Chào mừng các em học sinh lớp 7 đến với đề thi học kì 2 môn Toán năm học 2023-2024, đề số 12, thuộc chương trình Cánh diều.
Đề thi này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong học kì.
Giaitoan.edu.vn cung cấp đề thi và đáp án chi tiết, giúp các em tự tin hơn trong kỳ thi sắp tới.
Cho bảng thống kê số lượt khách du lịch (ước đạt) đến Ninh Bình trong các năm 2016, 2017, 2018:
Biểu đồ dưới đây cho biết kỉ lục thế giới về thời gian chạy cự li 100 mét trong các năm từ 1912 đến 2005.
Cho hai biểu thức: \(E = 2\left( {a + b} \right) - 4a + 3\) và \(F = 5b - \left( {a - b} \right)\)
Khi a = 5 và b = -1. Chọn khẳng định đúng:
Biểu thức đại số biểu diễn công thức tính diện tích hình thang có 2 đáy độ dài a, b; chiều cao h ( a, b, h có cùng đơn vị đo độ dài)
Hệ số tự do của đa thức \( - {x^7} + 5{x^5} - 12x - 22\) là
Giá trị của đa thức \(g\left( x \right) = {x^8}{\rm{ + }}{x^4} + {x^2} + 1\) tại \(x = - 1\)bằng
Trong các biến cố sau, biến cố nào là biến cố ngẫu nhiên?
Gieo một đồng xu cân đối, đồng chất 1 lần. Xác suất của biến cố “Đồng xu xuất hiện mặt ngửa” là
Cho \(\Delta ABC\) vuông tại A có \(\widehat B = {65^0}.\) Chọn khẳng định đúng.
Cho tam giác \(ABC\) có AM là đường trung tuyến, trọng tâm \(G\). Khẳng định nào sau đây đúng?
Bộ ba số nào là độ dài ba cạnh của một tam giác?
Cho \(\Delta ABC\) có \(\widehat A = {35^0};\widehat B = {45^0}\). Số đo góc C là:
a) Tính giá trị của biểu thức \(A = (2x + y)(2x - y)\) tại \(x = - 2,\;y = \frac{1}{3}.\)
b) Tìm tất cả các giá trị của \(x\) thoả mãn \(x(3x - 2) - 3{x^2} = \frac{3}{4}.\)
Biểu đồ dưới đây biểu diễn lượng mưa (đơn vị mm) của hai tỉnh Lai Châu và Cà Mau trong các năm 2018 – 2022.(Nguồn: Tổng cục thống kê)
a) Tính tổng lượng mưa tại Lai Châu và Cà Mau trong giai đoạn 2018 – 2022.
b) Chọn ngẫu nhiên 1 năm trong 5 năm đó, tính xác suất của các biến cố sau:
A: “Tại năm được chọn, lượng mưa ở Cà Mau cao hơn ở Lai Châu”.
B: “Tại năm được chọn, lượng mưa ở Lai Châu thấp hơn 25m”.
Cho hai đa thức \(A\left( x \right) = 5{x^4} - 7{x^2} - 3x - 6{x^2} + 11x - 30\) và \(B\left( x \right) = - 11{x^3} + 5x - 10 + 13{x^4} - 2 + 20{x^3} - 34x\)
a) Thu gọn hai đa thức \(A\left( x \right)\) và \(B\left( x \right)\) và sắp xếp theo lũy thừa giảm dần của biến.
b) Tính \(A\left( x \right) - B\left( x \right)\).
Cho tam giác ABC cân tại A. Kẻ \(BH \bot AC;CK \bot AB\) (\(H \in AC;\,\)\(K \in AB\)).
a) Chứng minh tam giác AKH là tam giác cân
b) Gọi I là giao của BH và CK; AI cắt BC tại M. Chứng minh rằng IM là phân giác của \(\widehat {BIC}\).
c) Chứng minh: \(HK\,{\rm{//}}\,BC\).
Tìm tất cả các số nguyên dương \(x,y,z\) thỏa mãn:
\(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\)và \(200 < {y^2} + {z^2} < 450\).
Cho bảng thống kê số lượt khách du lịch (ước đạt) đến Ninh Bình trong các năm 2016, 2017, 2018:
Đáp án : C
Tỉnh số lượng khách năm 2018 tăng so với năm 2016.
Số lượt khách du lịch đến Ninh Bình trong năm 2018 tăng bao nhiêu phần trăm so với năm 2016 bằng:
Số lượt khách tăng : số lượt khách năm 2016 . 100 (%)
Số lượt khách du lịch năm 2018 tăng so với năm 2016 là:
7,3 – 6,44 = 0,86 (triệu lượt)
Số lượt khách du lịch đến Ninh Bình trong năm 2018 tăng bao nhiêu phần trăm so với năm 2016 là:
\(\frac{{0,86}}{{6,44}}.100 \approx 13,35\left( \% \right)\)
Đáp án C.
Biểu đồ dưới đây cho biết kỉ lục thế giới về thời gian chạy cự li 100 mét trong các năm từ 1912 đến 2005.
Đáp án : B
Quan sát đồ thị và thực hiện phép tính để xác định.
Từ năm 1912 đến năm 2005 kỉ lục thế giới về cự li chạy 100 mét đã giảm là:
\(10,6 - 9,77 = 0,83\) (giây)
Đáp án B.
Cho hai biểu thức: \(E = 2\left( {a + b} \right) - 4a + 3\) và \(F = 5b - \left( {a - b} \right)\)
Khi a = 5 và b = -1. Chọn khẳng định đúng:
Đáp án : B
Thay a = 5 và b = -1 vào các biểu thức để tính giá trị và so sánh.
Thay a = 5 và b = -1 vào, ta có:
\(E = 2.\left( {5 - 1} \right) - 4.5 + 3 = - 9\)
\(F = 5.\left( { - 1} \right) - \left( {5 + 1} \right) = - 11\)
Vì \( - 9 > - 11\) nên \(E > F\).
Đáp án B.
Biểu thức đại số biểu diễn công thức tính diện tích hình thang có 2 đáy độ dài a, b; chiều cao h ( a, b, h có cùng đơn vị đo độ dài)
Đáp án : D
Sử dụng công thức tính diện tích hình thang để viết biểu thức.
Biểu thức đại số biểu diễn công thức tính diện tích hình thang có 2 đáy độ dài a, b; chiều cao h ( a, b, h có cùng đơn vị đo độ dài) là: \(\frac{{\left( {a + b} \right).h}}{2}\).
Đáp án D.
Hệ số tự do của đa thức \( - {x^7} + 5{x^5} - 12x - 22\) là
Đáp án : A
Hệ số của hạng tử bậc 0 gọi là hệ số tự do của đa thức đó.
Hệ số tự do của đa thức \( - {x^7} + 5{x^5} - 12x - 22\) là – 22.
Đáp án A.
Giá trị của đa thức \(g\left( x \right) = {x^8}{\rm{ + }}{x^4} + {x^2} + 1\) tại \(x = - 1\)bằng
Đáp án : D
Thay \(x = - 1\) vào đa thức để tính giá trị.
Thay \(x = - 1\) vào đa thức g(x) ta được:
\(g\left( x \right) = {\left( { - 1} \right)^8}{\rm{ + }}{\left( { - 1} \right)^4} + {\left( { - 1} \right)^2} + 1 = 1 + 1 + 1 + 1 = 4\)
Đáp án D.
Trong các biến cố sau, biến cố nào là biến cố ngẫu nhiên?
Đáp án : D
Dựa vào kiến thức về các loại biến cố.
Biến cố “Gieo hai con xúc xắc 1 lần, tổng số chấm xuất hiện trên hai con xúc xắc là 7” là biến cố ngẫu nhiên.
Đáp án D.
Gieo một đồng xu cân đối, đồng chất 1 lần. Xác suất của biến cố “Đồng xu xuất hiện mặt ngửa” là
Đáp án : C
Dựa vào kiến thức về xác suất của các biến cố đồng khả năng.
Do đồng xu cân đối nên biến cố “Đồng xu xuất hiện mặt ngửa” và “Đồng xu xuất hiện mặt sấp” là đồng khả năng nên xác suất của 2 biến cố này bằng nhau và bằng \(\frac{1}{2}\).
Đáp án C.
Cho \(\Delta ABC\) vuông tại A có \(\widehat B = {65^0}.\) Chọn khẳng định đúng.
Đáp án : B
Dựa vào mối quan hệ giữa góc và cạnh đối nhau trong một tam giác và định lí tổng ba góc của một tam giác bằng \({180^0}\).
Tam giác ABC vuông tại A có \(\widehat B = {65^0}\) nên
\(\widehat C = {180^0} - \widehat A - \widehat B = {180^0} - {90^0} - {65^0} = {25^0}\).
Vì \(\widehat A > \widehat B > \widehat C\left( {{{90}^0} > {{65}^0} > {{25}^0}} \right)\) nên \(BC > AC > AB\).
Đáp án B.
Cho tam giác \(ABC\) có AM là đường trung tuyến, trọng tâm \(G\). Khẳng định nào sau đây đúng?
Đáp án : B
Dựa vào kiến thức về trọng tâm của tam giác.
Vì G là trọng tâm của tam giác ABC nên \(AG = \frac{2}{3}AM\) suy ra \(GM = AM - AG = AM - \frac{2}{3}AM = \frac{1}{3}AM\).
Suy ra \(\frac{{GM}}{{AG}} = \frac{{\frac{1}{3}AM}}{{\frac{2}{3}AM}} = \frac{1}{2}\) hay \(AG = 2GM\).
Đáp án B.
Bộ ba số nào là độ dài ba cạnh của một tam giác?
Đáp án : C
Dựa vào quan hệ giữa các cạnh của một tam giác.
Ta có:
4 + 5 = 9 < 10, ba độ dài \(4cm,\;5cm,\;10cm\) không thỏa mãn một bất đẳng thức tam giác nên không là độ dài ba cạnh của một tam giác.
5 + 5 = 10 < 12, ba độ dài \(5cm,\;5cm,\;12cm\) không thỏa mãn một bất đẳng thức tam giác nên không là độ dài ba cạnh của một tam giác.
11 > 20 – 11 = 9, ba độ dài \(11cm,\;11cm,\;20cm\) thỏa mãn điều kiện của bất đẳng thức tam giác nên đây có thể là độ dài ba cạnh của một tam giác.
11 = 20 – 9, ba độ dài \(9cm,\;20cm,\;11cm\) không thỏa mãn một bất đẳng thức tam giác nên không là độ dài ba cạnh của một tam giác.
Đáp án C.
Cho \(\Delta ABC\) có \(\widehat A = {35^0};\widehat B = {45^0}\). Số đo góc C là:
Đáp án : D
Dựa vào định lí tổng ba góc của một tam giác bằng \({180^0}\).
Số đo góc C là:
\(\begin{array}{l}\widehat C = {180^0} - \widehat A - \widehat B\\ = {180^0} - {35^0} - {45^0}\\ = {100^0}\end{array}\)
Đáp án D.
a) Tính giá trị của biểu thức \(A = (2x + y)(2x - y)\) tại \(x = - 2,\;y = \frac{1}{3}.\)
b) Tìm tất cả các giá trị của \(x\) thoả mãn \(x(3x - 2) - 3{x^2} = \frac{3}{4}.\)
a) Thay \(x = - 2,\;y = \frac{1}{3}\) vào A để tính giá trị biểu thức.
b) Sử dụng các phép tính với đa thức một biến để tìm giá trị của x.
a) Tại \(x = - 2,\;y = \frac{1}{3}\) ta có
\(\begin{array}{l}A = \left[ {2 \cdot ( - 2) + \frac{1}{3}} \right]\left[ {2 \cdot ( - 2) - \frac{1}{3}} \right]\\ = \left( { - 4 + \frac{1}{3}} \right)\left( { - 4 - \frac{1}{3}} \right)\\ = \frac{{ - 11}}{3}.\frac{{ - 13}}{3}\\ = \frac{{143}}{9}.\end{array}\)
b) \(x(3x - 2) - 3{x^2} = \frac{3}{4}\)
\(\begin{array}{l}3{x^2} - 2x - 3{x^2} = \frac{3}{4}\\ - 2x = \frac{3}{4}\\x = \frac{{ - 3}}{8}.\end{array}\)
Vậy \(x = \frac{{ - 3}}{8}\).
Biểu đồ dưới đây biểu diễn lượng mưa (đơn vị mm) của hai tỉnh Lai Châu và Cà Mau trong các năm 2018 – 2022.(Nguồn: Tổng cục thống kê)
a) Tính tổng lượng mưa tại Lai Châu và Cà Mau trong giai đoạn 2018 – 2022.
b) Chọn ngẫu nhiên 1 năm trong 5 năm đó, tính xác suất của các biến cố sau:
A: “Tại năm được chọn, lượng mưa ở Cà Mau cao hơn ở Lai Châu”.
B: “Tại năm được chọn, lượng mưa ở Lai Châu thấp hơn 25m”.
Quan sát đồ thị để trả lời câu hỏi.
a) Tổng lượng mưa tại Lai Châu trong giai đoạn 2018 – 2022 là:
\(2895 + 2543 + 2702 + 2457 + 2475 = 13072\) (mm)
Tổng lượng mưa tại Cà Mau trong giai đoạn 2018 – 2022 là:
\(2008 + 2263 + 2395 + 2130 + 2919 = 11715\)(mm)
b) Trong 5 năm trên, có 1 năm lượng mưa ở Cà Mau cao hơn ở Lai Châu (năm 2022) nên xác suất của biến cố A là: \(\frac{1}{5}\).
Trong 5 năm trên, có 2 năm lượng mưa ở Lai Châu thấp hơn 25m (năm 2021, 2022) nên xác suất của biến cố B là: \(\frac{2}{5}\).
Cho hai đa thức \(A\left( x \right) = 5{x^4} - 7{x^2} - 3x - 6{x^2} + 11x - 30\) và \(B\left( x \right) = - 11{x^3} + 5x - 10 + 13{x^4} - 2 + 20{x^3} - 34x\)
a) Thu gọn hai đa thức \(A\left( x \right)\) và \(B\left( x \right)\) và sắp xếp theo lũy thừa giảm dần của biến.
b) Tính \(A\left( x \right) - B\left( x \right)\).
Thực hiện tính toán với đa thức một biến.
a) \(A\left( x \right) = 5{x^4} - 7{x^2} - 3x - 6{x^2} + 11x - 30\)
\(\begin{array}{l} = 5{x^4} + \left( { - 7{x^2} - 6{x^2}} \right) + \left( { - 3x + 11x} \right) - 30\\ = 5{x^4} - 13{x^2} + 8x - 30\end{array}\)
\(B\left( x \right) = - 11{x^3} + 5x - 10 + 13{x^4} - 2 + 20{x^3} - 34x\)
\(\begin{array}{l} = 13{x^4} + \left( { - 11{x^3} + 20{x^3}} \right) + \left( {5x - 34x} \right) + \left( { - 10 - 2} \right)\\ = 13{x^4} + 9{x^3} - 29x - 12\end{array}\)
b) \(A\left( x \right) - B\left( x \right) = \left( {5{x^4} - 13{x^2} + 8x - 30} \right) - \left( {13{x^4} + 9{x^3} - 29x - 12} \right)\)
\(\begin{array}{l} = 5{x^4} - 13{x^2} + 8x - 30 - 13{x^4} - 9{x^3} + 29x + 12\\ = \left( {5{x^4} - 13{x^4}} \right) - 9{x^3} - 13{x^2} + \left( {8x + 29x} \right) + \left( { - 30 + 12} \right)\\ = -8{x^4} - 9{x^3} - 13{x^2} + 37x - 18\end{array}\)
Cho tam giác ABC cân tại A. Kẻ \(BH \bot AC;CK \bot AB\) (\(H \in AC;\,\)\(K \in AB\)).
a) Chứng minh tam giác AKH là tam giác cân
b) Gọi I là giao của BH và CK; AI cắt BC tại M. Chứng minh rằng IM là phân giác của \(\widehat {BIC}\).
c) Chứng minh: \(HK\,{\rm{//}}\,BC\).
a) Chứng minh \(\Delta ABH = \Delta ACK\) theo trường hợp cạnh huyền – góc nhọn. suy ra AH = AK nên tam giác AKH là tam giác cân.
b) Chứng minh \(\widehat {{P_1}} = \widehat {{N_1}}\) nên \(\Delta AKI = \Delta AHI\) theo trường hợp cạnh huyền – cạnh góc vuông suy ra \(\widehat {AIK} = \widehat {AIH}\)
Từ đó ta có \(\widehat {CIM} = \widehat {BIM}\) nên IM là phân giác của góc BIC
c) Từ tam giác cân ABC và AHK ta có \(\widehat {ABC} = \frac{{180^\circ - \widehat A}}{2}\), \(\widehat {AKH} = \frac{{180^\circ - \widehat A}}{2}\) nên \(\widehat {ABC} = \widehat {AKH}\).
Mà hai góc này ở vị trí đồng vị nên HK // BC.
a) Xét \(\Delta ABH\) và \(\Delta ACK\) có:
\(\widehat {AHB} = \widehat {AKC} = 90^\circ \) (vì \(BH \bot AC;CK \bot AB\))
AB = AC (\(\Delta ABC\) cân);
góc A chung;
Do đó: \(\Delta ABH = \Delta ACK\) (cạnh huyền – góc nhọn).
\( \Rightarrow AH = AK \Rightarrow \Delta AHK\) cân tại A (đpcm).
b) Xét \(\Delta AKI\) và \(\Delta AHI\) có: \(\widehat {AKI} = \widehat {AHI} = 90^\circ \) (vì \(BH \bot AC;CK \bot AB\))
AK = AH (\(\Delta AHK\) cân tại A);
cạnh AI chung;
Do đó: \(\Delta AKI = \Delta AHI\) (cạnh huyền – cạnh góc vuông).
\( \Rightarrow \widehat {AIK} = \widehat {AIH}\).
Mà: \(\widehat {AIK} = \widehat {CIM};\widehat {AIH} = \widehat {BIM}\) (2 góc đối đỉnh).
Do đó: \(\widehat {CIM} = \widehat {BIM}\)\( \Rightarrow IM\)là phân giác của góc BIC (đpcm).
c) \(\Delta ABC\) cân tại A nên: \(\widehat {ABC} = \frac{{180^\circ - \widehat A}}{2}\) .
\(\Delta AHK\) cân tại A nên: \(\widehat {AKH} = \frac{{180^\circ - \widehat A}}{2}\) .
Suy ra \(\widehat {ABC} = \widehat {AKH}\).
Mà 2 góc này ở vị trí đồng vị.
Do đó: KH // BC (đpcm).
Tìm tất cả các số nguyên dương \(x,y,z\) thỏa mãn:
\(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\)và \(200 < {y^2} + {z^2} < 450\).
Biến đổi \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\) thành \(\frac{{6z - 12x}}{9} = \frac{{12x - 8y}}{{16}} = \frac{{8y - 6z}}{4}\).
Áp dụng tính chất dãy tỉ số bằng nhau để suy ra \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2} = 0\)
Từ đó ta có \(6z = 12x = 8y\).
Đặt \(6z = 12x = 8y = 24k\left( {k > 0} \right) \Rightarrow \left( {x;y;z} \right) = \left( {2k;3k;4k} \right)\)
Tìm k dựa vào \(200 < {y^2} + {z^2} < 450\)
Từ đó tính được x, y, z.
Ta có \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\) nên
\(\begin{array}{l}\frac{{3\left( {z - 4x} \right)}}{{3.3}} = \frac{{4\left( {3x - 2y} \right)}}{{4.4}} = \frac{{2\left( {4y - 3z} \right)}}{{2.2}}\\\frac{{6z - 12x}}{9} = \frac{{12x - 8y}}{{16}} = \frac{{8y - 6z}}{4}\end{array}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{{6z - 12x}}{9} = \frac{{12x - 8y}}{{16}} = \frac{{8y - 6z}}{4} = \frac{{6z - 12x + 12x - 8y + 8y - 6z}}{{9 + 16 + 4}} = \frac{0}{{29}} = 0\)
Do đó \(\left\{ \begin{array}{l}6z - 12x = 0\\12x - 8y = 0\\8y - 6z = 0\end{array} \right.\) hay \(6z = 12x = 8y\).
Đặt \(6z = 12x = 8y = 24k\left( {k > 0} \right)\) ta được \(\left( {x;y;z} \right) = \left( {2k;3k;4k} \right)\)
Theo giả thiết \(200 < {y^2} + {z^2} < 450\)
nên \(200 < (3k)^2 + (4k)^2 < 450\)
\(200 < 9{k^2} + 16{k^2} < 450\)
suy ra \(200 < 25{k^2} < 450\)
\(8 < k^2 < 18\)
Do đó \(k \in \left\{ {3;4} \right\}\)
Từ đó tìm được \(\left( {x;y;z} \right) \in \left\{ {\left( {6;9;12} \right);\left( {8;12;16} \right)} \right\}\)
Đề thi học kì 2 Toán 7 - Đề số 12 - Cánh diều là một phần quan trọng trong quá trình đánh giá năng lực học tập của học sinh lớp 7 theo chương trình Cánh diều. Đề thi này bao gồm các dạng bài tập khác nhau, tập trung vào các kiến thức trọng tâm đã được học trong học kì. Việc làm quen với cấu trúc đề thi và luyện tập giải các bài tập tương tự là chìa khóa để đạt kết quả tốt trong kỳ thi.
Thông thường, đề thi học kì 2 Toán 7 - Cánh diều sẽ bao gồm các phần sau:
Các chủ đề thường xuất hiện trong đề thi bao gồm:
Để giúp các em học sinh ôn tập hiệu quả, giaitoan.edu.vn cung cấp đáp án chi tiết và lời giải cho từng bài tập trong đề thi. Dưới đây là một số hướng dẫn giải các dạng bài tập thường gặp:
Khi giải các bài toán về số hữu tỉ và số thực, các em cần nắm vững các quy tắc cộng, trừ, nhân, chia các số hữu tỉ và số thực. Đồng thời, cần chú ý đến việc chuyển đổi giữa các dạng biểu diễn khác nhau của số hữu tỉ (phân số, số thập phân, phần trăm).
Để giải các bài toán về biểu thức đại số, các em cần áp dụng các quy tắc cộng, trừ, nhân, chia đa thức. Ngoài ra, cần chú ý đến việc sử dụng các hằng đẳng thức đại số để đơn giản hóa biểu thức.
Khi giải phương trình bậc nhất một ẩn, các em cần thực hiện các phép biến đổi tương đương để đưa phương trình về dạng x = a, từ đó tìm ra nghiệm của phương trình.
Để giải các bài toán về tam giác, các em cần nắm vững các định lý về tổng ba góc trong một tam giác, quan hệ giữa các cạnh và góc trong tam giác, và các tính chất của đường trung trực, đường phân giác, đường cao của tam giác.
Ngoài việc làm quen với đề thi và đáp án chi tiết, các em nên dành thời gian luyện tập giải thêm các bài tập tương tự. Điều này sẽ giúp các em củng cố kiến thức, rèn luyện kỹ năng giải toán và tự tin hơn trong kỳ thi.
Giaitoan.edu.vn cung cấp nhiều tài liệu tham khảo hữu ích khác, bao gồm:
Trước khi bước vào kỳ thi, các em nên:
Chúc các em học sinh đạt kết quả tốt trong kỳ thi học kì 2 Toán 7 - Đề số 12 - Cánh diều!