Logo Header
  1. Môn Toán
  2. Đề thi học kì 2 Toán 7 - Đề số 11 - Cánh diều

Đề thi học kì 2 Toán 7 - Đề số 11 - Cánh diều

Đề thi học kì 2 Toán 7 - Đề số 11 - Cánh diều

Chào mừng các em học sinh lớp 7 đến với đề thi học kì 2 môn Toán, đề số 11, chương trình Cánh diều. Đề thi này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong học kì.

Giaitoan.edu.vn cung cấp đề thi chính thức, đáp án chi tiết và lời giải bài tập giúp các em tự tin hơn trong kỳ thi sắp tới. Chúc các em đạt kết quả tốt nhất!

Đề bài

    I. Trắc nghiệm
    Câu 1 :

    Tập đoàn X có 6 công ty A, B, C, D, E, F. Trong năm 2020, tỉ lệ doanh thu của mỗi công ty so với tổng doanh thu của tập đoàn được biểu thị như biểu đồ sau:

    Đề thi học kì 2 Toán 7 - Đề số 11 - Cánh diều 0 1

    Nếu doanh thu của công ty D là 650 tỉ đồng thì doanh thu của công ty B là bao nhiêu?

    • A.
      1 680 tỉ đồng.
    • B.
      1 690 tỉ đồng.
    • C.
      1 700 tỉ đồng.
    • D.
      1 710 tỉ đồng.
    Câu 2 :

    Gieo một con xúc xắc được chế tạo cân đối. Biến cố “Số chấm xuất hiện trên con xúc xắc là 5” là biến cố:

    • A.
      Chắc chắn
    • B.
      Không thể
    • C.
      Ngẫu nhiên
    • D.
      Không chắc chắn
    Câu 3 :

    Chọn ngẫu nhiên 1 số trong 4 số sau: 7; 8; 26; 101. Xác xuất để chọn được số chia hết cho 5 là:

    • A.
      0
    • B.
      1
    • C.
      2
    • D.
      4
    Câu 4 :

    Cho hai đa thức f(x) = 5x4 + x3 – x2 + 1 và g(x) = –5x4 – x2 + 2.

    Tính h(x) = f(x) + g(x) và tìm bậc của h(x). Ta được:

    • A.
      h(x)= x3 – 1 và bậc của h(x) là 3
    • B.
      h(x)= x3 – 2x2 +3 và bậc của h(x) là 3
    • C.
      h(x)= x4 +3 và bậc của h(x) là 4
    • D.
      h(x)= x3 – 2x2 +3 và bậc của h(x) là 5
    Câu 5 :

    Sắp xếp đa thức 6x3 + 5x4 – 8x6 – 3x2 + 4 theo lũy thừa giảm dần của biến ta được:

    • A.
      6x3 + 5x4 – 8x6 – 3x2 + 4
    • B.
      –8x6 + 5x4 –3x2 + 4 + 6x3
    • C.
      –8x6 + 5x4 +6x3 + 4 –3x2
    • D.
      –8x6 + 5x4 +6x3 –3x2 + 4
    Câu 6 :

    Cho ΔABC có AC > BC > AB. Trong các khẳng định sau, câu nào đúng?

    • A.
      \(\widehat A > \widehat B > \widehat C\)
    • B.
      \(\widehat C > \widehat A > \widehat B\)
    • C.
      \(\widehat C < \widehat A < \widehat B\)
    • D.
      \(\widehat A < \widehat B < \widehat C\)
    Câu 7 :

    Hãy chọn cụm từ thích hợp điền vào chỗ trống: "Trong hai đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó thì đường xiên nào có hình chiếu nhỏ hơn thì ..."

    • A.
      lớn hơn
    • B.
      ngắn nhất
    • C.
      nhỏ hơn
    • D.
      bằng nhau
    Câu 8 :

    Cho ΔABC có: \(\widehat A = 3{5^0}\). Đường trung trực của AC cắt AB ở D. Biết CD là tia phân giác của \(\widehat {ACB} \). Số đo các góc \(\widehat {ABC}; \widehat {ACB} \)là:

    • A.
      \(\widehat {ABC} = 7{2^0}; \widehat {ACB} = 7{3^0}\)
    • B.
      \(\widehat {ABC} = 7{3^0}; \widehat {ACB} = 7{2^0}\)
    • C.
      \(\widehat {ABC} = 7{5^0}; \widehat {ACB} = 7{0^0}\)
    • D.
      \(\widehat {ABC} = 7{0^0}; \widehat {ACB} = 7{5^0}\)
    Câu 9 :

    Cho hình vẽ sau.

    Đề thi học kì 2 Toán 7 - Đề số 11 - Cánh diều 0 2

    Biết MG = 3cm. Độ dài đoạn thẳng MR bằng:

    • A.
      4,5 cm
    • B.
      2 cm
    • C.
      3 cm
    • D.
      1 cm
    Câu 10 :

    Cho tam giác MNP có NP = 1cm, MP = 7cm. Độ dài cạnh MN là một số nguyên (cm). Độ dài cạnh MN là:

    • A.
      8cm.
    • B.
      5cm.
    • C.
      6cm.
    • D.
      7cm.
    Câu 11 :

    Cho tam giác ABC có AB = AC. Trên các cạnh AB và AC lấy các điểm D, E sao cho \(AD = AE\). Gọi K là giao điểm của BE và CD. Chọn câu sai

    • A.
      BE = CD.
    • B.
      BK = KC.
    • C.
      BD = CE.
    • D.
      DK = KC.
    Câu 12 :

    Giao điểm của ba đường trung trực của tam giác

    • A.
      cách đều 3 cạnh của tam giác.
    • B.
      được gọi là trực tâm của tam giác.
    • C.
      cách đều 3 đỉnh của tam giác.
    • D.
      cách đỉnh một đoạn bằng \(\frac{2}{3}\) độ dài đường trung tuyến đi qua đỉnh đó.
    II. Tự luận
    Câu 1 :

    Chứng minh giá trị của biểu thức sau không phụ thuộc vào giá trị của biến:

    \(Q = 5x.2x - x\left( {7x - 5} \right) + \left( {12{x^4} + 20{x^3} - 8{x^2}} \right):\left( { - 4{x^2}} \right)\)

    Câu 2 :

    Cho đa thức \(Q(x) = - 3{x^4} + 4{x^3} + 2{x^2} + \frac{2}{3} - 3x - 2{x^4} - 4{x^3} + 8{x^4} + 1 + 3x\)

    a) Thu gọn và sắp xếp theo lũy thừa giảm dần của biến.

    b) Chứng tỏ Q(x) không có nghiệm.

    Câu 3 :

    Chọn ngẫu nhiên một số trong bốn số 11;12;13 và 14. Tìm xác suất để:

    a) Chọn được số chia hết cho 5

    b) Chọn được số có hai chữ số

    c) Chọn được số nguyên tố

    d) Chọn được số chia hết cho 6

    Câu 4 :

    Cho \(\Delta MNP\)cân tại M \(\left( {\widehat M < {{90}^0}} \right)\). Kẻ NH \( \bot \)MP \(\left( {H \in MP} \right)\), PK \( \bot \)MN \(\left( {K \in MN} \right)\). NH và PK cắt nhau tại E.

    a) Chứng minh \(\Delta NHP = \Delta PKN\)

    b) Chứng minh \(\Delta \)ENP cân.

    c) Chứng minh ME là đường phân giác của góc NMP.

    Câu 5 :

    Cho đa thức bậc hai P(x) = ax2 + bx + c. Trong đó: a,b và c là những số với a ≠ 0. Cho biết a + b + c = 0. Giải thích tại sao x = 1 là một nghiệm của P(x)

    Câu 6 :

    Cho x; y; z tỉ lệ thuận với 3; 4; 5. Tính giá trị của biểu thức

     \(A = 2024\left( {x - y} \right)\left( {y - z} \right) - 506{\left( {\frac{{x + y + z}}{6}} \right)^2}\)

    Lời giải và đáp án

      I. Trắc nghiệm
      Câu 1 :

      Tập đoàn X có 6 công ty A, B, C, D, E, F. Trong năm 2020, tỉ lệ doanh thu của mỗi công ty so với tổng doanh thu của tập đoàn được biểu thị như biểu đồ sau:

      Đề thi học kì 2 Toán 7 - Đề số 11 - Cánh diều 1 1

      Nếu doanh thu của công ty D là 650 tỉ đồng thì doanh thu của công ty B là bao nhiêu?

      • A.
        1 680 tỉ đồng.
      • B.
        1 690 tỉ đồng.
      • C.
        1 700 tỉ đồng.
      • D.
        1 710 tỉ đồng.

      Đáp án : B

      Phương pháp giải :

      Tính doanh thu của tất cả công ty, sau đó tính được doanh thu của công ty B.

      Lời giải chi tiết :

      Doanh thu của công ty D chiếm 10% tổng doanh thu nên tổng doanh thu của tất cả các công ty là:

      \(650:10\% = 6500\) (tỉ đồng)

      Doanh thu của công ty B là:

      \(6500.26\% = 1690\) (tỉ đồng)

      Đáp án B.

      Câu 2 :

      Gieo một con xúc xắc được chế tạo cân đối. Biến cố “Số chấm xuất hiện trên con xúc xắc là 5” là biến cố:

      • A.
        Chắc chắn
      • B.
        Không thể
      • C.
        Ngẫu nhiên
      • D.
        Không chắc chắn

      Đáp án : C

      Phương pháp giải :

      Dựa vào kiến thức về biến cố.

      Lời giải chi tiết :

      Biến cố “Số chấm xuất hiện trên con xúc xắc là 5” là biến cố ngẫu nhiên.

      Đáp án C.

      Câu 3 :

      Chọn ngẫu nhiên 1 số trong 4 số sau: 7; 8; 26; 101. Xác xuất để chọn được số chia hết cho 5 là:

      • A.
        0
      • B.
        1
      • C.
        2
      • D.
        4

      Đáp án : A

      Phương pháp giải :

      Xác định khả năng xuất hiện của biến cố.

      Lời giải chi tiết :

      Trong 4 số trên, không có số nào chia hết cho 5. Do đó xác suất để chọn được số chia hết cho 5 là 0.

      Đáp án A.

      Câu 4 :

      Cho hai đa thức f(x) = 5x4 + x3 – x2 + 1 và g(x) = –5x4 – x2 + 2.

      Tính h(x) = f(x) + g(x) và tìm bậc của h(x). Ta được:

      • A.
        h(x)= x3 – 1 và bậc của h(x) là 3
      • B.
        h(x)= x3 – 2x2 +3 và bậc của h(x) là 3
      • C.
        h(x)= x4 +3 và bậc của h(x) là 4
      • D.
        h(x)= x3 – 2x2 +3 và bậc của h(x) là 5

      Đáp án : B

      Phương pháp giải :

      Sử dụng quy tắc cộng hai đa thức

      Lời giải chi tiết :

      h(x) = f(x) + g(x) 

      = (5x4 + x3 – x2 + 1) + (–5x4 – x2 + 2)

      = 5x4 + x3 – x2 + 1 – 5x4 – x2 + 2

      = (5x4 – 5x4) + x3 + (- x2 – x2) + (1 + 2)

      = x3 – 2x2 + 3

      Bậc của h(x) là 3.

      Đáp án B.

      Câu 5 :

      Sắp xếp đa thức 6x3 + 5x4 – 8x6 – 3x2 + 4 theo lũy thừa giảm dần của biến ta được:

      • A.
        6x3 + 5x4 – 8x6 – 3x2 + 4
      • B.
        –8x6 + 5x4 –3x2 + 4 + 6x3
      • C.
        –8x6 + 5x4 +6x3 + 4 –3x2
      • D.
        –8x6 + 5x4 +6x3 –3x2 + 4

      Đáp án : D

      Phương pháp giải :

      Dựa vào kiến thức về đa thức một biến.

      Lời giải chi tiết :

      6x3 + 5x4 – 8x6 – 3x2 + 4 = - 8x6 + 5x4 + 6x3 – 3x2 + 4

      Đáp án D.

      Câu 6 :

      Cho ΔABC có AC > BC > AB. Trong các khẳng định sau, câu nào đúng?

      • A.
        \(\widehat A > \widehat B > \widehat C\)
      • B.
        \(\widehat C > \widehat A > \widehat B\)
      • C.
        \(\widehat C < \widehat A < \widehat B\)
      • D.
        \(\widehat A < \widehat B < \widehat C\)

      Đáp án : C

      Phương pháp giải :

      Dựa vào quan hệ giữa góc và cạnh đối diện trong tam giác.

      Lời giải chi tiết :

      Vì AC > BC > AB nên \(\widehat B > \widehat A > \widehat C\) hay \(\widehat C < \widehat A < \widehat B\).

      Đáp án C.

      Câu 7 :

      Hãy chọn cụm từ thích hợp điền vào chỗ trống: "Trong hai đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó thì đường xiên nào có hình chiếu nhỏ hơn thì ..."

      • A.
        lớn hơn
      • B.
        ngắn nhất
      • C.
        nhỏ hơn
      • D.
        bằng nhau

      Đáp án : C

      Phương pháp giải :

      Dựa vào kiến thức về đường xiên.

      Lời giải chi tiết :

      "Trong hai đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó thì đường xiên nào có hình chiếu nhỏ hơn thì nhỏ hơn".

      Đáp án C.

      Câu 8 :

      Cho ΔABC có: \(\widehat A = 3{5^0}\). Đường trung trực của AC cắt AB ở D. Biết CD là tia phân giác của \(\widehat {ACB} \). Số đo các góc \(\widehat {ABC}; \widehat {ACB} \)là:

      • A.
        \(\widehat {ABC} = 7{2^0}; \widehat {ACB} = 7{3^0}\)
      • B.
        \(\widehat {ABC} = 7{3^0}; \widehat {ACB} = 7{2^0}\)
      • C.
        \(\widehat {ABC} = 7{5^0}; \widehat {ACB} = 7{0^0}\)
      • D.
        \(\widehat {ABC} = 7{0^0}; \widehat {ACB} = 7{5^0}\)

      Đáp án : C

      Phương pháp giải :

      Dựa vào đặc điểm của đường trung trực.

      Sử dụng định lí tổng ba góc của một tam giác bằng \({180^0}\)

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 7 - Đề số 11 - Cánh diều 1 2

      Đường trung trực của AC đi qua điểm D nên tam giác ADC cân tại D.

      Do đó \(\widehat {DAC} = \widehat {DCA} = {35^0}\).

      Mà CD là tia phân giác của \(\widehat {ACB}\) nên \(\widehat {ACB} = 2\widehat {DCA} = {2.35^0} = {70^0}\)

      Từ đó suy ra:

      \(\begin{array}{l}\widehat {ABC} = {180^0} - \widehat {BAC} - \widehat {BCA}\\ = {180^0} - {35^0} - {70^0} = {75^0}\end{array}\)

      Vậy \(\widehat {ABC} = 7{5^0}; \widehat {ACB} = 7{0^0}\).

      Đáp án C.

      Câu 9 :

      Cho hình vẽ sau.

      Đề thi học kì 2 Toán 7 - Đề số 11 - Cánh diều 1 3

      Biết MG = 3cm. Độ dài đoạn thẳng MR bằng:

      • A.
        4,5 cm
      • B.
        2 cm
      • C.
        3 cm
      • D.
        1 cm

      Đáp án : A

      Phương pháp giải :

      Chứng minh MR là đường trung tuyến nên G là trọng tâm của tam giác để tính MR.

      Lời giải chi tiết :

      Vì S là trung điểm của MP và R là trung điểm của NP nên MR và NS là hai đường trung tuyến của tam giác MNP.

      MR và NS cắt nhau tại G nên G là trọng tâm của tam giác MNP.

      Do đó \(MG = \frac{2}{3}MR\) suy ra \(MR = MG:\frac{2}{3} = 3:\frac{2}{3} = \frac{9}{2} = 4,5\left( {cm} \right)\)

      Đáp án A.

      Câu 10 :

      Cho tam giác MNP có NP = 1cm, MP = 7cm. Độ dài cạnh MN là một số nguyên (cm). Độ dài cạnh MN là:

      • A.
        8cm.
      • B.
        5cm.
      • C.
        6cm.
      • D.
        7cm.

      Đáp án : D

      Phương pháp giải :

      Dựa vào bất đẳng thức tam giác để tính độ dài MN.

      Lời giải chi tiết :

      Vì NP, MP và MN là độ dài 3 cạnh của một tam giác nên ta có:

      \(\begin{array}{l}MP - NP < MN < MP + NP\\7 - 1 < MN < 7 + 1\\6 < MN < 8\end{array}\)

      Mà MN là số nguyên nên MN chỉ có thể bằng 7cm.

      Đáp án D.

      Câu 11 :

      Cho tam giác ABC có AB = AC. Trên các cạnh AB và AC lấy các điểm D, E sao cho \(AD = AE\). Gọi K là giao điểm của BE và CD. Chọn câu sai

      • A.
        BE = CD.
      • B.
        BK = KC.
      • C.
        BD = CE.
      • D.
        DK = KC.

      Đáp án : D

      Phương pháp giải :

      Chứng minh các \(\Delta ABE = \Delta ACD\) và \(\Delta BKC\) cân để kiểm tra.

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 7 - Đề số 11 - Cánh diều 1 4

      Xét tam giác ABE và ACD có:

      AB = AC (gt)

      \(\widehat {BAC}\) chung

      AE = AD (gt)

      suy ra \(\Delta ABE = \Delta ACD\left( {c.g.c} \right)\)

      suy ra BE = CD (hai cạnh tương ứng nên A đúng.

      và \(\widehat {ABE} = \widehat {ACD}\) (hai góc tương ứng)

      Mà \(\widehat {ABC} = \widehat {ACB}\) (tam giác ABC cân tại A vì AB = AC)

      Suy ra \(\widehat {KBC} = \widehat {KCB}\) nên \(\Delta BKC\) cân tại K.

      Do đó BK = CK nên B đúng.

      Vì AB = AC, AD = AE nên AB – AD = AC – AE hay BD = CE nên C đúng.

      Ta chưa đủ điều kiện có DK = KC nên đáp án D sai.

      Đáp án D.

      Câu 12 :

      Giao điểm của ba đường trung trực của tam giác

      • A.
        cách đều 3 cạnh của tam giác.
      • B.
        được gọi là trực tâm của tam giác.
      • C.
        cách đều 3 đỉnh của tam giác.
      • D.
        cách đỉnh một đoạn bằng \(\frac{2}{3}\) độ dài đường trung tuyến đi qua đỉnh đó.

      Đáp án : C

      Phương pháp giải :

      Dựa vào kiến thức giao điểm của ba đường trung trực.

      Lời giải chi tiết :

      Giao điểm của ba đường trung trực của tam giác cách đều ba đỉnh của tam giác nên C đúng.

      Đáp án C.

      II. Tự luận
      Câu 1 :

      Chứng minh giá trị của biểu thức sau không phụ thuộc vào giá trị của biến:

      \(Q = 5x.2x - x\left( {7x - 5} \right) + \left( {12{x^4} + 20{x^3} - 8{x^2}} \right):\left( { - 4{x^2}} \right)\)

      Phương pháp giải :

      Rút gọn biểu thức để chứng minh.

      Lời giải chi tiết :

      \(\begin{array}{l}Q = 5x.2x - x\left( {7x - 5} \right) + \left( {12{x^4} + 20{x^3} - 8{x^2}} \right):\left( { - 4{x^2}} \right)\\ = 10{x^2} - 7{x^2} + 5x - 3{x^2} - 5x + 2\\ = \left( {10{x^2} - 7{x^2} - 3{x^2}} \right) + \left( {5x - 5x} \right) + 2\\ = 2\end{array}\)

      Vậy giá trị của biểu thức Q không phụ thuộc vào giá trị của biến.

      Câu 2 :

      Cho đa thức \(Q(x) = - 3{x^4} + 4{x^3} + 2{x^2} + \frac{2}{3} - 3x - 2{x^4} - 4{x^3} + 8{x^4} + 1 + 3x\)

      a) Thu gọn và sắp xếp theo lũy thừa giảm dần của biến.

      b) Chứng tỏ Q(x) không có nghiệm.

      Phương pháp giải :

      a) Sử dụng quy tắc thu gọn đa thức một biến.

      b) Chứng minh Q(x) không thể bằng 0.

      Lời giải chi tiết :

      a)

      \(\begin{array}{l}Q(x) = - 3{x^4} + 4{x^3} + 2{x^2} + \frac{2}{3} - 3x - 2{x^4} - 4{x^3} + 8{x^4} + 1 + 3x\\ = \left( { - 3{x^4} - 2{x^4} + 8{x^4}} \right) + \left( {4{x^3} - 4{x^3}} \right) + 2{x^2} + \left( {3x - 3x} \right) + \left( {\frac{2}{3} + 1} \right)\\ = 3{x^4} + 2{x^2} + \frac{5}{3}\end{array}\)

      b) Ta có:

      \({x^4} \ge 0\) với mọi giá trị \(x\)

      \(3{x^4} \ge 0\) với mọi giá trị \(x\)

      \({x^2} \ge 0\) với mọi giá trị \(x\)

      \((2{x^2} \ge 0\) với mọi giá trị \(x\)

      \(Q(x) = 3{x^4} + 2{x^2} + \frac{5}{3} \ge \frac{5}{3}\) với mọi giá trị \(x\)

      Vậy \(Q\left( x \right)\) không có nghiệm

      Câu 3 :

      Chọn ngẫu nhiên một số trong bốn số 11;12;13 và 14. Tìm xác suất để:

      a) Chọn được số chia hết cho 5

      b) Chọn được số có hai chữ số

      c) Chọn được số nguyên tố

      d) Chọn được số chia hết cho 6

      Phương pháp giải :

      Kiểm tra khả năng xảy ra của biến cố.

      Lời giải chi tiết :

      a) Không có số nào chia hết cho 5 nên xác suất để chọn được số chia hết cho 5 là 0.

      b) Cả 4 số đều là số có hai chữ số nên xác suất để chọn được số có hai chữ số là 1.

      c) Có hai số (11; 13) là số nguyên tố nên xác suất để chọn được số nguyên tố là \(\frac{2}{4} = \frac{1}{2}\).

      d) Có một số (12) chia hết cho 6 nên xác suất để chọn được số chia hết cho 6 là \(\frac{1}{4}\).

      Câu 4 :

      Cho \(\Delta MNP\)cân tại M \(\left( {\widehat M < {{90}^0}} \right)\). Kẻ NH \( \bot \)MP \(\left( {H \in MP} \right)\), PK \( \bot \)MN \(\left( {K \in MN} \right)\). NH và PK cắt nhau tại E.

      a) Chứng minh \(\Delta NHP = \Delta PKN\)

      b) Chứng minh \(\Delta \)ENP cân.

      c) Chứng minh ME là đường phân giác của góc NMP.

      Phương pháp giải :

      a) Chứng minh \(\Delta NHP = \Delta PKN\) theo trường hợp cạnh huyền – góc nhọn.

      b) Chứng minh \(\widehat {{P_1}} = \widehat {{N_1}}\) nên \(\Delta ENP\) cân.

      c) Chứng minh MK = MH.

      Chứng minh \(\Delta MEK = \Delta MEH\) (cạnh huyền – cạnh góc vuông) suy ra \(\widehat {{M_1}} = \widehat {{M_2}}\).

      Do đó ME là đường phân giác của góc NMP.

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 7 - Đề số 11 - Cánh diều 1 5

      a) Xét \(\Delta NHP\) và \(\Delta PKN\) vuông tại H và K có:

      \(\widehat {NPH} = \widehat {PNK}\) (vì \(\Delta MNP\) cân tại M)

      \(NP\) chung

      Suy ra \(\Delta NHP = \Delta PKN\) (cạnh huyền – góc nhọn) (đpcm)

      b) Vì \(\Delta NHP = \Delta PKN\)nên \(\widehat {{N_1}} = \widehat {{P_1}}\).

      Do đó \(\Delta ENP\) cân tại E (đpcm)

      c) Ta có:

      \(MK = MN - NK\) (vì K thuộc MN)

      \(MH = MP - HP\) (vì H thuộc MP)

      Mà \(MN = MP\) (vì \(\Delta MNP\) cân tại M)

      \(NK = PH\) (vì \(\Delta NHP = \Delta PKN\))

      suy ra \(MK = MH\).

      Xét \(\Delta MEK\) và \(\Delta MEH\) vuông tại K và H có:

      ME là cạnh chung

      MK = MH (cmt)

      Suy ra \(\Delta MEK = \Delta MEH\) (ch – cgv)

      Suy ra \(\widehat {{M_1}} = \widehat {{M_2}}\) suy ra ME là tia phân giác của góc NMP (đpcm)

      Câu 5 :

      Cho đa thức bậc hai P(x) = ax2 + bx + c. Trong đó: a,b và c là những số với a ≠ 0. Cho biết a + b + c = 0. Giải thích tại sao x = 1 là một nghiệm của P(x)

      Phương pháp giải :

      Thay x = 1 vào đa thức P(x) để giải thích.

      Lời giải chi tiết :

      Thay x = 1 vào đa thức P(x), ta có:

      P(1) = a.12 + b.1 + c = a + b + c

      Mà a + b + c = 0

      Do đó, P(1) = 0.

      Như vậy x = 1 là một nghiệm của P(x)

      Câu 6 :

      Cho x; y; z tỉ lệ thuận với 3; 4; 5. Tính giá trị của biểu thức

       \(A = 2024\left( {x - y} \right)\left( {y - z} \right) - 506{\left( {\frac{{x + y + z}}{6}} \right)^2}\)

      Phương pháp giải :

      Viết tỉ lệ thức của x; y; z.

      Đặt tỉ lệ đó bằng k, biểu diễn x; y; z theo k.

      Thay vào A, tính giá trị của A theo k.

      Lời giải chi tiết :

      Vì x; y; z tỉ lệ thuận với 3; 4; 5 nên \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\).

      Đặt \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = k\) ta được:

      \(x = 3k;y = 4k;z = 5k\).

      Khi đó,

      \(\begin{array}{l}A = 2024\left( {3k - 4k} \right)\left( {4k - 5k} \right) - 506{\left( {\frac{{3k + 4k + 5k}}{6}} \right)^2}\\ = 2024\left( { - k} \right)\left( { - k} \right) - 506{\left( {2k} \right)^2}\\ = 2024{k^2} - 2024{k^2}\\ = 0\end{array}\)

      Vậy A = 0.

      Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Đề thi học kì 2 Toán 7 - Đề số 11 - Cánh diều tại chuyên mục giải sách giáo khoa toán 7 trên toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

      Đề thi học kì 2 Toán 7 - Đề số 11 - Cánh diều: Tổng quan và Hướng dẫn Giải Chi Tiết

      Đề thi học kì 2 Toán 7 - Đề số 11 - Cánh diều là một phần quan trọng trong quá trình đánh giá năng lực học tập của học sinh lớp 7. Đề thi này bao gồm các dạng bài tập khác nhau, tập trung vào các kiến thức trọng tâm đã được học trong học kì. Việc nắm vững kiến thức và kỹ năng giải bài tập là yếu tố then chốt để đạt kết quả cao trong kỳ thi này.

      Cấu trúc Đề thi học kì 2 Toán 7 - Đề số 11 - Cánh diều

      Đề thi thường bao gồm các phần sau:

      • Phần trắc nghiệm: Kiểm tra khả năng hiểu và vận dụng kiến thức cơ bản.
      • Phần tự luận: Yêu cầu học sinh trình bày lời giải chi tiết cho các bài toán.

      Các chủ đề thường xuất hiện trong đề thi:

      • Biểu thức đại số
      • Phương trình bậc nhất một ẩn
      • Bất phương trình bậc nhất một ẩn
      • Hệ phương trình bậc nhất hai ẩn
      • Hình học: Các kiến thức về tam giác, tứ giác, đường thẳng song song, đường thẳng vuông góc.

      Hướng dẫn Giải Đề thi học kì 2 Toán 7 - Đề số 11 - Cánh diều

      Để giải đề thi hiệu quả, học sinh cần:

      1. Đọc kỹ đề bài: Hiểu rõ yêu cầu của từng câu hỏi trước khi bắt đầu giải.
      2. Xác định kiến thức cần sử dụng: Nhận biết kiến thức nào phù hợp để giải quyết bài toán.
      3. Lập kế hoạch giải: Xác định các bước cần thực hiện để tìm ra lời giải.
      4. Thực hiện giải: Trình bày lời giải một cách rõ ràng, logic và chính xác.
      5. Kiểm tra lại kết quả: Đảm bảo kết quả cuối cùng là chính xác và phù hợp với yêu cầu của đề bài.

      Ví dụ Minh họa

      Bài toán: Giải phương trình 2x + 3 = 7

      Lời giải:

      1. Chuyển 3 sang vế phải: 2x = 7 - 3
      2. Rút gọn: 2x = 4
      3. Chia cả hai vế cho 2: x = 2

      Kết luận: Phương trình có nghiệm x = 2

      Luyện tập Thêm

      Để nâng cao kỹ năng giải toán, học sinh nên luyện tập thêm với các đề thi khác và các bài tập tương tự. Giaitoan.edu.vn cung cấp một kho đề thi phong phú và đa dạng, giúp học sinh ôn luyện và chuẩn bị tốt nhất cho kỳ thi học kì.

      Tầm quan trọng của việc Ôn tập

      Việc ôn tập thường xuyên và có hệ thống là yếu tố quan trọng để nắm vững kiến thức và kỹ năng giải toán. Học sinh nên dành thời gian ôn tập lại các kiến thức đã học, giải các bài tập và đề thi để củng cố kiến thức và rèn luyện kỹ năng. Ngoài ra, học sinh cũng nên tìm hiểu các phương pháp giải toán hiệu quả và áp dụng vào thực tế.

      Lời khuyên

      Hãy tự tin vào khả năng của mình và luôn cố gắng hết sức trong quá trình học tập và ôn thi. Chúc các em đạt kết quả tốt nhất trong kỳ thi học kì 2 Toán 7!

      Bảng tổng hợp các dạng bài tập thường gặp

      Dạng bài tậpKiến thức liên quan
      Giải phương trìnhBiểu thức đại số, phương trình bậc nhất một ẩn
      Giải bất phương trìnhBiểu thức đại số, bất phương trình bậc nhất một ẩn
      Tính gócHình học, các tính chất của tam giác, tứ giác
      Chứng minh đẳng thứcBiểu thức đại số, các phép biến đổi đại số

      Tài liệu, đề thi và đáp án Toán 7