\) vuông tại \(A\), phân giác BD\(\left( {D \in AC} \right)\). Kẻ DE vuông góc với BC \(\left( {E \in BC} \right)\).

    a) Chứng minh: \(\Delta ABD = \Delta EBD\).

    b) Kẻ \(AH \bot BC,{\mkern 1mu} \left( {H \in BC} \right)\), AH cắt BD tại I. Chứng minh rằng AH song song với DE và \(\Delta AID\) cân.

    c) Chứng minh rằng AE là phân giác \(\widehat {HAC}\).

    d) \(\Delta ABC\) cần thêm điều kiện gì để \(DC = 2AI\).

    Bài 4. (0,5 điểm) Cho đa thức \(f\left( x \right)\) thỏa mãn \(f\left( x \right) + x.f\left( { - x} \right) = x + 1\) với mọi giá trị của \(x\). Tính \(f\left( 1 \right)\).

    Lời giải

      I. Trắc nghiệm

      1.C

      2.B

      3. C

      4.A

      5.C

      6. C

      7.B

      8.C9.B

      10.A

      11.A

      12.C

      Câu 1.

      Phương pháp

      Xác suất của biến cố trong trò chơi gieo xúc xắc bằng tỉ số của số các kết quả thuận lợi cho biến cố và số các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc.

      Cách giải:

      Nếu k là số kết quả thuận lợi cho biến cố thì xác suất của biến cố đó bằng \(\frac{k}{4}\)

      Chọn C.

      Câu 2.

      Phương pháp

      Áp dụng tính chất dãy tỉ số bằng nhau

      Lời giải

      Vì 7x = 4y nên \(\dfrac{x}{4} = \dfrac{y}{7}\)

      Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

      \(\dfrac{x}{4} = \dfrac{y}{7} = \dfrac{{y - x}}{{7 - 4}} = \dfrac{{24}}{3} = 8\)

      Do đó x = 4 . 8 = 32; y = 7 . 8 = 56.

      Chọn B.

      Câu 3.

      Phương pháp

      Diện tích xung quanh của hình lăng trụ đứng là: \({S_{xq}} = C\)đáy \(.h\)

      Cách giải:

      Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều 1 1

      Độ dài của cạnh \(x\) là: \(x = 10 - 2 - 2 = 6\,\left( {cm} \right)\)

      Độ dài của cạnh \(y\) là: \(y = 12 - 8 = 4\,\left( {cm} \right)\)

      Chu vi mặt đáy là: \(10 + 8 + 2 + 4 + 6 + 4 + 2 + 8 = 44\left( {cm} \right)\)

      Diện tích xung quanh khối gỗ là: \(44.10 = 440\left( {c{m^2}} \right)\)

      Chọn C.

      Câu 4.

      Phương pháp

      Tính chất hai đại lượng tỉ lệ nghịch: tích 2 giá trị tương ứng của 2 đại lượng luôn không đổi (bằng hệ số tỉ lệ)

      Cách giải:

      Hệ số tỉ lệ là: -12 . 8 = -96.

      Khi x = 3 thì y = -96 : 3 = -32.

      Chọn A

      Câu 5.

      Phương pháp

      Tìm tỉ số phần trăm số khách du lịch đến Ninh Bình trong năm 2018 so với năm 2016

      Tìm số lượt khách du lịch đến Ninh Bình trong năm 2018 tăng bao nhiêu phần tră m so với năm 2016

      Cách giải:

      Tỉ số phần trăm số khách du lịch đến Ninh Bình trong năm 2018 so với năm 2016 là:

      (7,3 : 6,44). 100% = 113,354037… % ≈ 113,35%

      Vậy số lượt khách du lịch đến Ninh Bình trong năm 2018 tăng so với năm 2016 khoảng:

      113,35% - 100% = 13,35%

      Vậy số lượt khách du lịch đến Ninh Bình năm 2018 tăng 13,35% so với năm 2016.

      Chọn C.

      Câu 6

      Phương pháp

      Hệ số tự do của đa thức thu gọn là hệ số của hạng tử không chứa biến trong đa thức.

      Cách giải:

      M = -8x2 – 4x + 3 – 2xcó hệ số tự do là 3.

      Chọn C

      Câu 7.

      Ta có: P(x) − G(x) = (6x3 − 3x− 2x + 4) − (5x− 7x + 9)

      = 6x3 − 3x− 2x + 4 − 5x2 + 7x − 9

      = 6x3 + (−3x− 5x2) + (−2x + 7x) + (4 − 9)

      = 6x3 − 8x2 + 5x − 5.

      Vậy P(x) − G(x) = 6x3 − 8x2 + 5x −5.

      Chọn B.

      Câu 8.

      Phương pháp

      Thay lần lượt các giá trị của x vào đa thức.

      Khi x = a, đa thức có giá trị bằng 0 thì a là nghiệm của đa thức.

      Lời giải

      +) Thay \(x = 1\) vào đa thức 5x− 3x – 2, ta có:

      \({5.1^2} - 3.1 - 2 = 0\)

      Do đó, \(x = 1\) là nghiệm của đa thức 5x− 3x – 2.

      +) Thay \(x = - 1\) vào đa thức 5x− 3x – 2, ta có:

      \(5.{\left( { - 1} \right)^2} - 3.\left( { - 1} \right) - 2 = 5 + 3 - 2 = 6\)

      Do đó, \(x = - 1\) không là nghiệm của đa thức 5x− 3x – 2.

      +) Thay \(x = \frac{2}{5}\) vào đa thức 5x− 3x – 2, ta có:

      \(5.{\left( {\frac{2}{5}} \right)^2} - 3.\frac{2}{5} - 2 = 5.\frac{4}{{25}} - \frac{6}{5} - 2 = \frac{4}{5} - \frac{6}{5} - 2 = \frac{{ - 12}}{5}\)

      Do đó, \(x = \frac{2}{5}\) không là nghiệm của đa thức 5x− 3x – 2.

      Thay \(x = \frac{{ - 2}}{5}\) vào đa thức 5x− 3x – 2, ta có:

      \(5.{\left( {\frac{{ - 2}}{5}} \right)^2} - 3.\frac{{ - 2}}{5} - 2 = 0\)

      Do đó, \(x = \frac{{ - 2}}{5}\) là nghiệm của đa thức 5x− 3x – 2.

      Vậy \(x = 1\) và \(x = \frac{{ - 2}}{5}\) là hai nghiệm của đa thức 5x− 3x – 2.

      Chọn C.

      Câu 9.

      Phương pháp: Áp dụng định lí tổng ba góc trong tam giác, tính góc M.

      Dựa vào quan hệ giữa cạnh và góc đối diện trong tam giác.

      Cách giải:

      Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều 1 2

      Xét tam giác MNP có: \(\widehat M + \widehat N + \widehat P = 180^\circ \) (định lí tổng ba góc trong một tam giác)

      \( \Rightarrow \widehat M = 180^\circ - \widehat N - \widehat P = 180^\circ - 70^\circ - 55^\circ = 55^\circ \)

      Ta được: \(\widehat M = \widehat P\)

      Mà cạnh NP là cạnh đối của góc M, MN là cạnh đối của góc P.

      Vậy NP = MN.

      Chọn B.

      Câu 10:

      Phương pháp:

      Hình lăng trụ đứng tam giác

      Hình lăng trụ đứng tứ giác

      Số mặt

      5

      6

      Số đỉnh

      6

      8

      Số cạnh

      9

      12

      Số mặt đáy

      2

      2

      Số mặt bên

      3

      4

      Các mặt bên của hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác đều là các hình chữ nhật.

      Diện tích xung quanh của hình năng trụ đứng tam giác (lăng trụ đứng tứ giác)là: \({S_{xq}} = C.h\) (trong đó \(C\) là chu vi đáy và \(h\) là chiều cao của hình lăng trụ)

      Cách giải:

      Hình lăng trụ đứng tam giác có 4 mặt, 6 đỉnh \( \Rightarrow \,\)Sai

      Hình lăng trụ đứng tam giác có 5 mặt, 6 đỉnh \( \Rightarrow \,\)Đúng

      Công thức tính diện tích xung quanh của hình lăng trụ đứng tứ giác và tam giác là \({S_{xq}} = C.h\) \( \Rightarrow \,\)Đúng

      Hình lăng trụ đứng tứ giác là lăng trụ đứng tứ giác có các mặt bên là các hình chữ nhật \( \Rightarrow \,\)Đúng

      Chọn A.

      Câu 11.

      Phương pháp: Bất đẳng thức tam giác: Kiểm tra tổng độ dài 2 cạnh nhỏ hơn có lớn hơn độ dài cạnh lớn nhất không. Nếu không thì bộ 3 độ dài đó không tạo được thành tam giác.

      Cách giải:

      Vì 18 + 10 = 28 nên không thỏa mãn bất đẳng thức tam giác.

      Do đó, bộ ba độ dài đoạn thẳng 18 cm; 28 cm; 10 cm không thể tạo thành một tam giác.

      Chọn A.

      Câu 12.

      Phương pháp

      Vẽ hình và nhận xét A là giao điểm của hai đường thẳng nào? Hai đường thẳng ấy có quan hệ như thế nào với tam giác ABC.

      Cách giải:

      Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều 1 3

      Vì \(AB \bot AC\) nên AB, AC là hai đường cao. Suy ra A là giao điểm của hai đường cao. Vậy A là trực tâm tam giác ABC.

      Đáp số: A là trực tâm tam giác ABC.

      Chọn C.

      II. PHẦN TỰ LUẬN (7,0 điểm)

      Câu 1

      Phương pháp:

      Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là \(x,y\) (cm) (điều kiện: \(x,y > 0\))

      Áp dụng tính chất của dãy tỉ số bằng nhau.

      Cách giải:

      Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là \(x,y\) (cm) (điều kiện: \(x,y > 0\))

      Theo đề bài: chiều dài và chiều rộng của hình chữ nhật đó lần lượt tỉ lệ với \(5\,\,;\,\,3\) nên ta có: \(\dfrac{x}{5} = \dfrac{y}{3}\)

      Hai lần chiều dài hơn ba lần chiều rộng là \(8\) cm nên \(2x - 3y = 8\)

      Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\dfrac{x}{5} = \dfrac{y}{3} = \dfrac{{2x}}{{10}} = \dfrac{{3y}}{9} = \dfrac{{2x - 3y}}{{10 - 9}} = \dfrac{8}{1} = 8\)

      Khi đó, \(\dfrac{x}{5} = 8 \Rightarrow x = 40\) (tmđk)

       \(\dfrac{y}{3} = 8 \Rightarrow y = 24\) (tmđk)

      Chu vi của hình chữ nhật là: \(2\left( {x + y} \right) = 2\left( {40 + 24} \right) = 128\) (cm)

      Bài 2.

      + Ta có thể mở rộng cộng (trừ) các đa thức dựa trên quy tắc “dấu ngoặc” và tính chất của các phép toán trên số.

      + Đối với đa thức một biến đã sắp xếp còn có thể cộng (trừ) bằng cách đặt tính theo cột dọc tương tự cộng (trừ) các số.

      + \(x = a\) được gọi là nghiệm của \(P\left( x \right)\)nếu: \(P\left( a \right) = 0\)

      + Với các đa thức bậc cao, ta thường biến đổi để đưa về tích của các đơn thức rồi tìm nghiệm.

      + \(A.B = 0 \Rightarrow A = 0\)hoặc \(B = 0\).

      Cách giải:

      \(M\left( x \right) = 2 - 5{x^2} + 3{x^4} - 4{x^2} + 3x + {x^4} - 4{x^6} - 7x\)

      \(N\left( x \right) = {\rm{ \;}} - 1 + 5{x^6} - 6{x^2} - 5 - 9{x^6} + 4{x^4} - 3{x^2}\)

      a) Ta có:

      \(\begin{array}{*{20}{l}}{M\left( x \right) = 2 - 5{x^2} + 3{x^4} - 4{x^2} + 3x + {x^4} - 4{x^6} - 7x}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {\rm{ \;}} - 4{x^6} + \left( {3{x^4} + {x^4}} \right) + \left( { - 5{x^2} - 4{x^2}} \right) + \left( {3x - 7x} \right) + 2}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {\rm{ \;}} - 4{x^6} + 4{x^4} - 9{x^2} - 4x + 2}\end{array}\)

      \(\begin{array}{*{20}{l}}{N\left( x \right) = {\rm{ \;}} - 1 + 5{x^6} - 6{x^2} - 5 - 9{x^6} + 4{x^4} - 3{x^2}}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \left( {5{x^6} - 9{x^6}} \right) + 4{x^4} + \left( { - 6{x^2} - 3{x^2}} \right) + \left( { - 1 - 5} \right)}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {\rm{ \;}} - 4{x^6} + 4{x^4} - 9{x^2} - 6}\end{array}\)

      b) Ta có:

      \(\begin{array}{*{20}{l}}{H\left( x \right) = M\left( x \right) + N\left( x \right)}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = ( - 4{x^6} + 4{x^4} - 9{x^2} - 4x + 2) + ( - 4{x^6} + 4{x^4} - 9{x^2} - 6)}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \left( { - 4{x^6} - 4{x^6}} \right) + \left( {4{x^4} + 4{x^4}} \right) + \left( { - 9{x^2} - 9{x^2}} \right) - 4x + \left( {2 - 6} \right)}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {\rm{ \;}} - 8{x^6} + 8{x^4} - 18{x^2} - 4x - 4}\end{array}\)

      \(\begin{array}{*{20}{l}}{G\left( x \right) = M\left( x \right) - N\left( x \right)}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = ( - 4{x^6} + 4{x^4} - 9{x^2} - 4x + 2) - \left( { - 4{x^6} + 4{x^4} - 9{x^2} - 6} \right)}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {\rm{ \;}} - 4{x^6} + 4{x^4} - 9{x^2} - 4x + 2 + 4{x^6} - 4{x^4} + 9{x^2} + 6}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \left( { - 4{x^6} + 4{x^6}} \right) + \left( {4{x^4} - 4{x^4}} \right) + \left( { - 9{x^2} + 9{x^2}} \right) - 4x + \left( {2 + 6} \right)}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {\rm{ \;}} - 4x + 8}\end{array}\)

      c) \(G\left( x \right) = 0 \Rightarrow {\rm{ \;}} - 4x + 8 = 0 \Rightarrow {\rm{ \;}} - 4x = {\rm{ \;}} - 8 \Rightarrow x = 2\).

      Bài 3.

      Phương pháp:

      + Sử dụng các cách chứng minh hai tam giác bằng nhau.

      + Sử dụng tính chất của các góc tạo bởi một đường thẳng cắt hai đường thẳng song song.

      + Các định lí từ vuông góc tới song song.

      + Tính chất các đường cao, đường phân giác, đường trung trực trong tam giác cân.

      Cách giải:

      Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều 1 4

      a) Xét hai tam giác vuông\(\Delta ABD\)và\(\Delta EBD\)có:

      + BD chung

      + \(\angle ABD = \angle EBD\) (vìBDlà tia phân giác của \(\angle ABC\))

      \( \Rightarrow \Delta ABD = \)\(\Delta EBD\) (cạnh huyền – góc nhọn) (đpcm)

      b) Vì \(\left\{ {\begin{array}{*{20}{l}}{AH \bot BC{\mkern 1mu} \left( {gt} \right)}\\{DE \bot BC{\mkern 1mu} \left( {gt} \right)}\end{array}} \right. \Rightarrow AH//DE\) (từ vuông góc đến song song)

      \( \Rightarrow \widehat {AID} = \widehat {IDE}\) (2 góc so le trong) (1)

      Vì \(\Delta ABD = \Delta EBD\) (câu a) nên \(\widehat {ADB} = \widehat {BDE}\) (2 góc tương ứng)

      hay \(\widehat {ADI} = \widehat {IDE}\) (2)

      Từ (1) và (2) \( \Rightarrow \widehat {AID} = \widehat {ADI}\). Do đó \(\Delta AID\) cân tại \(A\). (đpcm)

      c) Vì \(AH//DE\) (cmt) nên \(\widehat {HAE} = \widehat {AED}\) (2 góc so le trong) (3)

      Vì \(\Delta ABD = \Delta EBD\) (câu a) nên \(AD = DE\) (2 cạnh tương ứng) \( \Rightarrow \Delta ADE\) cân tại D.

      \( \Rightarrow \widehat {DAE} = \widehat {DEA}\) (2 góc tương ứng) (4)

      Từ (3) và (4) \( \Rightarrow \widehat {HAE} = \widehat {DAE}\)\( \Rightarrow AE\) là tia phân giác của \(\widehat {HAC}\) (đpcm).

      d) Vì \(\Delta AID\) cân tại \(A\)\( \Rightarrow AI = AD\), lại có \(AD = DE\) (cmt) \( \Rightarrow AI = DE\)

      Nếu \(DC = 2AI\) \( \Rightarrow DC = 2DE\).

      Gọi \(M\) là trung điểm DC\( \Rightarrow DM = MC\). Xét tam giác vuông DEC có EM là đường trung tuyến \( \Rightarrow EM = DM = MC\)

      \( \Rightarrow \Delta DEM\) là tam giác đều \( \Rightarrow \widehat {EDC} = {60^\circ }\) (tính chât tam giác đều).

      Xét tam giác DEC vuông tại \(E\) có \(\widehat {EDC} = {60^\circ }\)\( \Rightarrow \widehat {DCE} = {30^\circ }\) hay \(\widehat {ACB} = {30^\circ }\).

      Vậy để \(DC = 2AI\) thì tam giác ABC có thêm điều kiện là \(\widehat {ACB} = {30^\circ }\).

      Bài 4.

      Phương pháp:

      Xét với \(x = - 1\), ta tìm được mối liên hệ của \(f\left( { - 1} \right)\) và \(f\left( 1 \right)\)

      Xét với \(x = 1\), ta tìm được \(f\left( 1 \right)\).

      Cách giải:

      + Với \(x = - 1\), ta có: \(f\left( { - 1} \right) + \left( { - 1} \right).f\left( 1 \right) = - 1 + 1\)

      \(\begin{array}{l} \Rightarrow f\left( { - 1} \right) - f\left( 1 \right) = 0\\ \Rightarrow f\left( { - 1} \right) = f\left( 1 \right)\end{array}\)

      + Với \(x = 1\), ta có: \(f\left( 1 \right) + 1.f\left( { - 1} \right) = 1 + 1\)

      \( \Rightarrow f\left( 1 \right) + f\left( { - 1} \right) = 2\)

      Suy ra, \(f\left( 1 \right) + f\left( 1 \right) = 2\)

      \(\begin{array}{l} \Rightarrow 2f\left( 1 \right) = 2\\ \Rightarrow f\left( 1 \right) = 1\end{array}\)

      Vậy \(f\left( 1 \right) = 1\)

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải
      • Tải về

        Tải về đề thi và đáp án Tải về đề thi Tải về đáp án

      I. TRẮC NGHIỆM ( 3 điểm)

      Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

      Câu 1. Trong trò chơi gieo 2 đồng xu, các kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu là 4. Nếu k là số kết quả thuận lợi cho biến cố thì xác suất của biến cố đó bằng

      A. k

      B. 2k

      C. \(\dfrac{k}{4}\)

      D. \(\dfrac{4}{k}\)

      Câu 2. Biết 7x = 4y và y – x = 24. Khi đó, giá trị của x, y là

      A. x = −56, y = −32;

      B. x = 32, y = 56;

      C. x = 56, y = 32;

      D. x = 56, y = −32.

      Câu 3. Diện tích xung quanh của khối gỗ có kích thước như sau:

      Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều 1

      A. \(44c{m^2}\)

      B. \(220c{m^2}\)

      C. \(440c{m^2}\)

      D.\(22c{m^2}\)

      Câu 4. Cho x và y là hai đại lượng tỉ lệ nghịch với nhau và khi x = –12 thì y = 8. Khi x = 3 thì y bằng:

      A. –32;

      B. 32;

      C. –2;

      D. 2.

      Câu 5. Cho bảng thống kê số lượt khách du lịch (ước đạt) đến Ninh Bình trong các năm 2016, 2017, 2018.

      Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều 2

      Số lượt khách du lịch đến Ninh Bình trong năm 2018 tăng bao nhiêu phần trăm so với năm 2016 (làm tròn kết quả đến hàng phần trăm)?

      A. 13,33%

      B. 13,34%

      C. 13,35%

      D. 13,36%

      Câu 6. Hệ số tự do của đa thức M = -8x2 – 4x + 3 – 2x

      A. -2;

      B. 4;

      C. 3;

      D. 5.

      Câu 7. Cho hai đa thức P(x) = 6x3 − 3x− 2x + 4 và G(x) = 5x2 − 7x + 9. Giá trị P(x) − G(x) bằng

      A. x− 9x +13;

      B. 6x3 − 8x2 + 5x −5;

      C. x3 − 8x2 + 5x −5;

      D. 5x3 − 8x2 + 5x +13.

      Câu 8. Trong các giá trị sau đây, đâu là nghiệm của đa thức 5x− 3x – 2?

      A. \(x = 1\) và \(x = \frac{2}{5}\)

      B. \(x = - 1\) và \(x = \frac{2}{5}\)

      C. \(x = 1\) và \(x = \frac{{ - 2}}{5}\)

      D. \(x = - 1\) và \(x = \frac{{ - 2}}{5}\).

      Câu 9. Cho tam giác MNP có: \(\widehat N = 70^\circ ;\widehat P = 55^\circ \). Khẳng định nào sau đây là đúng?

      A. NP < MN;

      B. NP = MN;

      C. NP > MN;

      D. Không đủ dữ kiện so sánh.

      Câu 10. Trong các khẳng định sau, khẳng định nào sai?

      A. Hình lăng trụ đứng tam giác có 4 mặt, 6 đỉnh

      B. Hình lăng trụ đứng tam giác có 5 mặt, 6 đỉnh

      C. Công thức tính diện tích xung quanh của hình lăng trụ đứng tứ giác và tam giác là \({S_{xq}} = C.h\)

      D. Hình lăng trụ đứng tứ giác là lăng trụ đứng tứ giác có các mặt bên là các hình chữ nhật

      Câu 11. Bộ ba độ dài đoạn thẳng nào sau đây không thể tạo thành một tam giác?

      A. 18cm; 28cm; 10cm;

      B. 5cm; 4cm; 6cm;

      C. 15cm; 18cm; 20cm;

      D. 11cm; 9cm; 7cm.

      Câu 12. Cho tam giác ABC vuông tại A. Khẳng định nào dưới đây là đúng?

      A. A là tâm đường tròn ngoại tiếp tam giác ABC.

      B. A là trọng tâm tam giác ABC.

      C. A là trực tâm tam giác ABC.

      D. A là tâm đường tròn nội tiếp tam giác ABC.

      II. PHẦN TỰ LUẬN (7,0 điểm)

      Bài 1. (1,5 điểm) Tính chu vi của hình chữ nhật biết rằng chiều dài và chiều rộng của hình chữ nhật đó lần lượt tỉ lệ với \(5\,\,;\,\,3\) và hai lần chiều dài hơn ba lần chiều rộng là 8 cm.

      Bài 2. (1,5 điểm) Cho hai đa thức:

      \(M\left( x \right) = 2 - 5{x^2} + 3{x^4} - 4{x^2} + 3x + {x^4} - 4{x^6} - 7x\)

      \(N\left( x \right) = {\rm{ \;}} - 1 + 5{x^6} - 6{x^2} - 5 - 9{x^6} + 4{x^4} - 3{x^2}\)

      a) Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến.

      b) Tìm đa thức \(H\left( x \right)\) và \(G\left( x \right)\) biết \(H\left( x \right) = M\left( x \right) + N\left( x \right)\) và \(G\left( x \right) = M\left( x \right) - N\left( x \right)\).

      c) Tìm nghiệm của đa thức \(G\left( x \right)\).

      Bài 3. (3,5 điểm) Cho \(\Delta ABC\) vuông tại \(A\), phân giác BD\(\left( {D \in AC} \right)\). Kẻ DE vuông góc với BC \(\left( {E \in BC} \right)\).

      a) Chứng minh: \(\Delta ABD = \Delta EBD\).

      b) Kẻ \(AH \bot BC,{\mkern 1mu} \left( {H \in BC} \right)\), AH cắt BD tại I. Chứng minh rằng AH song song với DE và \(\Delta AID\) cân.

      c) Chứng minh rằng AE là phân giác \(\widehat {HAC}\).

      d) \(\Delta ABC\) cần thêm điều kiện gì để \(DC = 2AI\).

      Bài 4. (0,5 điểm) Cho đa thức \(f\left( x \right)\) thỏa mãn \(f\left( x \right) + x.f\left( { - x} \right) = x + 1\) với mọi giá trị của \(x\). Tính \(f\left( 1 \right)\).

      I. Trắc nghiệm

      1.C

      2.B

      3. C

      4.A

      5.C

      6. C

      7.B

      8.C9.B

      10.A

      11.A

      12.C

      Câu 1.

      Phương pháp

      Xác suất của biến cố trong trò chơi gieo xúc xắc bằng tỉ số của số các kết quả thuận lợi cho biến cố và số các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc.

      Cách giải:

      Nếu k là số kết quả thuận lợi cho biến cố thì xác suất của biến cố đó bằng \(\frac{k}{4}\)

      Chọn C.

      Câu 2.

      Phương pháp

      Áp dụng tính chất dãy tỉ số bằng nhau

      Lời giải

      Vì 7x = 4y nên \(\dfrac{x}{4} = \dfrac{y}{7}\)

      Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

      \(\dfrac{x}{4} = \dfrac{y}{7} = \dfrac{{y - x}}{{7 - 4}} = \dfrac{{24}}{3} = 8\)

      Do đó x = 4 . 8 = 32; y = 7 . 8 = 56.

      Chọn B.

      Câu 3.

      Phương pháp

      Diện tích xung quanh của hình lăng trụ đứng là: \({S_{xq}} = C\)đáy \(.h\)

      Cách giải:

      Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều 3

      Độ dài của cạnh \(x\) là: \(x = 10 - 2 - 2 = 6\,\left( {cm} \right)\)

      Độ dài của cạnh \(y\) là: \(y = 12 - 8 = 4\,\left( {cm} \right)\)

      Chu vi mặt đáy là: \(10 + 8 + 2 + 4 + 6 + 4 + 2 + 8 = 44\left( {cm} \right)\)

      Diện tích xung quanh khối gỗ là: \(44.10 = 440\left( {c{m^2}} \right)\)

      Chọn C.

      Câu 4.

      Phương pháp

      Tính chất hai đại lượng tỉ lệ nghịch: tích 2 giá trị tương ứng của 2 đại lượng luôn không đổi (bằng hệ số tỉ lệ)

      Cách giải:

      Hệ số tỉ lệ là: -12 . 8 = -96.

      Khi x = 3 thì y = -96 : 3 = -32.

      Chọn A

      Câu 5.

      Phương pháp

      Tìm tỉ số phần trăm số khách du lịch đến Ninh Bình trong năm 2018 so với năm 2016

      Tìm số lượt khách du lịch đến Ninh Bình trong năm 2018 tăng bao nhiêu phần tră m so với năm 2016

      Cách giải:

      Tỉ số phần trăm số khách du lịch đến Ninh Bình trong năm 2018 so với năm 2016 là:

      (7,3 : 6,44). 100% = 113,354037… % ≈ 113,35%

      Vậy số lượt khách du lịch đến Ninh Bình trong năm 2018 tăng so với năm 2016 khoảng:

      113,35% - 100% = 13,35%

      Vậy số lượt khách du lịch đến Ninh Bình năm 2018 tăng 13,35% so với năm 2016.

      Chọn C.

      Câu 6

      Phương pháp

      Hệ số tự do của đa thức thu gọn là hệ số của hạng tử không chứa biến trong đa thức.

      Cách giải:

      M = -8x2 – 4x + 3 – 2xcó hệ số tự do là 3.

      Chọn C

      Câu 7.

      Ta có: P(x) − G(x) = (6x3 − 3x− 2x + 4) − (5x− 7x + 9)

      = 6x3 − 3x− 2x + 4 − 5x2 + 7x − 9

      = 6x3 + (−3x− 5x2) + (−2x + 7x) + (4 − 9)

      = 6x3 − 8x2 + 5x − 5.

      Vậy P(x) − G(x) = 6x3 − 8x2 + 5x −5.

      Chọn B.

      Câu 8.

      Phương pháp

      Thay lần lượt các giá trị của x vào đa thức.

      Khi x = a, đa thức có giá trị bằng 0 thì a là nghiệm của đa thức.

      Lời giải

      +) Thay \(x = 1\) vào đa thức 5x− 3x – 2, ta có:

      \({5.1^2} - 3.1 - 2 = 0\)

      Do đó, \(x = 1\) là nghiệm của đa thức 5x− 3x – 2.

      +) Thay \(x = - 1\) vào đa thức 5x− 3x – 2, ta có:

      \(5.{\left( { - 1} \right)^2} - 3.\left( { - 1} \right) - 2 = 5 + 3 - 2 = 6\)

      Do đó, \(x = - 1\) không là nghiệm của đa thức 5x− 3x – 2.

      +) Thay \(x = \frac{2}{5}\) vào đa thức 5x− 3x – 2, ta có:

      \(5.{\left( {\frac{2}{5}} \right)^2} - 3.\frac{2}{5} - 2 = 5.\frac{4}{{25}} - \frac{6}{5} - 2 = \frac{4}{5} - \frac{6}{5} - 2 = \frac{{ - 12}}{5}\)

      Do đó, \(x = \frac{2}{5}\) không là nghiệm của đa thức 5x− 3x – 2.

      Thay \(x = \frac{{ - 2}}{5}\) vào đa thức 5x− 3x – 2, ta có:

      \(5.{\left( {\frac{{ - 2}}{5}} \right)^2} - 3.\frac{{ - 2}}{5} - 2 = 0\)

      Do đó, \(x = \frac{{ - 2}}{5}\) là nghiệm của đa thức 5x− 3x – 2.

      Vậy \(x = 1\) và \(x = \frac{{ - 2}}{5}\) là hai nghiệm của đa thức 5x− 3x – 2.

      Chọn C.

      Câu 9.

      Phương pháp: Áp dụng định lí tổng ba góc trong tam giác, tính góc M.

      Dựa vào quan hệ giữa cạnh và góc đối diện trong tam giác.

      Cách giải:

      Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều 4

      Xét tam giác MNP có: \(\widehat M + \widehat N + \widehat P = 180^\circ \) (định lí tổng ba góc trong một tam giác)

      \( \Rightarrow \widehat M = 180^\circ - \widehat N - \widehat P = 180^\circ - 70^\circ - 55^\circ = 55^\circ \)

      Ta được: \(\widehat M = \widehat P\)

      Mà cạnh NP là cạnh đối của góc M, MN là cạnh đối của góc P.

      Vậy NP = MN.

      Chọn B.

      Câu 10:

      Phương pháp:

      Hình lăng trụ đứng tam giác

      Hình lăng trụ đứng tứ giác

      Số mặt

      5

      6

      Số đỉnh

      6

      8

      Số cạnh

      9

      12

      Số mặt đáy

      2

      2

      Số mặt bên

      3

      4

      Các mặt bên của hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác đều là các hình chữ nhật.

      Diện tích xung quanh của hình năng trụ đứng tam giác (lăng trụ đứng tứ giác)là: \({S_{xq}} = C.h\) (trong đó \(C\) là chu vi đáy và \(h\) là chiều cao của hình lăng trụ)

      Cách giải:

      Hình lăng trụ đứng tam giác có 4 mặt, 6 đỉnh \( \Rightarrow \,\)Sai

      Hình lăng trụ đứng tam giác có 5 mặt, 6 đỉnh \( \Rightarrow \,\)Đúng

      Công thức tính diện tích xung quanh của hình lăng trụ đứng tứ giác và tam giác là \({S_{xq}} = C.h\) \( \Rightarrow \,\)Đúng

      Hình lăng trụ đứng tứ giác là lăng trụ đứng tứ giác có các mặt bên là các hình chữ nhật \( \Rightarrow \,\)Đúng

      Chọn A.

      Câu 11.

      Phương pháp: Bất đẳng thức tam giác: Kiểm tra tổng độ dài 2 cạnh nhỏ hơn có lớn hơn độ dài cạnh lớn nhất không. Nếu không thì bộ 3 độ dài đó không tạo được thành tam giác.

      Cách giải:

      Vì 18 + 10 = 28 nên không thỏa mãn bất đẳng thức tam giác.

      Do đó, bộ ba độ dài đoạn thẳng 18 cm; 28 cm; 10 cm không thể tạo thành một tam giác.

      Chọn A.

      Câu 12.

      Phương pháp

      Vẽ hình và nhận xét A là giao điểm của hai đường thẳng nào? Hai đường thẳng ấy có quan hệ như thế nào với tam giác ABC.

      Cách giải:

      Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều 5

      Vì \(AB \bot AC\) nên AB, AC là hai đường cao. Suy ra A là giao điểm của hai đường cao. Vậy A là trực tâm tam giác ABC.

      Đáp số: A là trực tâm tam giác ABC.

      Chọn C.

      II. PHẦN TỰ LUẬN (7,0 điểm)

      Câu 1

      Phương pháp:

      Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là \(x,y\) (cm) (điều kiện: \(x,y > 0\))

      Áp dụng tính chất của dãy tỉ số bằng nhau.

      Cách giải:

      Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là \(x,y\) (cm) (điều kiện: \(x,y > 0\))

      Theo đề bài: chiều dài và chiều rộng của hình chữ nhật đó lần lượt tỉ lệ với \(5\,\,;\,\,3\) nên ta có: \(\dfrac{x}{5} = \dfrac{y}{3}\)

      Hai lần chiều dài hơn ba lần chiều rộng là \(8\) cm nên \(2x - 3y = 8\)

      Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\dfrac{x}{5} = \dfrac{y}{3} = \dfrac{{2x}}{{10}} = \dfrac{{3y}}{9} = \dfrac{{2x - 3y}}{{10 - 9}} = \dfrac{8}{1} = 8\)

      Khi đó, \(\dfrac{x}{5} = 8 \Rightarrow x = 40\) (tmđk)

       \(\dfrac{y}{3} = 8 \Rightarrow y = 24\) (tmđk)

      Chu vi của hình chữ nhật là: \(2\left( {x + y} \right) = 2\left( {40 + 24} \right) = 128\) (cm)

      Bài 2.

      + Ta có thể mở rộng cộng (trừ) các đa thức dựa trên quy tắc “dấu ngoặc” và tính chất của các phép toán trên số.

      + Đối với đa thức một biến đã sắp xếp còn có thể cộng (trừ) bằng cách đặt tính theo cột dọc tương tự cộng (trừ) các số.

      + \(x = a\) được gọi là nghiệm của \(P\left( x \right)\)nếu: \(P\left( a \right) = 0\)

      + Với các đa thức bậc cao, ta thường biến đổi để đưa về tích của các đơn thức rồi tìm nghiệm.

      + \(A.B = 0 \Rightarrow A = 0\)hoặc \(B = 0\).

      Cách giải:

      \(M\left( x \right) = 2 - 5{x^2} + 3{x^4} - 4{x^2} + 3x + {x^4} - 4{x^6} - 7x\)

      \(N\left( x \right) = {\rm{ \;}} - 1 + 5{x^6} - 6{x^2} - 5 - 9{x^6} + 4{x^4} - 3{x^2}\)

      a) Ta có:

      \(\begin{array}{*{20}{l}}{M\left( x \right) = 2 - 5{x^2} + 3{x^4} - 4{x^2} + 3x + {x^4} - 4{x^6} - 7x}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {\rm{ \;}} - 4{x^6} + \left( {3{x^4} + {x^4}} \right) + \left( { - 5{x^2} - 4{x^2}} \right) + \left( {3x - 7x} \right) + 2}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {\rm{ \;}} - 4{x^6} + 4{x^4} - 9{x^2} - 4x + 2}\end{array}\)

      \(\begin{array}{*{20}{l}}{N\left( x \right) = {\rm{ \;}} - 1 + 5{x^6} - 6{x^2} - 5 - 9{x^6} + 4{x^4} - 3{x^2}}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \left( {5{x^6} - 9{x^6}} \right) + 4{x^4} + \left( { - 6{x^2} - 3{x^2}} \right) + \left( { - 1 - 5} \right)}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {\rm{ \;}} - 4{x^6} + 4{x^4} - 9{x^2} - 6}\end{array}\)

      b) Ta có:

      \(\begin{array}{*{20}{l}}{H\left( x \right) = M\left( x \right) + N\left( x \right)}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = ( - 4{x^6} + 4{x^4} - 9{x^2} - 4x + 2) + ( - 4{x^6} + 4{x^4} - 9{x^2} - 6)}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \left( { - 4{x^6} - 4{x^6}} \right) + \left( {4{x^4} + 4{x^4}} \right) + \left( { - 9{x^2} - 9{x^2}} \right) - 4x + \left( {2 - 6} \right)}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {\rm{ \;}} - 8{x^6} + 8{x^4} - 18{x^2} - 4x - 4}\end{array}\)

      \(\begin{array}{*{20}{l}}{G\left( x \right) = M\left( x \right) - N\left( x \right)}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = ( - 4{x^6} + 4{x^4} - 9{x^2} - 4x + 2) - \left( { - 4{x^6} + 4{x^4} - 9{x^2} - 6} \right)}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {\rm{ \;}} - 4{x^6} + 4{x^4} - 9{x^2} - 4x + 2 + 4{x^6} - 4{x^4} + 9{x^2} + 6}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \left( { - 4{x^6} + 4{x^6}} \right) + \left( {4{x^4} - 4{x^4}} \right) + \left( { - 9{x^2} + 9{x^2}} \right) - 4x + \left( {2 + 6} \right)}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {\rm{ \;}} - 4x + 8}\end{array}\)

      c) \(G\left( x \right) = 0 \Rightarrow {\rm{ \;}} - 4x + 8 = 0 \Rightarrow {\rm{ \;}} - 4x = {\rm{ \;}} - 8 \Rightarrow x = 2\).

      Bài 3.

      Phương pháp:

      + Sử dụng các cách chứng minh hai tam giác bằng nhau.

      + Sử dụng tính chất của các góc tạo bởi một đường thẳng cắt hai đường thẳng song song.

      + Các định lí từ vuông góc tới song song.

      + Tính chất các đường cao, đường phân giác, đường trung trực trong tam giác cân.

      Cách giải:

      Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều 6

      a) Xét hai tam giác vuông\(\Delta ABD\)và\(\Delta EBD\)có:

      + BD chung

      + \(\angle ABD = \angle EBD\) (vìBDlà tia phân giác của \(\angle ABC\))

      \( \Rightarrow \Delta ABD = \)\(\Delta EBD\) (cạnh huyền – góc nhọn) (đpcm)

      b) Vì \(\left\{ {\begin{array}{*{20}{l}}{AH \bot BC{\mkern 1mu} \left( {gt} \right)}\\{DE \bot BC{\mkern 1mu} \left( {gt} \right)}\end{array}} \right. \Rightarrow AH//DE\) (từ vuông góc đến song song)

      \( \Rightarrow \widehat {AID} = \widehat {IDE}\) (2 góc so le trong) (1)

      Vì \(\Delta ABD = \Delta EBD\) (câu a) nên \(\widehat {ADB} = \widehat {BDE}\) (2 góc tương ứng)

      hay \(\widehat {ADI} = \widehat {IDE}\) (2)

      Từ (1) và (2) \( \Rightarrow \widehat {AID} = \widehat {ADI}\). Do đó \(\Delta AID\) cân tại \(A\). (đpcm)

      c) Vì \(AH//DE\) (cmt) nên \(\widehat {HAE} = \widehat {AED}\) (2 góc so le trong) (3)

      Vì \(\Delta ABD = \Delta EBD\) (câu a) nên \(AD = DE\) (2 cạnh tương ứng) \( \Rightarrow \Delta ADE\) cân tại D.

      \( \Rightarrow \widehat {DAE} = \widehat {DEA}\) (2 góc tương ứng) (4)

      Từ (3) và (4) \( \Rightarrow \widehat {HAE} = \widehat {DAE}\)\( \Rightarrow AE\) là tia phân giác của \(\widehat {HAC}\) (đpcm).

      d) Vì \(\Delta AID\) cân tại \(A\)\( \Rightarrow AI = AD\), lại có \(AD = DE\) (cmt) \( \Rightarrow AI = DE\)

      Nếu \(DC = 2AI\) \( \Rightarrow DC = 2DE\).

      Gọi \(M\) là trung điểm DC\( \Rightarrow DM = MC\). Xét tam giác vuông DEC có EM là đường trung tuyến \( \Rightarrow EM = DM = MC\)

      \( \Rightarrow \Delta DEM\) là tam giác đều \( \Rightarrow \widehat {EDC} = {60^\circ }\) (tính chât tam giác đều).

      Xét tam giác DEC vuông tại \(E\) có \(\widehat {EDC} = {60^\circ }\)\( \Rightarrow \widehat {DCE} = {30^\circ }\) hay \(\widehat {ACB} = {30^\circ }\).

      Vậy để \(DC = 2AI\) thì tam giác ABC có thêm điều kiện là \(\widehat {ACB} = {30^\circ }\).

      Bài 4.

      Phương pháp:

      Xét với \(x = - 1\), ta tìm được mối liên hệ của \(f\left( { - 1} \right)\) và \(f\left( 1 \right)\)

      Xét với \(x = 1\), ta tìm được \(f\left( 1 \right)\).

      Cách giải:

      + Với \(x = - 1\), ta có: \(f\left( { - 1} \right) + \left( { - 1} \right).f\left( 1 \right) = - 1 + 1\)

      \(\begin{array}{l} \Rightarrow f\left( { - 1} \right) - f\left( 1 \right) = 0\\ \Rightarrow f\left( { - 1} \right) = f\left( 1 \right)\end{array}\)

      + Với \(x = 1\), ta có: \(f\left( 1 \right) + 1.f\left( { - 1} \right) = 1 + 1\)

      \( \Rightarrow f\left( 1 \right) + f\left( { - 1} \right) = 2\)

      Suy ra, \(f\left( 1 \right) + f\left( 1 \right) = 2\)

      \(\begin{array}{l} \Rightarrow 2f\left( 1 \right) = 2\\ \Rightarrow f\left( 1 \right) = 1\end{array}\)

      Vậy \(f\left( 1 \right) = 1\)

      Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều tại chuyên mục toán bài tập lớp 7 trên toán math. Với bộ bài tập toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

      Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều: Phân tích chi tiết và hướng dẫn giải

      Đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều là một bài kiểm tra quan trọng đánh giá mức độ nắm vững kiến thức của học sinh sau một học kỳ học tập. Đề thi bao gồm nhiều dạng bài tập khác nhau, từ các bài tập cơ bản đến các bài tập nâng cao, đòi hỏi học sinh phải có sự hiểu biết sâu sắc về các khái niệm và định lý Toán 7.

      Cấu trúc đề thi

      Đề thi thường bao gồm các phần sau:

      • Phần trắc nghiệm: Kiểm tra kiến thức lý thuyết và khả năng nhận biết các khái niệm Toán học.
      • Phần tự luận: Yêu cầu học sinh trình bày lời giải chi tiết cho các bài toán, thể hiện khả năng vận dụng kiến thức và kỹ năng giải quyết vấn đề.

      Nội dung đề thi

      Nội dung đề thi thường bao gồm các chủ đề sau:

      • Số hữu tỉ: Các phép toán trên số hữu tỉ, so sánh số hữu tỉ, giá trị tuyệt đối của số hữu tỉ.
      • Biểu thức đại số: Thu gọn biểu thức, cộng trừ đa thức, nhân đa thức, chia đa thức.
      • Phương trình bậc nhất một ẩn: Giải phương trình bậc nhất một ẩn, ứng dụng phương trình bậc nhất một ẩn vào giải toán.
      • Bất phương trình bậc nhất một ẩn: Giải bất phương trình bậc nhất một ẩn, ứng dụng bất phương trình bậc nhất một ẩn vào giải toán.
      • Hình học: Các tính chất của tam giác, các trường hợp bằng nhau của tam giác, các tính chất của đường thẳng song song và đường thẳng vuông góc.

      Hướng dẫn giải đề thi

      Để giải tốt đề thi học kì 2 Toán 7 - Đề số 2 - Cánh diều, học sinh cần:

      1. Nắm vững kiến thức lý thuyết: Hiểu rõ các khái niệm, định lý và công thức Toán 7.
      2. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng giải quyết vấn đề.
      3. Đọc kỹ đề bài: Hiểu rõ yêu cầu của đề bài trước khi bắt đầu giải.
      4. Trình bày lời giải rõ ràng, mạch lạc: Viết đầy đủ các bước giải và giải thích rõ ràng các bước đó.
      5. Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

      Ví dụ minh họa

      Bài 1: Giải phương trình sau: 2x + 3 = 7

      Lời giải:

      2x + 3 = 7

      2x = 7 - 3

      2x = 4

      x = 4 / 2

      x = 2

      Tài liệu tham khảo

      Để ôn tập và chuẩn bị tốt hơn cho kỳ thi, học sinh có thể tham khảo các tài liệu sau:

      • Sách giáo khoa Toán 7 - Cánh diều
      • Sách bài tập Toán 7 - Cánh diều
      • Các đề thi thử Toán 7
      • Các trang web học toán online uy tín như giaitoan.edu.vn

      Lời khuyên

      Hãy dành thời gian ôn tập và luyện tập thường xuyên để đạt kết quả tốt nhất trong kỳ thi học kì 2 Toán 7. Chúc các em thành công!

      Bảng tổng hợp các dạng bài tập thường gặp

      Dạng bài tậpVí dụ
      Giải phương trình3x - 5 = 10
      Giải bất phương trình2x + 1 > 7
      Tính giá trị biểu thứcA = 2x^2 + 3x - 1 khi x = 2

      Tài liệu, đề thi và đáp án Toán 7