Logo Header
  1. Môn Toán
  2. Đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều

Đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều

Đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều: Chuẩn bị tốt nhất cho kỳ thi

Giaitoan.edu.vn xin giới thiệu Đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều, một công cụ hữu ích giúp học sinh ôn luyện và đánh giá năng lực bản thân trước kỳ thi quan trọng. Đề thi được biên soạn theo chương trình học Toán 7, tập trung vào các kiến thức trọng tâm và có đáp án chi tiết đi kèm.

Đề thi này không chỉ giúp các em làm quen với cấu trúc đề thi mà còn rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và áp dụng kiến thức vào thực tế.

I. TRẮC NGHIỆM ( 2 điểm) Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Đề bài

    I. TRẮC NGHIỆM ( 2 điểm)

    Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

    Câu 1. Nếu tam giác \(ABC\) có trung tuyến \(AM\) và \(G\) là trọng tâm thì

    A. \(AG = GM\)

    B.\(GM = \dfrac{1}{2}AG\)

    C. \(AG = \dfrac{1}{3}AM\)

    D. \(AM = 2.AG\)

    Câu 2: Trong biểu đồ hình quạt tròn, khẳng định nào sau đây không đúng?

    A. Hai hình quạt bằng nhau biểu diễn cùng một tỉ lệ.

    B. Hình quạt nào lớn hơn biểu diễn số liệu lớn hơn.

    C. Cả hình tròn biểu diễn 75%.

    D. \(\dfrac{1}{4}\) hình tròn biểu diễn 25%.

    Câu 3. Cho \(\Delta ABC,{\mkern 1mu} \hat A = {70^\circ }\), hai đường phân giác BD và CE cắt nhau tại \(O\), thế thì:

    A. \(\widehat {BOC} = {120^\circ }\).

    B. \(\widehat {BAO} = \dfrac{1}{2}\widehat {BAC}\).

    C. \(\widehat {BOC} = {160^\circ }\).

    D. \(\widehat {BAO} < {30^\circ }\).

    Câu 4: Gọi \(I\) là giao điểm của ba đường phân giác của tam giác thì:

    A. \(I\) cách đều ba cạnh của tam giác.

    B. \(I\) là trọng tâm của tam giác.

    C. \(I\) cách đều ba đỉnh của tam giác.

    D. \(I\) là trực tâm của tam giác.

    Câu 5: Tính chất nào sau đây không phải của tam giác\(ABC\)cân tại \(C\):

    A. Trung tuyến \(AM\)và \(BN\)của tam giác \(ABC\) bằng nhau.

    B. \(\angle A < {90^o}\).

    C. \(AC > AB\).

    D. \(\angle A = \angle B\)

    Câu 6. Biểu đồ đoạn thẳng dưới đây cho biết lượng mưa trung bình trong 12 tháng tại Long An (đơn vị: mm).

    Đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều 0 1

    Từ biểu đồ đoạn thẳng, hãy cho biết lượng mưa tăng trong những khoảng thời gian nào?

    A. Giữa các tháng 1 – 2; 6 – 7; 9 – 10; 10 – 11; 11 – 12.

    B. Giữa các tháng 2 – 3; 3 – 4; 4 – 5; 5 – 6; 7 – 8; 8 – 9.

    C. Giữa các tháng 1 – 6; 7 – 9.

    D. Giữa các tháng 1 – 2; 6 – 7; 9 – 12.

    Câu 7. Tập nghiệm của đa thức là:

    A. {0;25}.

    B. {2; 5}.

    C. {0;5}.

    D. {-5;5}.

    Câu 8. Cho hai đa thức \(f(x) = - {x^5} + 2{x^4} - {x^2} - 1;g(x) = - 6 + 2x - 3{x^3} - {x^4} + 3{x^5}\). Giá trị của \(\)\(h(x) = f(x) - g(x)\) tại x = -1 là:

    A. –8 

    B. –12

    C. 10 

    D. 18

    II. PHẦN TỰ LUẬN (8,0 điểm)

    Bài 1 (1,5 điểm)

    Kết quả tìm hiểu về khả năng tự nấu ăn của tất cả học sinh lớp 7B cho bởi bảng thống kê sau:

    Khả năng tự nấu ăn

    Không đạt

    Đạt

    Giỏi

    Xuất sắc

    Số bạn tự đánh giá

    18

    12

    3

    7

    a) Tính sĩ số lớp 7B.

    b) Tính tỉ lệ % của những bạn có khả năng tự nấu ăn xuất sắc so với sĩ số lớp.

    Bài 2. (3 điểm) Cho các đa thức:

    \(F\left( x \right) = 5{x^2} - 1 + 3x + {x^2} - 5{x^3}\) và \(G\left( x \right) = 2 - 3{x^3} + 6{x^2} + 5x - 2{x^3} - x.\)

    a) Thu gọn và sắp xếp hai đa thức \(F\left( x \right)\) và \(G\left( x \right)\) theo lũy thừa giảm dần của biến.

    b) Tính \(M\left( x \right) = F\left( x \right) - G\left( x \right)\); Tìm nghiệm của đa thức \(M\left( x \right)\)

    c) Tìm đa thức \(N\left( x \right)\) biết \(N\left( x \right) + F\left( x \right) = - G\left( x \right)\)

    Bài 3. (3,5 điểm) Cho \(\Delta ABC\)cân tại \(A\), tia phân giác của \(\angle BAC\) cắt cạnh \(BC\)tại \(D\). Kẻ \(DH\)vuông góc với \(AB\)tại \(H\), kẻ \(DK\)vuông góc với \(AC\)tại \(K\).

    a) Chứng minh: \(\Delta AHD = \Delta AKD\)

    b) Tia \(KD\)cắt tia \(AB\)tại \(M\), tia \(HD\)cắt tia \(AC\)tại \(N\). Chứng minh: \(HM = KN\)

    c) Chứng minh: \(AD \bot MN\) và \(BC//MN\)

    d) Gọi \(I\) là giao điểm của \(AD\) và \(MN\). Qua \(I\) kẻ đường thẳng d song song với \(AM\), đường thẳng \(d\) cắt \(AN\) tại \(E\). Chứng minh: \(IE = \dfrac{1}{2}AM\)

    Bài 4. (0,5 điểm) Cho đa thức \(f\left( x \right)\) thỏa mãn \(f\left( x \right) + x.f\left( { - x} \right) = x + 1\) với mọi giá trị của \(x\). Tính \(f\left( 1 \right)\).

    Lời giải

      I. Trắc nghiệm

      1.C

      2.C

      3. B

      4.A

      5.C

      6.B

      7.C

      8.C

      Câu 1:

      Phương pháp:

      Nếu \(\Delta ABC\) có trung tuyến \(AM\) và trọng tâm \(G\) thì \(AG = \dfrac{2}{3}AM\).

      Cách giải:

      Đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều 1 1

      Nếu \(\Delta ABC\) có trung tuyến \(AM\) và trọng tâm \(G\) thì \(AG = \dfrac{2}{3}AM;GM = \dfrac{1}{3}AM;AG = 2GM\)

      Chọn B.

      Câu 2:

      Phương pháp:

      Mô tả biểu đồ hình quạt tròn.

      Cách giải:

      Cả hình tròn biểu diễn 100% do đó, khẳng định “Cả hình tròn biểu diễn 75%” là không đúng.

      Chọn C.

      Câu 3:

      Phương pháp:

      Sử dụng tính chất tia phân giác của góc và định lí tổng 3 góc trong một tam giác.

      Cách giải:

      Đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều 1 2

      Ta có: \(\widehat {BOC} = {180^\circ }{\rm{ \;}} - \widehat {{B_1}} - \widehat {{C_1}}\).

      Vì BD và CE lần lượt là các tia phân giác của góc B và C nên ta có: \(\widehat {{B_1}} = \dfrac{{\hat B}}{2};{\mkern 1mu} \widehat {{C_1}} = \dfrac{{\hat C}}{2}\).

      Trong tam giác ABC ta có: \(\hat B + \hat C = {180^\circ }{\rm{ \;}} - \hat A = {180^\circ }{\rm{ \;}} - {70^\circ }{\rm{ \;}} = {110^\circ }\).

      \( \Rightarrow \widehat {BOC} = {180^\circ }{\rm{ \;}} - \widehat {{B_1}} - \widehat {{C_1}} = {180^\circ }{\rm{ \;}} - \dfrac{{\hat B + \hat C}}{2} = {180^\circ }{\rm{ \;}} - {55^\circ }{\rm{ \;}} = {125^\circ }\)

      Chọn B.

      Câu 4:

      Phương pháp:

      + Mọi điểm nằm trên đường phân giác của một góc thì cách đều hai cạnh của góc.

      + Giao của ba đường phân giác trong tam giác cách đều ba cạnh của tam giác đó.

      + Giao điểm của ba đường phân giác trong tam giác là tâm đường tròn nội tiếp của tam giác đó.

      Cách giải:

      Gọi \(I\) là giao điểm của ba đường phân giác của tam giác thì \(I\)cách đều ba cạnh của tam giác.

      Chọn A.

      Câu 5

      Đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều 1 3

      Phương pháp:

      + Tam giác cân có hai góc ở đáy bằng nhau.

      + Tam giác cân có hai đường trung tuyến ứng với hai cạnh bên bằng nhau.

      + Tổng ba góc trong một tam giác bằng \({180^o}\)

      Cách giải:

      + Theo tính chất của tam giác cân thì A, D đúng.

      + Ta có \(\angle A = \angle B = \dfrac{{{{180}^o} - \angle C}}{2} < {90^o}\) . Vậy B đúng.

      + Tam giác ABC cân tại C thì \(AC > AB\)hoặc \(AC \le AB\). Vậy đáp án C sai.

      Chọn C.

      Câu 6.

      Phương pháp:

      Phân tích dữ liệu biểu đồ đoạn thẳng.

      Cách giải:

      Từ biểu đồ đoạn thẳng ta thấy lượng mưa tăng giữa các tháng 2 – 3; 3 – 4; 4 – 5; 5 – 6; 7 – 8; 8 – 9.

      Chọn B.

      Câu 7.

      Phương pháp: Giải \({x^2} - 5x = 0\) để tìm nghiệm.

      Hướng dẫn giải chi tiết

      \({x^2} - 5x = 0 \Rightarrow x(x - 5) = 0 \Rightarrow \left[ \begin{array}{l}x = 0\\x - 5 = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = 0\\x = 5\end{array} \right.\)

      Vậy tập nghiệm của đa thức\({x^2} - 5x\)là {0; 5}

      Chọn C

      Câu 8.

      Phương pháp:

      - Để trừ hai đa thức, ta nhóm các hạng tử cùng bậc với nhau và rút gọn.

      - Thay\(x = - 1\)vàođa thức h(x) vừa tìm được để tìm giá trị của h(x).

      Cách giải:

      \(\begin{array}{l}h(x) = f(x) - g(x) = \left( { - {x^5} + 2{x^4} - {x^2} - 1} \right) - \left( { - 6 + 2x - 3{x^3} - {x^4} + 3{x^5}} \right)\,\,\,\\\;\;\;\;\;\;\; = - {x^5} + 2{x^4} - {x^2} - 1 + 6 - 2x + 3{x^3} + {x^4} - 3{x^5}\\\;\;\;\;\;\;\; = \left( { - {x^5} - 3{x^5}} \right) + \left( {2{x^4} + {x^4}} \right) + 3{x^3} - {x^2} - 2x + 5\\\;\;\;\;\;\;\; = - 4{x^5} + 3{x^4} + 3{x^3} - {x^2} - 2x + 5.\end{array}\)

      Thay \(x = - 1\) vào đa thức h(x) ta có: \(h( - 1) = - 4.{( - 1)^5} + 3.{( - 1)^4} + 3.{( - 1)^3} - {( - 1)^2} - 2.( - 1) + 5 = - 4.( - 1) + 3.1 + 3.( - 1) - 1 + 2 + 5 = 10\)

      Vậy giá trị của h(x) là 10 tại \(x = - 1\).

      Chọn C

      II. PHẦN TỰ LUẬN (8,0 điểm)

      Bài 1.

      Phương pháp:

      Tỉ số phần trăm của a đối với b là: a : b . 100%

      Cách giải

      a) Sĩ số lớp 7B là:

      18 +12 + 3 + 7 = 40 (học sinh).

      b) Tỉ lệ phần trăm những bạn có khả năng tự nấu ăn xuất sắc so với sĩ số lớp là:

      7 : 40.100 = 17,5

      Bài 2.

      Phương pháp

      a) Thu gọn và sắp xếp theo lũy thừa giảm dần của biến của hai đa thức \(F\left( x \right)\) và \(G\left( x \right)\). Khi thu gọn các đơn thức đồng dạng ta cộng hệ số với nhau và giữ nguyên phần biến, sau đó sắp xếp theo lũy thừa giảm dần của biến số.

      b) Tính \(M\left( x \right) = F\left( x \right) - G\left( x \right)\). Ta thực hiện trừ hai đa thức. Sau đó tìm nghiệm của đa thức \(M\left( x \right)\), ta cho \(M\left( x \right) = 0\) để tìm nghiệm.

      c) Biến đổi \(N\left( x \right) + F\left( x \right) = - G\left( x \right) \Rightarrow N\left( x \right) = - F\left( x \right) - G\left( x \right)\), rồi thực hiện tính.

      Chú ý: Trước dấu trừ các hạng tử đổi dấu.

      Cách giải:

      a) Thu gọn và sắp xếp theo lũy thừa giảm dần của biến.

      Thu gọn \(F\left( x \right):\)

      \(\begin{array}{l}F\left( x \right) = 5{x^2} - 1 + 3x + {x^2} - 5{x^3}\\F\left( x \right) = - 5{x^3} + \left( {5{x^2} + {x^2}} \right) + 3x - 1\\F\left( x \right) = - 5{x^3} + 6{x^2} + 3x - 1\end{array}\)

      Thu gọn \(G\left( x \right):\)

      \(\begin{array}{l}G\left( x \right) = 2 - 3{x^3} + 6{x^2} + 5x - 2{x^3} - x.\\G\left( x \right) = \left( { - 3{x^3} - 2{x^3}} \right) + 6{x^2} + \left( {5x - x} \right) + 2\\G\left( x \right) = - 5{x^3} + 6{x^2} + 4x + 2\end{array}\)

      b) Tính \(M\left( x \right)\)

      \(\begin{array}{l}M\left( x \right) = F\left( x \right) - G\left( x \right)\\M\left( x \right) = \left( { - 5{x^3} + 6{x^2} + 3x - 1} \right) - \left( { - 5{x^3} + 6{x^2} + 4x + 2} \right)\\M\left( x \right) = - 5{x^3} + 6{x^2} + 3x - 1 + 5{x^3} - 6{x^2} - 4x - 2\\M\left( x \right) = \left( { - 5{x^3} + 5{x^3}} \right) + \left( {6{x^2} - 6{x^2}} \right) + \left( {3x - 4x} \right) + \left( { - 1 - 2} \right)\\M\left( x \right) = \,\, - x - 3\end{array}\)

      Tìm nghiệm của đa thức \(M\left( x \right)\):

      Ta có: \(M\left( x \right) = - x - 3 = 0 \Leftrightarrow x = - 3\)

      Vậy \(x = - 3\) là nghiệm của đa thức \(M\left( x \right)\).

      c) Ta có:

      \(\begin{array}{l}N\left( x \right) + F\left( x \right) = - G\left( x \right)\\ \Rightarrow N\left( x \right) = - F\left( x \right) - G\left( x \right) = - \left[ {F\left( x \right) + G\left( x \right)} \right]\end{array}\)

      Trong đó:

      \(F\left( x \right) = - 5{x^3} + 6{x^2} + 3x - 1\)

      \(G\left( x \right) = - 5{x^3} + 6{x^2} + 4x + 2\)

      \(\begin{array}{l} \Rightarrow F\left( x \right) + G\left( x \right)\\ = \left( { - 5{x^3} + 6{x^2} + 3x - 1} \right) + \left( { - 5{x^3} + 6{x^2} + 4x + 2} \right)\\ = - 10{x^3} + 12{x^2} + 7x + 1\end{array}\)

      \(\begin{array}{l} \Rightarrow N\left( x \right) = - \left[ {F\left( x \right) + G\left( x \right)} \right]\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = - \left( { - 10{x^3} + 12{x^2} + 7x + 1} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 10{x^3} - 12{x^2} - 7x - 1\end{array}\)

      Vậy \(N\left( x \right) = 10{x^3} - 12{x^2} - 7x - 1\).

      Câu 3:

      Phương pháp:

      + Sử dụng các cách chứng minh hai tam giác bằng nhau.

      + Sử dụng tính chất của các góc tạo bởi một đường thẳng cắt hai đường thẳng song song.

      + Các định lí từ vuông góc tới song song.

      + Tính chất các đường cao, đường phân giác, đường trung trực trong tam giác cân.

      Cách giải:

      Đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều 1 4

      a) Xét hai tam giác vuông\(\Delta AHD\)và\(\Delta AKD\)có:

      + \(AD\)chung

      + \(\angle HAD = \angle KAD\) (vì\(AD\)là tia phân giác của \(\angle BAC\))

      \( \Rightarrow \Delta AHD = \)\(\Delta AKD\) (cạnh huyền – góc nhọn) (đpcm)

      b) Theo a) \(\Delta AHD = \)\(\Delta AKD\)\( \Rightarrow \)\(AH = AK\)(hai cạnh tương ứng) (1)

      Xét hai tam giác vuông\(\Delta AMK\)và\(\Delta ANH\)có:

      + \(\angle A\)chung

      +\(AH = AK\)

      + \(\angle AKM = \angle AHN = {90^o}\)

      \( \Rightarrow \)\(\Delta AMK = \Delta ANH\)(g.c.g)

      \( \Rightarrow \)\(AM = AN\) (2)

      Mà \(\begin{array}{l}AM = AH + HM\\AN = AK + KN\end{array}\) (3)

      Từ (1), (2), (3) suy ra \(HM = KN\) (đpcm)

      c) + Do \(AM = AN\)\( \Rightarrow \Delta AMN\)cân tại \(A\)

      Vì \(AD\)là tia phân giác của góc \(A\)nên suy ra \(AD\)đồng thời là đường cao trong \(\Delta AMN\)ứng với cạnh \(MN\).

      \( \Rightarrow AD \bot MN\) (đpcm). (4)

      + \(\Delta ABC\)có \(AD\)là tia phân giác của góc \(A\)nên suy ra \(AD\)đồng thời là đường cao ứng với cạnh \(BC\).

      \( \Rightarrow AD \bot BC\) (5)

      Từ (4), (5) suy ra \(MN//BC\) (đpcm)

      d) + Đường thẳng d song song với \(AM\)

      \( \Rightarrow \)\(\angle AMN = \angle EIN\)(hai góc ở vị trí so le trong) (7)

      Mặt khác \(\Delta AMN\)cân tại \(A\)\( \Rightarrow \)\(\angle AMN = \angle ANM\) (8)

      Từ (7) và (8) suy ra: \(\angle EIN = \angle ANM = \angle ENI\)

      \( \Rightarrow \)\(\Delta ENI\)cân tại \(E\)

      \( \Rightarrow \)\(EI = EN\) (9)

      + Đường thẳng d song song với \(AM\)

      \( \Rightarrow \)\(\angle EIA = \angle MAI{\rm{ }}\left( { = \angle AIE} \right)\)

      \( \Rightarrow \)\(\Delta EAI\)cân tại \(E\)

      \( \Rightarrow \)\(EI = EA\) (10)

      Từ (9) và (10) suy ra: \(EI = EN = EA = \dfrac{1}{2}AN = \dfrac{1}{2}AM \Leftrightarrow EI = \dfrac{1}{2}AM\) (đpcm)

      Bài 4.

      Phương pháp:

      Xét với \(x = - 1\), ta tìm được mối liên hệ của \(f\left( { - 1} \right)\) và \(f\left( 1 \right)\)

      Xét với \(x = 1\), ta tìm được \(f\left( 1 \right)\).

      Cách giải:

      + Với \(x = - 1\), ta có: \(f\left( { - 1} \right) + \left( { - 1} \right).f\left( 1 \right) = - 1 + 1\)

      \(\begin{array}{l} \Rightarrow f\left( { - 1} \right) - f\left( 1 \right) = 0\\ \Rightarrow f\left( { - 1} \right) = f\left( 1 \right)\end{array}\)

      + Với \(x = 1\), ta có: \(f\left( 1 \right) + 1.f\left( { - 1} \right) = 1 + 1\)

      \( \Rightarrow f\left( 1 \right) + f\left( { - 1} \right) = 2\)

      Suy ra, \(f\left( 1 \right) + f\left( 1 \right) = 2\)

      \(\begin{array}{l} \Rightarrow 2f\left( 1 \right) = 2\\ \Rightarrow f\left( 1 \right) = 1\end{array}\)

      Vậy \(f\left( 1 \right) = 1\).

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải
      • Tải về

      I. TRẮC NGHIỆM ( 2 điểm)

      Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

      Câu 1. Nếu tam giác \(ABC\) có trung tuyến \(AM\) và \(G\) là trọng tâm thì

      A. \(AG = GM\)

      B.\(GM = \dfrac{1}{2}AG\)

      C. \(AG = \dfrac{1}{3}AM\)

      D. \(AM = 2.AG\)

      Câu 2: Trong biểu đồ hình quạt tròn, khẳng định nào sau đây không đúng?

      A. Hai hình quạt bằng nhau biểu diễn cùng một tỉ lệ.

      B. Hình quạt nào lớn hơn biểu diễn số liệu lớn hơn.

      C. Cả hình tròn biểu diễn 75%.

      D. \(\dfrac{1}{4}\) hình tròn biểu diễn 25%.

      Câu 3. Cho \(\Delta ABC,{\mkern 1mu} \hat A = {70^\circ }\), hai đường phân giác BD và CE cắt nhau tại \(O\), thế thì:

      A. \(\widehat {BOC} = {120^\circ }\).

      B. \(\widehat {BAO} = \dfrac{1}{2}\widehat {BAC}\).

      C. \(\widehat {BOC} = {160^\circ }\).

      D. \(\widehat {BAO} < {30^\circ }\).

      Câu 4: Gọi \(I\) là giao điểm của ba đường phân giác của tam giác thì:

      A. \(I\) cách đều ba cạnh của tam giác.

      B. \(I\) là trọng tâm của tam giác.

      C. \(I\) cách đều ba đỉnh của tam giác.

      D. \(I\) là trực tâm của tam giác.

      Câu 5: Tính chất nào sau đây không phải của tam giác\(ABC\)cân tại \(C\):

      A. Trung tuyến \(AM\)và \(BN\)của tam giác \(ABC\) bằng nhau.

      B. \(\angle A < {90^o}\).

      C. \(AC > AB\).

      D. \(\angle A = \angle B\)

      Câu 6. Biểu đồ đoạn thẳng dưới đây cho biết lượng mưa trung bình trong 12 tháng tại Long An (đơn vị: mm).

      Đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều 1

      Từ biểu đồ đoạn thẳng, hãy cho biết lượng mưa tăng trong những khoảng thời gian nào?

      A. Giữa các tháng 1 – 2; 6 – 7; 9 – 10; 10 – 11; 11 – 12.

      B. Giữa các tháng 2 – 3; 3 – 4; 4 – 5; 5 – 6; 7 – 8; 8 – 9.

      C. Giữa các tháng 1 – 6; 7 – 9.

      D. Giữa các tháng 1 – 2; 6 – 7; 9 – 12.

      Câu 7. Tập nghiệm của đa thức là:

      A. {0;25}.

      B. {2; 5}.

      C. {0;5}.

      D. {-5;5}.

      Câu 8. Cho hai đa thức \(f(x) = - {x^5} + 2{x^4} - {x^2} - 1;g(x) = - 6 + 2x - 3{x^3} - {x^4} + 3{x^5}\). Giá trị của \(\)\(h(x) = f(x) - g(x)\) tại x = -1 là:

      A. –8 

      B. –12

      C. 10 

      D. 18

      II. PHẦN TỰ LUẬN (8,0 điểm)

      Bài 1 (1,5 điểm)

      Kết quả tìm hiểu về khả năng tự nấu ăn của tất cả học sinh lớp 7B cho bởi bảng thống kê sau:

      Khả năng tự nấu ăn

      Không đạt

      Đạt

      Giỏi

      Xuất sắc

      Số bạn tự đánh giá

      18

      12

      3

      7

      a) Tính sĩ số lớp 7B.

      b) Tính tỉ lệ % của những bạn có khả năng tự nấu ăn xuất sắc so với sĩ số lớp.

      Bài 2. (3 điểm) Cho các đa thức:

      \(F\left( x \right) = 5{x^2} - 1 + 3x + {x^2} - 5{x^3}\) và \(G\left( x \right) = 2 - 3{x^3} + 6{x^2} + 5x - 2{x^3} - x.\)

      a) Thu gọn và sắp xếp hai đa thức \(F\left( x \right)\) và \(G\left( x \right)\) theo lũy thừa giảm dần của biến.

      b) Tính \(M\left( x \right) = F\left( x \right) - G\left( x \right)\); Tìm nghiệm của đa thức \(M\left( x \right)\)

      c) Tìm đa thức \(N\left( x \right)\) biết \(N\left( x \right) + F\left( x \right) = - G\left( x \right)\)

      Bài 3. (3,5 điểm) Cho \(\Delta ABC\)cân tại \(A\), tia phân giác của \(\angle BAC\) cắt cạnh \(BC\)tại \(D\). Kẻ \(DH\)vuông góc với \(AB\)tại \(H\), kẻ \(DK\)vuông góc với \(AC\)tại \(K\).

      a) Chứng minh: \(\Delta AHD = \Delta AKD\)

      b) Tia \(KD\)cắt tia \(AB\)tại \(M\), tia \(HD\)cắt tia \(AC\)tại \(N\). Chứng minh: \(HM = KN\)

      c) Chứng minh: \(AD \bot MN\) và \(BC//MN\)

      d) Gọi \(I\) là giao điểm của \(AD\) và \(MN\). Qua \(I\) kẻ đường thẳng d song song với \(AM\), đường thẳng \(d\) cắt \(AN\) tại \(E\). Chứng minh: \(IE = \dfrac{1}{2}AM\)

      Bài 4. (0,5 điểm) Cho đa thức \(f\left( x \right)\) thỏa mãn \(f\left( x \right) + x.f\left( { - x} \right) = x + 1\) với mọi giá trị của \(x\). Tính \(f\left( 1 \right)\).

      I. Trắc nghiệm

      1.C

      2.C

      3. B

      4.A

      5.C

      6.B

      7.C

      8.C

      Câu 1:

      Phương pháp:

      Nếu \(\Delta ABC\) có trung tuyến \(AM\) và trọng tâm \(G\) thì \(AG = \dfrac{2}{3}AM\).

      Cách giải:

      Đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều 2

      Nếu \(\Delta ABC\) có trung tuyến \(AM\) và trọng tâm \(G\) thì \(AG = \dfrac{2}{3}AM;GM = \dfrac{1}{3}AM;AG = 2GM\)

      Chọn B.

      Câu 2:

      Phương pháp:

      Mô tả biểu đồ hình quạt tròn.

      Cách giải:

      Cả hình tròn biểu diễn 100% do đó, khẳng định “Cả hình tròn biểu diễn 75%” là không đúng.

      Chọn C.

      Câu 3:

      Phương pháp:

      Sử dụng tính chất tia phân giác của góc và định lí tổng 3 góc trong một tam giác.

      Cách giải:

      Đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều 3

      Ta có: \(\widehat {BOC} = {180^\circ }{\rm{ \;}} - \widehat {{B_1}} - \widehat {{C_1}}\).

      Vì BD và CE lần lượt là các tia phân giác của góc B và C nên ta có: \(\widehat {{B_1}} = \dfrac{{\hat B}}{2};{\mkern 1mu} \widehat {{C_1}} = \dfrac{{\hat C}}{2}\).

      Trong tam giác ABC ta có: \(\hat B + \hat C = {180^\circ }{\rm{ \;}} - \hat A = {180^\circ }{\rm{ \;}} - {70^\circ }{\rm{ \;}} = {110^\circ }\).

      \( \Rightarrow \widehat {BOC} = {180^\circ }{\rm{ \;}} - \widehat {{B_1}} - \widehat {{C_1}} = {180^\circ }{\rm{ \;}} - \dfrac{{\hat B + \hat C}}{2} = {180^\circ }{\rm{ \;}} - {55^\circ }{\rm{ \;}} = {125^\circ }\)

      Chọn B.

      Câu 4:

      Phương pháp:

      + Mọi điểm nằm trên đường phân giác của một góc thì cách đều hai cạnh của góc.

      + Giao của ba đường phân giác trong tam giác cách đều ba cạnh của tam giác đó.

      + Giao điểm của ba đường phân giác trong tam giác là tâm đường tròn nội tiếp của tam giác đó.

      Cách giải:

      Gọi \(I\) là giao điểm của ba đường phân giác của tam giác thì \(I\)cách đều ba cạnh của tam giác.

      Chọn A.

      Câu 5

      Đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều 4

      Phương pháp:

      + Tam giác cân có hai góc ở đáy bằng nhau.

      + Tam giác cân có hai đường trung tuyến ứng với hai cạnh bên bằng nhau.

      + Tổng ba góc trong một tam giác bằng \({180^o}\)

      Cách giải:

      + Theo tính chất của tam giác cân thì A, D đúng.

      + Ta có \(\angle A = \angle B = \dfrac{{{{180}^o} - \angle C}}{2} < {90^o}\) . Vậy B đúng.

      + Tam giác ABC cân tại C thì \(AC > AB\)hoặc \(AC \le AB\). Vậy đáp án C sai.

      Chọn C.

      Câu 6.

      Phương pháp:

      Phân tích dữ liệu biểu đồ đoạn thẳng.

      Cách giải:

      Từ biểu đồ đoạn thẳng ta thấy lượng mưa tăng giữa các tháng 2 – 3; 3 – 4; 4 – 5; 5 – 6; 7 – 8; 8 – 9.

      Chọn B.

      Câu 7.

      Phương pháp: Giải \({x^2} - 5x = 0\) để tìm nghiệm.

      Hướng dẫn giải chi tiết

      \({x^2} - 5x = 0 \Rightarrow x(x - 5) = 0 \Rightarrow \left[ \begin{array}{l}x = 0\\x - 5 = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = 0\\x = 5\end{array} \right.\)

      Vậy tập nghiệm của đa thức\({x^2} - 5x\)là {0; 5}

      Chọn C

      Câu 8.

      Phương pháp:

      - Để trừ hai đa thức, ta nhóm các hạng tử cùng bậc với nhau và rút gọn.

      - Thay\(x = - 1\)vàođa thức h(x) vừa tìm được để tìm giá trị của h(x).

      Cách giải:

      \(\begin{array}{l}h(x) = f(x) - g(x) = \left( { - {x^5} + 2{x^4} - {x^2} - 1} \right) - \left( { - 6 + 2x - 3{x^3} - {x^4} + 3{x^5}} \right)\,\,\,\\\;\;\;\;\;\;\; = - {x^5} + 2{x^4} - {x^2} - 1 + 6 - 2x + 3{x^3} + {x^4} - 3{x^5}\\\;\;\;\;\;\;\; = \left( { - {x^5} - 3{x^5}} \right) + \left( {2{x^4} + {x^4}} \right) + 3{x^3} - {x^2} - 2x + 5\\\;\;\;\;\;\;\; = - 4{x^5} + 3{x^4} + 3{x^3} - {x^2} - 2x + 5.\end{array}\)

      Thay \(x = - 1\) vào đa thức h(x) ta có: \(h( - 1) = - 4.{( - 1)^5} + 3.{( - 1)^4} + 3.{( - 1)^3} - {( - 1)^2} - 2.( - 1) + 5 = - 4.( - 1) + 3.1 + 3.( - 1) - 1 + 2 + 5 = 10\)

      Vậy giá trị của h(x) là 10 tại \(x = - 1\).

      Chọn C

      II. PHẦN TỰ LUẬN (8,0 điểm)

      Bài 1.

      Phương pháp:

      Tỉ số phần trăm của a đối với b là: a : b . 100%

      Cách giải

      a) Sĩ số lớp 7B là:

      18 +12 + 3 + 7 = 40 (học sinh).

      b) Tỉ lệ phần trăm những bạn có khả năng tự nấu ăn xuất sắc so với sĩ số lớp là:

      7 : 40.100 = 17,5

      Bài 2.

      Phương pháp

      a) Thu gọn và sắp xếp theo lũy thừa giảm dần của biến của hai đa thức \(F\left( x \right)\) và \(G\left( x \right)\). Khi thu gọn các đơn thức đồng dạng ta cộng hệ số với nhau và giữ nguyên phần biến, sau đó sắp xếp theo lũy thừa giảm dần của biến số.

      b) Tính \(M\left( x \right) = F\left( x \right) - G\left( x \right)\). Ta thực hiện trừ hai đa thức. Sau đó tìm nghiệm của đa thức \(M\left( x \right)\), ta cho \(M\left( x \right) = 0\) để tìm nghiệm.

      c) Biến đổi \(N\left( x \right) + F\left( x \right) = - G\left( x \right) \Rightarrow N\left( x \right) = - F\left( x \right) - G\left( x \right)\), rồi thực hiện tính.

      Chú ý: Trước dấu trừ các hạng tử đổi dấu.

      Cách giải:

      a) Thu gọn và sắp xếp theo lũy thừa giảm dần của biến.

      Thu gọn \(F\left( x \right):\)

      \(\begin{array}{l}F\left( x \right) = 5{x^2} - 1 + 3x + {x^2} - 5{x^3}\\F\left( x \right) = - 5{x^3} + \left( {5{x^2} + {x^2}} \right) + 3x - 1\\F\left( x \right) = - 5{x^3} + 6{x^2} + 3x - 1\end{array}\)

      Thu gọn \(G\left( x \right):\)

      \(\begin{array}{l}G\left( x \right) = 2 - 3{x^3} + 6{x^2} + 5x - 2{x^3} - x.\\G\left( x \right) = \left( { - 3{x^3} - 2{x^3}} \right) + 6{x^2} + \left( {5x - x} \right) + 2\\G\left( x \right) = - 5{x^3} + 6{x^2} + 4x + 2\end{array}\)

      b) Tính \(M\left( x \right)\)

      \(\begin{array}{l}M\left( x \right) = F\left( x \right) - G\left( x \right)\\M\left( x \right) = \left( { - 5{x^3} + 6{x^2} + 3x - 1} \right) - \left( { - 5{x^3} + 6{x^2} + 4x + 2} \right)\\M\left( x \right) = - 5{x^3} + 6{x^2} + 3x - 1 + 5{x^3} - 6{x^2} - 4x - 2\\M\left( x \right) = \left( { - 5{x^3} + 5{x^3}} \right) + \left( {6{x^2} - 6{x^2}} \right) + \left( {3x - 4x} \right) + \left( { - 1 - 2} \right)\\M\left( x \right) = \,\, - x - 3\end{array}\)

      Tìm nghiệm của đa thức \(M\left( x \right)\):

      Ta có: \(M\left( x \right) = - x - 3 = 0 \Leftrightarrow x = - 3\)

      Vậy \(x = - 3\) là nghiệm của đa thức \(M\left( x \right)\).

      c) Ta có:

      \(\begin{array}{l}N\left( x \right) + F\left( x \right) = - G\left( x \right)\\ \Rightarrow N\left( x \right) = - F\left( x \right) - G\left( x \right) = - \left[ {F\left( x \right) + G\left( x \right)} \right]\end{array}\)

      Trong đó:

      \(F\left( x \right) = - 5{x^3} + 6{x^2} + 3x - 1\)

      \(G\left( x \right) = - 5{x^3} + 6{x^2} + 4x + 2\)

      \(\begin{array}{l} \Rightarrow F\left( x \right) + G\left( x \right)\\ = \left( { - 5{x^3} + 6{x^2} + 3x - 1} \right) + \left( { - 5{x^3} + 6{x^2} + 4x + 2} \right)\\ = - 10{x^3} + 12{x^2} + 7x + 1\end{array}\)

      \(\begin{array}{l} \Rightarrow N\left( x \right) = - \left[ {F\left( x \right) + G\left( x \right)} \right]\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = - \left( { - 10{x^3} + 12{x^2} + 7x + 1} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 10{x^3} - 12{x^2} - 7x - 1\end{array}\)

      Vậy \(N\left( x \right) = 10{x^3} - 12{x^2} - 7x - 1\).

      Câu 3:

      Phương pháp:

      + Sử dụng các cách chứng minh hai tam giác bằng nhau.

      + Sử dụng tính chất của các góc tạo bởi một đường thẳng cắt hai đường thẳng song song.

      + Các định lí từ vuông góc tới song song.

      + Tính chất các đường cao, đường phân giác, đường trung trực trong tam giác cân.

      Cách giải:

      Đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều 5

      a) Xét hai tam giác vuông\(\Delta AHD\)và\(\Delta AKD\)có:

      + \(AD\)chung

      + \(\angle HAD = \angle KAD\) (vì\(AD\)là tia phân giác của \(\angle BAC\))

      \( \Rightarrow \Delta AHD = \)\(\Delta AKD\) (cạnh huyền – góc nhọn) (đpcm)

      b) Theo a) \(\Delta AHD = \)\(\Delta AKD\)\( \Rightarrow \)\(AH = AK\)(hai cạnh tương ứng) (1)

      Xét hai tam giác vuông\(\Delta AMK\)và\(\Delta ANH\)có:

      + \(\angle A\)chung

      +\(AH = AK\)

      + \(\angle AKM = \angle AHN = {90^o}\)

      \( \Rightarrow \)\(\Delta AMK = \Delta ANH\)(g.c.g)

      \( \Rightarrow \)\(AM = AN\) (2)

      Mà \(\begin{array}{l}AM = AH + HM\\AN = AK + KN\end{array}\) (3)

      Từ (1), (2), (3) suy ra \(HM = KN\) (đpcm)

      c) + Do \(AM = AN\)\( \Rightarrow \Delta AMN\)cân tại \(A\)

      Vì \(AD\)là tia phân giác của góc \(A\)nên suy ra \(AD\)đồng thời là đường cao trong \(\Delta AMN\)ứng với cạnh \(MN\).

      \( \Rightarrow AD \bot MN\) (đpcm). (4)

      + \(\Delta ABC\)có \(AD\)là tia phân giác của góc \(A\)nên suy ra \(AD\)đồng thời là đường cao ứng với cạnh \(BC\).

      \( \Rightarrow AD \bot BC\) (5)

      Từ (4), (5) suy ra \(MN//BC\) (đpcm)

      d) + Đường thẳng d song song với \(AM\)

      \( \Rightarrow \)\(\angle AMN = \angle EIN\)(hai góc ở vị trí so le trong) (7)

      Mặt khác \(\Delta AMN\)cân tại \(A\)\( \Rightarrow \)\(\angle AMN = \angle ANM\) (8)

      Từ (7) và (8) suy ra: \(\angle EIN = \angle ANM = \angle ENI\)

      \( \Rightarrow \)\(\Delta ENI\)cân tại \(E\)

      \( \Rightarrow \)\(EI = EN\) (9)

      + Đường thẳng d song song với \(AM\)

      \( \Rightarrow \)\(\angle EIA = \angle MAI{\rm{ }}\left( { = \angle AIE} \right)\)

      \( \Rightarrow \)\(\Delta EAI\)cân tại \(E\)

      \( \Rightarrow \)\(EI = EA\) (10)

      Từ (9) và (10) suy ra: \(EI = EN = EA = \dfrac{1}{2}AN = \dfrac{1}{2}AM \Leftrightarrow EI = \dfrac{1}{2}AM\) (đpcm)

      Bài 4.

      Phương pháp:

      Xét với \(x = - 1\), ta tìm được mối liên hệ của \(f\left( { - 1} \right)\) và \(f\left( 1 \right)\)

      Xét với \(x = 1\), ta tìm được \(f\left( 1 \right)\).

      Cách giải:

      + Với \(x = - 1\), ta có: \(f\left( { - 1} \right) + \left( { - 1} \right).f\left( 1 \right) = - 1 + 1\)

      \(\begin{array}{l} \Rightarrow f\left( { - 1} \right) - f\left( 1 \right) = 0\\ \Rightarrow f\left( { - 1} \right) = f\left( 1 \right)\end{array}\)

      + Với \(x = 1\), ta có: \(f\left( 1 \right) + 1.f\left( { - 1} \right) = 1 + 1\)

      \( \Rightarrow f\left( 1 \right) + f\left( { - 1} \right) = 2\)

      Suy ra, \(f\left( 1 \right) + f\left( 1 \right) = 2\)

      \(\begin{array}{l} \Rightarrow 2f\left( 1 \right) = 2\\ \Rightarrow f\left( 1 \right) = 1\end{array}\)

      Vậy \(f\left( 1 \right) = 1\).

      Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều tại chuyên mục toán bài tập lớp 7 trên soạn toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

      Đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều: Phân tích chi tiết và hướng dẫn giải

      Đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều là một bài kiểm tra quan trọng giúp đánh giá mức độ nắm vững kiến thức của học sinh sau một nửa học kỳ. Đề thi bao gồm các dạng bài tập khác nhau, từ trắc nghiệm đến tự luận, tập trung vào các chủ đề chính như số hữu tỉ, biểu đồ, biểu thức đại số, phương trình bậc nhất một ẩn và bất đẳng thức.

      Cấu trúc đề thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều

      Thông thường, đề thi giữa kì 2 Toán 7 - Cánh diều có cấu trúc như sau:

      • Phần trắc nghiệm: Khoảng 5-7 câu, tập trung vào các khái niệm cơ bản và công thức quan trọng.
      • Phần tự luận: Khoảng 3-5 câu, yêu cầu học sinh trình bày lời giải chi tiết và vận dụng kiến thức đã học để giải quyết các bài toán cụ thể.

      Nội dung chính của đề thi

      Các chủ đề chính thường xuất hiện trong đề thi giữa kì 2 Toán 7 - Cánh diều bao gồm:

      1. Số hữu tỉ: Các khái niệm về số hữu tỉ, số nguyên, số thập phân, phân số, phép cộng, trừ, nhân, chia số hữu tỉ.
      2. Biểu đồ: Đọc và phân tích các loại biểu đồ khác nhau (biểu đồ cột, biểu đồ tròn, biểu đồ đường).
      3. Biểu thức đại số: Các khái niệm về biến, biểu thức đại số, đơn thức, đa thức, cộng, trừ, nhân, chia đa thức.
      4. Phương trình bậc nhất một ẩn: Giải phương trình bậc nhất một ẩn, ứng dụng phương trình bậc nhất một ẩn vào giải toán.
      5. Bất đẳng thức: Các khái niệm về bất đẳng thức, giải bất đẳng thức bậc nhất một ẩn.

      Hướng dẫn giải một số dạng bài tập thường gặp

      Dạng 1: Tính toán với số hữu tỉ

      Để giải các bài tập về tính toán với số hữu tỉ, học sinh cần nắm vững các quy tắc cộng, trừ, nhân, chia số hữu tỉ. Ví dụ:

      Tính: (-2/3) + (1/2)

      Giải:

      (-2/3) + (1/2) = (-4/6) + (3/6) = -1/6

      Dạng 2: Giải phương trình bậc nhất một ẩn

      Để giải phương trình bậc nhất một ẩn, học sinh cần thực hiện các bước sau:

      1. Chuyển các hạng tử chứa ẩn về một vế, các hạng tử không chứa ẩn về vế còn lại.
      2. Thu gọn các hạng tử đồng dạng.
      3. Chia cả hai vế cho hệ số của ẩn để tìm ra nghiệm của phương trình.

      Ví dụ:

      Giải phương trình: 2x + 3 = 7

      Giải:

      2x = 7 - 3

      2x = 4

      x = 2

      Dạng 3: Ứng dụng biểu đồ để giải quyết bài toán

      Khi gặp các bài toán liên quan đến biểu đồ, học sinh cần đọc kỹ biểu đồ để xác định các thông tin quan trọng và sử dụng các thông tin này để giải quyết bài toán.

      Lời khuyên khi làm bài thi giữa kì 2 Toán 7 - Đề số 3 - Cánh diều

      • Đọc kỹ đề bài trước khi làm.
      • Lập kế hoạch làm bài và phân bổ thời gian hợp lý.
      • Trình bày lời giải rõ ràng, mạch lạc.
      • Kiểm tra lại bài làm trước khi nộp.

      Giaitoan.edu.vn: Đồng hành cùng học sinh trên con đường chinh phục Toán học

      Giaitoan.edu.vn cung cấp đầy đủ các tài liệu học tập, đề thi và bài giải chi tiết môn Toán 7, giúp học sinh ôn tập và nâng cao kiến thức một cách hiệu quả. Hãy truy cập giaitoan.edu.vn để khám phá thêm nhiều tài liệu hữu ích khác!

      Tài liệu, đề thi và đáp án Toán 7