Logo Header
  1. Môn Toán
  2. Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14

Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14

Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14

Chào mừng các em học sinh lớp 7 đến với đề thi học kì 1 môn Toán chương trình Cánh diều - Đề số 14. Đề thi này được thiết kế bám sát chương trình học, giúp các em làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải toán.

Giaitoan.edu.vn cung cấp đề thi có đáp án chi tiết, giúp các em tự đánh giá năng lực và tìm ra những kiến thức còn yếu để bổ sung.

Đề bài

    I. Trắc nghiệm
    Câu 1 :

    Điểm A trong hình dưới đây biểu diễn số hữu tỉ nào?

    Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 0 1

    • A.
      \( - 2\).
    • B.
      \(\frac{2}{3}\).
    • C.
      \( - \frac{2}{3}\).
    • D.
      \(2\).
    Câu 2 :

    Cho các số \(\frac{2}{{ - 5}};\,\frac{{ - 3}}{{ - 4}} ;\,\frac{5}{7};\,\sqrt 2 ;\,\frac{{ - 9}}{{11}}\). Các số hữu tỉ dương là:

    • A.
      \(\frac{5}{7};\,\sqrt 2 \).
    • B.
      \(\frac{{ - 3}}{{ - 4}};\,\frac{5}{7};\,\sqrt 2 \).
    • C.
      \(\frac{{ - 3}}{{ - 4}};\frac{2}{{ - 5}}\).
    • D.
      \(\frac{{ - 3}}{{ - 4}};\,\frac{5}{7}\).
    Câu 3 :

    Cho biểu thức \({\left( {\frac{{ - 2}}{3}} \right)^6}:{\left( {\frac{4}{9}} \right)^2}\). Kết quả phép tính ở dạng lũy thừa là:

    • A.
      \({\left( {\frac{2}{3}} \right)^2}\).
    • B.
      \({\frac{{ - 2}}{3}^2}\).
    • C.
      \({\left( {\frac{4}{9}} \right)^2}\).
    • D.
      \({\left( {\frac{{ - 2}}{3}} \right)^4}\).
    Câu 4 :

    Cho 2 số thực a và b với \(a > 0\) và \(b < 0\). Giá trị tuyệt đối của tích a.b là:

    • A.
      \(\left| {ab} \right| = ab\).
    • B.
      \(\left| {ab} \right| = - ab\).
    • C.
      \(\left| {ab} \right| = a + b\).
    • D.
      \(\left| {ab} \right| = a - b\).
    Câu 5 :

    Trong các cặp tỉ số sau, cặp tỉ số nào lập thành một tỉ lệ thức?

    • A.
      \(12:18\) và \(\frac{2}{3}.\)
    • B.
      \(12:18\) và \(\frac{3}{2}.\)
    • C.
      \(\frac{{12}}{{ - 18}}\) và \(\frac{2}{3}.\)
    • D.
      \(\left( { - 12} \right):\left( { - 18} \right)\) và \(\frac{{ - 2}}{3}.\)
    Câu 6 :

    Cho các số: \(\frac{2}{3};\,\frac{{ - 3}}{5};\,\frac{7}{{20}};\,\frac{5}{{22}};\,\frac{1}{{ - 8}};\,\frac{\pi }{2}\). Các số viết được dưới dạng số thập phân hữu hạn là:

    • A.
      \(\frac{2}{3};\,\frac{5}{{22}};\,\frac{1}{{ - 8}}\).
    • B.
      \(\frac{\pi }{2};\,\frac{7}{{20}};\,\frac{{ - 3}}{5}\).
    • C.
      \(\frac{{ - 3}}{5};\,\frac{7}{{20}};\,\frac{1}{{ - 8}}\).
    • D.
      \(\frac{\pi }{2};\,\frac{7}{{20}};\,\frac{1}{{ - 8}}\).
    Câu 7 :

    Làm tròn số 75647 với độ chính xác \(d = 50\). Kết quả là:

    • A.
      75650.
    • B.
      75640.
    • C.
      75600.
    • D.
      75700.
    Câu 8 :

    Cho hình lập phương như hình vẽ dưới đây. Diện tích xung quanh của hình lập phương là:

    Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 0 2

    • A.
      \(216\,c{m^2}\).
    • B.
      \(144\,c{m^2}\).
    • C.
      \(144\,c{m^3}\).
    • D.
      \(216\,c{m^3}\).
    Câu 9 :

    Cho hai góc \(\widehat {xOt}\) và \(\widehat {tOy}\) là hai góc kề bù. Biết \(\widehat {xOt} = {60^0}\), số đo góc \(\widehat {tOy}\) là:

    Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 0 3

    • A.
      \({30^0}\).
    • B.
      \({90^0}\).
    • C.
      \({60^0}\).
    • D.
      \({120^0}\).
    Câu 10 :

    Cho đại lượng \(y\) tỉ lệ thuận với đại lượng \(x\) theo hệ số tỉ lệ \(k = - 3.\) Hệ thức liên hệ của \(y\) và \(x\) là

    • A.
      \(xy = - 3\).
    • B.
      \(y = - 3x\).
    • C.
      \(y = \frac{x}{{ - 3}}\).
    • D.
      \(y = \frac{{ - 3}}{x}\).
    Câu 11 :

    Cho hình vẽ dưới đây, khẳng định đúng là:

    Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 0 4

    • A.
      Tia CE là tia phân giác của góc BED.
    • B.
      Tia AF là tia phân giác của góc BAx.
    • C.
      Tia BA là tia phân giác của góc DBF.
    • D.
      Tia AE là tia phân giác của góc DAF.
    Câu 12 :

    Cho hai đường thẳng m và n song song với nhau như hình vẽ dưới đây, giá trị của x là:

    Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 0 5

    • A.
      \({45^0}\).
    • B.
      \({90^0}\).
    • C.
      \({120^0}\).
    • D.
      \({60^0}\).
    II. Tự luận
    Câu 1 :

    Thực hiện phép tính

    a) \(\sqrt {25} .\left( {0,4 - 1\frac{1}{2}} \right):\left[ {{{( - 2)}^3}:\frac{8}{{11}}} \right]\)

    b) \({\left( { - 2} \right)^3} + {\left( { - \frac{1}{2}} \right)^2}:\left| {\frac{{ - 1}}{{16}}} \right| - {2023^0}\)

    Câu 2 :

    Tìm x

    a) \(\frac{{x + \frac{3}{2}}}{6} = \frac{{ - 5}}{{12}}\)

    b) \(\left( { - \frac{{11}}{{12}}} \right):2x = \frac{5}{2} + \frac{1}{4}\)

    Câu 3 :

    Bảng sau thống kê điểm thi môn Toán của lớp 7A:

    Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 0 6

    Tính điểm thi trung bình môn Toán của lớp 7A?

    Câu 4 :

    Số học sinh của ba lớp \(7A,{\rm{ }}7B,{\rm{ }}7C\) tương ứng tỉ lệ với \(21;{\rm{ }}20;{\rm{ }}22.\) Tính số học sinh của mỗi lớp biết rằng lớp \(7C\) có nhiều hơn lớp \(7A\) là 2 học sinh. 

    Câu 5 :

    Cho hình vẽ sau, biết \(\widehat {{B_1}} = 40^\circ \), \(\widehat {{C_1}} = 40^\circ \)

    Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 0 7

    a) Chứng tỏ đường thẳng a song song với đường thẳng b.

    b) Tính góc AKB.

    c) Cho BC là tia phân giác của góc xBy. Tính góc yBK.

    Câu 6 :

    Một bể bơi dạng hình hộp chữ nhật có chiều dài 12m, chiều rộng 5m và sâu 2,75m như hình vẽ.

    Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 0 8

    a) Tính diện tích xung quanh thành bể và diện tích đáy của bể bơi.

    b) Hỏi người thợ phải dùng bao nhiêu viên gạch men để lát đáy và xung quanh thành bể đó? Biết rằng mỗi viên gạch có chiều dài 25cm, chiều rộng 20 cm và diện tích mạch vữa lát không đáng kể.

    Lời giải và đáp án

      I. Trắc nghiệm
      Câu 1 :

      Điểm A trong hình dưới đây biểu diễn số hữu tỉ nào?

      Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 1 1

      • A.
        \( - 2\).
      • B.
        \(\frac{2}{3}\).
      • C.
        \( - \frac{2}{3}\).
      • D.
        \(2\).

      Đáp án : C

      Phương pháp giải :

      Dựa vào cách biểu diễn số hữu tỉ trên trục số.

      Lời giải chi tiết :

      Điểm A nằm bên trái số 0 nên A là số hữu tỉ âm. Ta thấy từ -1 đến 0 được chia làm 3 phần bằng nhau nên mẫu số bằng 3.

      Điểm A chiếm hai phần về phía chiều âm trục số nên tử số bằng -2.

      Vậy số hữu tỉ A = \( - \frac{2}{3}\)

      Câu 2 :

      Cho các số \(\frac{2}{{ - 5}};\,\frac{{ - 3}}{{ - 4}} ;\,\frac{5}{7};\,\sqrt 2 ;\,\frac{{ - 9}}{{11}}\). Các số hữu tỉ dương là:

      • A.
        \(\frac{5}{7};\,\sqrt 2 \).
      • B.
        \(\frac{{ - 3}}{{ - 4}};\,\frac{5}{7};\,\sqrt 2 \).
      • C.
        \(\frac{{ - 3}}{{ - 4}};\frac{2}{{ - 5}}\).
      • D.
        \(\frac{{ - 3}}{{ - 4}};\,\frac{5}{7}\).

      Đáp án : D

      Phương pháp giải :

      Số hữu tỉ dương là số lớn hơn 0.

      Lời giải chi tiết :

      Ta có:

      \(\begin{array}{l}\frac{2}{{ - 5}} = \frac{{ - 2}}{5} < 0\\\frac{{ - 3}}{{ - 4}} = \frac{3}{4} > 0\\\frac{5}{7} > 0\end{array}\)

      \(\sqrt 2 \) không phải là số hữu tỉ.

      \(\frac{{ - 9}}{{11}} < 0\)

      Vậy chỉ có \(\frac{{ - 3}}{{ - 4}};\frac{5}{7}\) là số hữu tỉ dương.

      Câu 3 :

      Cho biểu thức \({\left( {\frac{{ - 2}}{3}} \right)^6}:{\left( {\frac{4}{9}} \right)^2}\). Kết quả phép tính ở dạng lũy thừa là:

      • A.
        \({\left( {\frac{2}{3}} \right)^2}\).
      • B.
        \({\frac{{ - 2}}{3}^2}\).
      • C.
        \({\left( {\frac{4}{9}} \right)^2}\).
      • D.
        \({\left( {\frac{{ - 2}}{3}} \right)^4}\).

      Đáp án : A

      Phương pháp giải :

      Biến đổi biểu thức về phép chia hai lũy thừa cùng cơ số.

      Lời giải chi tiết :

      Ta có:

      \({\left( {\frac{{ - 2}}{3}} \right)^6}:{\left( {\frac{4}{9}} \right)^2} = {\left( {\frac{{ - 2}}{3}} \right)^6}:{\left[ {{{\left( {\frac{{ - 2}}{3}} \right)}^2}} \right]^2} = {\left( {\frac{{ - 2}}{3}} \right)^6}:{\left( {\frac{{ - 2}}{3}} \right)^4} = {\left( {\frac{{ - 2}}{3}} \right)^{6 - 4}} = {\left( {\frac{{ - 2}}{3}} \right)^2} = {\left( {\frac{2}{3}} \right)^2}\).

      Câu 4 :

      Cho 2 số thực a và b với \(a > 0\) và \(b < 0\). Giá trị tuyệt đối của tích a.b là:

      • A.
        \(\left| {ab} \right| = ab\).
      • B.
        \(\left| {ab} \right| = - ab\).
      • C.
        \(\left| {ab} \right| = a + b\).
      • D.
        \(\left| {ab} \right| = a - b\).

      Đáp án : B

      Phương pháp giải :

      Sử dụng định nghĩa giá trị tuyệt đối của một số:

      \(\left| x \right| = \left\{ \begin{array}{l}x\,khi\,x \ge 0\\ - x\,khi\,x < 0\end{array} \right.\).

      Lời giải chi tiết :

      Vì a > 0 và b < 0 nên tích a.b < 0.

      Khi đó giá trị tuyệt đối của tích a.b là: \(\left| {ab} \right| = - \left( {ab} \right) = - ab\).

      Câu 5 :

      Trong các cặp tỉ số sau, cặp tỉ số nào lập thành một tỉ lệ thức?

      • A.
        \(12:18\) và \(\frac{2}{3}.\)
      • B.
        \(12:18\) và \(\frac{3}{2}.\)
      • C.
        \(\frac{{12}}{{ - 18}}\) và \(\frac{2}{3}.\)
      • D.
        \(\left( { - 12} \right):\left( { - 18} \right)\) và \(\frac{{ - 2}}{3}.\)

      Đáp án : A

      Phương pháp giải :

      Dựa vào kiến thức về tỉ lệ thức.

      Lời giải chi tiết :

      Ta có: \(12:18 = \frac{{12}}{{18}} = \frac{2}{3}\) nên ý A lập thành một tỉ lệ thức.

      B, C, D không lập được thành tỉ lệ thức.

      Câu 6 :

      Cho các số: \(\frac{2}{3};\,\frac{{ - 3}}{5};\,\frac{7}{{20}};\,\frac{5}{{22}};\,\frac{1}{{ - 8}};\,\frac{\pi }{2}\). Các số viết được dưới dạng số thập phân hữu hạn là:

      • A.
        \(\frac{2}{3};\,\frac{5}{{22}};\,\frac{1}{{ - 8}}\).
      • B.
        \(\frac{\pi }{2};\,\frac{7}{{20}};\,\frac{{ - 3}}{5}\).
      • C.
        \(\frac{{ - 3}}{5};\,\frac{7}{{20}};\,\frac{1}{{ - 8}}\).
      • D.
        \(\frac{\pi }{2};\,\frac{7}{{20}};\,\frac{1}{{ - 8}}\).

      Đáp án : C

      Phương pháp giải :

      Các phân số tối giản với mẫu số dương mà mẫu chỉ có ước nguyên tố là 2 và 5 đều viết được dưới dạng số thập phân hữu hạn.

      Lời giải chi tiết :

      Trong các số hữu tỉ trên, chỉ có \(\frac{{ - 3}}{5};\frac{7}{{20}};\frac{1}{{ - 8}}\) có mẫu số chỉ có ước nguyên tố là 2 và 5 nên các số này là số thập phân hữu hạn.

      Đặc biệt, số \(\frac{\pi }{2}\) có mẫu số bằng 2 nhưng tử số là số thập phân vô hạn không tuần hoàn nên \(\frac{\pi }{2}\) không phải là số thập phân hữu hạn.

      Câu 7 :

      Làm tròn số 75647 với độ chính xác \(d = 50\). Kết quả là:

      • A.
        75650.
      • B.
        75640.
      • C.
        75600.
      • D.
        75700.

      Đáp án : C

      Phương pháp giải :

      Dựa vào cách làm tròn số với độ chính xác cho trước.

      Lời giải chi tiết :

      Làm tròn số 75647 với độ chính xác 50 tức là làm tròn số 75647 đến hàng trăm.

      Số 75647 đến hàng trăm làm tròn đến hàng trăm ta được số 75 600.

      Câu 8 :

      Cho hình lập phương như hình vẽ dưới đây. Diện tích xung quanh của hình lập phương là:

      Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 1 2

      • A.
        \(216\,c{m^2}\).
      • B.
        \(144\,c{m^2}\).
      • C.
        \(144\,c{m^3}\).
      • D.
        \(216\,c{m^3}\).

      Đáp án : B

      Phương pháp giải :

      Dựa vào công thức tính diện tích xung quanh của hình lập phương. Sxq = 4.cạnh2.

      Lời giải chi tiết :

      Diện tích xung quanh hình lập phương đó là: 4.62 = 144 (cm2).

      Câu 9 :

      Cho hai góc \(\widehat {xOt}\) và \(\widehat {tOy}\) là hai góc kề bù. Biết \(\widehat {xOt} = {60^0}\), số đo góc \(\widehat {tOy}\) là:

      Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 1 3

      • A.
        \({30^0}\).
      • B.
        \({90^0}\).
      • C.
        \({60^0}\).
      • D.
        \({120^0}\).

      Đáp án : D

      Phương pháp giải :

      Hai góc kề bù có tổng số đo bằng 1800.

      Lời giải chi tiết :

      Ta có góc xOt và góc tOy là hai góc kề bù nên \(\widehat {xOt} + \widehat {tOy} = {180^0}\). Suy ra \(\widehat {tOy} = {180^0} - {60^0} = {120^0}\).

      Câu 10 :

      Cho đại lượng \(y\) tỉ lệ thuận với đại lượng \(x\) theo hệ số tỉ lệ \(k = - 3.\) Hệ thức liên hệ của \(y\) và \(x\) là

      • A.
        \(xy = - 3\).
      • B.
        \(y = - 3x\).
      • C.
        \(y = \frac{x}{{ - 3}}\).
      • D.
        \(y = \frac{{ - 3}}{x}\).

      Đáp án : B

      Phương pháp giải :

      Đại lượng y tỉ lệ thuận với đại lượng x theo hệ số k thì y = k.x (k là hằng số khác 0).

      Lời giải chi tiết :

      Hệ thức liên hệ của y và x là y = -3x.

      Câu 11 :

      Cho hình vẽ dưới đây, khẳng định đúng là:

      Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 1 4

      • A.
        Tia CE là tia phân giác của góc BED.
      • B.
        Tia AF là tia phân giác của góc BAx.
      • C.
        Tia BA là tia phân giác của góc DBF.
      • D.
        Tia AE là tia phân giác của góc DAF.

      Đáp án : B

      Phương pháp giải :

      Dựa vào dấu hiệu nhận biết tia phân giác

      Lời giải chi tiết :

      Ta có tia AF nằm AB và Ax, \(\widehat {BAF} = \widehat {FAx}\) nên AF là tia phân giác của góc BAx.

      Câu 12 :

      Cho hai đường thẳng m và n song song với nhau như hình vẽ dưới đây, giá trị của x là:

      Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 1 5

      • A.
        \({45^0}\).
      • B.
        \({90^0}\).
      • C.
        \({120^0}\).
      • D.
        \({60^0}\).

      Đáp án : D

      Phương pháp giải :

      Dựa vào tính chất hai góc kề bù và hai góc so le trong của hai đường thẳng song song.

      Lời giải chi tiết :

      Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 1 6

      Ta có góc A1 và góc A2 là hai góc kề bù nên số đo góc A1 là: \({180^0} - \widehat {{A_2}} = {180^0} - {120^0} = {60^0}\).

      Vì m // n nên \(\widehat {{A_1}} = x = {60^0}\) (hai góc so le trong)

      II. Tự luận
      Câu 1 :

      Thực hiện phép tính

      a) \(\sqrt {25} .\left( {0,4 - 1\frac{1}{2}} \right):\left[ {{{( - 2)}^3}:\frac{8}{{11}}} \right]\)

      b) \({\left( { - 2} \right)^3} + {\left( { - \frac{1}{2}} \right)^2}:\left| {\frac{{ - 1}}{{16}}} \right| - {2023^0}\)

      Phương pháp giải :

      - Sử dụng phép nhân, phép chia số hữu tỉ.

      - Sử dụng kiến thức căn bậc hai số học, tính lũy thừa cùa một số.

      - Sự dụng kiến thức về dấu giá trị tuyệt đối.

      Lời giải chi tiết :

      a) \(\sqrt {25} .\left( {0,4 - 1\frac{1}{2}} \right):\left[ {{{( - 2)}^3}:\frac{8}{{11}}} \right]\)

      \(\begin{array}{l} = 5.\left( {\frac{2}{5} - \frac{3}{2}} \right):\left( { - 8.\frac{{11}}{8}} \right)\\ = 5.\frac{{ - 11}}{{10}}.\frac{{ - 1}}{{11}} = \frac{1}{2}\end{array}\)

      b) \({\left( { - 2} \right)^3} + {\left( { - \frac{1}{2}} \right)^2}:\left| {\frac{{ - 1}}{{16}}} \right| - {2023^0}\)

      \(\begin{array}{l} = - 8 + \frac{1}{4}.16 - 1\\ = - 5\end{array}\)

      Câu 2 :

      Tìm x

      a) \(\frac{{x + \frac{3}{2}}}{6} = \frac{{ - 5}}{{12}}\)

      b) \(\left( { - \frac{{11}}{{12}}} \right):2x = \frac{5}{2} + \frac{1}{4}\)

      Phương pháp giải :

      Sử dụng quy tắc chuyển vế, quy tắc tính với số hữu tỉ.

      Lời giải chi tiết :

      a) \(\frac{{x + \frac{3}{2}}}{6} = \frac{{ - 5}}{{12}}\)

      \(\begin{array}{l}x + \frac{3}{2} = \frac{{ - 5}}{{12}}.6\\x = \frac{{ - 5}}{2} - \frac{3}{2}\\x = - 4\end{array}\)

      Vậy \(x = - 4\).

      b) \(\left( { - \frac{{11}}{{12}}} \right):2x = \frac{5}{2} + \frac{1}{4}\)

      \(\begin{array}{l}2x = - \frac{{11}}{{12}}:\frac{{11}}{4}\\x = \frac{{ - 1}}{6}\end{array}\)

      Vậy \(x = \frac{{ - 1}}{6}\).

      Câu 3 :

      Bảng sau thống kê điểm thi môn Toán của lớp 7A:

      Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 1 7

      Tính điểm thi trung bình môn Toán của lớp 7A?

      Phương pháp giải :

      Tính tổng số điểm của lớp 7A.

      Tính tổng số học sinh lớp 7A.

      Điểm thi trung bình của lớp 7A bằng tổng số điểm chia cho tổng số học sinh.

      Lời giải chi tiết :

      Tổng điểm lớp 7A:

      \(S = 4.1 + 5.2 + 6.5 + 7.6 + 8.7 + 9.10 + 10.4 = 272\)

      Số học sinh lớp 7A:

      \(N = 1 + 2 + 5 + 6 + 7 + 10 + 4 = 35\)

      Điểm trung bình môn Toán của lớp 7A là:

      \(\overline X = \frac{S}{N} = \frac{{272}}{{35}} \approx 7,8\)

      Câu 4 :

      Số học sinh của ba lớp \(7A,{\rm{ }}7B,{\rm{ }}7C\) tương ứng tỉ lệ với \(21;{\rm{ }}20;{\rm{ }}22.\) Tính số học sinh của mỗi lớp biết rằng lớp \(7C\) có nhiều hơn lớp \(7A\) là 2 học sinh. 

      Phương pháp giải :

      Áp dụng tính chất của dãy tỉ số bằng nhau.

      Lời giải chi tiết :

      Gọi số học sinh của ba lớp \(7A,{\rm{ }}7B,{\rm{ }}7C\) lần lượt là \(x,y,z\) (\(x,{\rm{ }}y,{\rm{ }}z \in \mathbb{R}*)\)

      Vì lớp \(7C\) có nhiều hơn lớp \(7A\)là \(2\) học sinh nên ta có \(z - x = 2.\)

      Số học sinh của ba lớp \(7A,{\rm{ }}7B,{\rm{ }}7C\) tương ứng tỉ lệ với \(21;{\rm{ }}20;{\rm{ }}22\) nên \(\frac{x}{{21}} = \frac{y}{{20}} = \frac{z}{{22}}.\)

      Áp dụng tính chất của dãy tỉ số bằng nhau ta có \(\frac{x}{{21}} = \frac{y}{{20}} = \frac{z}{{22}} = \frac{{z - x}}{{22 - 21}} = \frac{2}{1} = 2.\)

      Với \(\frac{x}{{21}} = 2 \Rightarrow x = 2.21 = 42\);

      \(\frac{y}{{20}} = 2 \Rightarrow y = 2.20 = 40\);

      \(\frac{z}{{22}} = 2 \Rightarrow z = 2.22 = 44\).

      Vậy số học sinh của ba lớp \(7A,{\rm{ }}7B,{\rm{ }}7C\) lần lượt là \(42;40\) và \(44\) (học sinh).

      Câu 5 :

      Cho hình vẽ sau, biết \(\widehat {{B_1}} = 40^\circ \), \(\widehat {{C_1}} = 40^\circ \)

      Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 1 8

      a) Chứng tỏ đường thẳng a song song với đường thẳng b.

      b) Tính góc AKB.

      c) Cho BC là tia phân giác của góc xBy. Tính góc yBK.

      Phương pháp giải :

      a) Sử dụng dấu hiệu nhận biết hai đường thẳng song song.

      b) Hai đường thẳng song song có hai góc so le trong bằng nhau.

      c) Sử dụng tính chất tia phân giác và hai góc kề bù.

      Lời giải chi tiết :

      a) Ta có \(\widehat {{C_1}} = {\widehat B_1} = 40^\circ \) (giả thiết).

      Mà \(\widehat {{B_1}}\) và \(\widehat {{C_1}}\) nằm ở vị trí so le trong nên a // b.

      b) Vì a // b nên \(\widehat {{K_1}} = \widehat {aAK} = 90^\circ \) (hai góc so le trong).

      c) Vì BC là tia phân giác của góc xBy nên \(\widehat {{B_1}} = \widehat {{B_2}} = \frac{{\widehat {xBy}}}{2} \Rightarrow \widehat {xBy} = {2.40^0} = {80^0}\).

      Vì góc xBy và góc yBK là hai góc kề bù nên \(\widehat {xBy} + \widehat {yBK} = {180^0}\)\( \Rightarrow \widehat {yBK} = {180^0} - {80^0} = {100^0}\).

      Câu 6 :

      Một bể bơi dạng hình hộp chữ nhật có chiều dài 12m, chiều rộng 5m và sâu 2,75m như hình vẽ.

      Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 1 9

      a) Tính diện tích xung quanh thành bể và diện tích đáy của bể bơi.

      b) Hỏi người thợ phải dùng bao nhiêu viên gạch men để lát đáy và xung quanh thành bể đó? Biết rằng mỗi viên gạch có chiều dài 25cm, chiều rộng 20 cm và diện tích mạch vữa lát không đáng kể.

      Phương pháp giải :

      a) Sử dụng công thức tính diện tích xung quanh hình hộp chữ nhật: Sxq = chu vi đáy.chiều cao.

      Sử dụng công thức tính diện tích hình chữ nhật để tính diện tích đáy bể bơi.

      b) Tổng diện tích xung quanh và diện tích đáy bể chính là diện tích cần lát gạch.

      Tính diện tích mỗi viên gạch.

      Số viên gạch bằng diện tích cần lát : diện tích mỗi viên gạch.

      Lời giải chi tiết :

      a) Diện tích xung quanh thành bể:

      \(\left[ {(12 + 5).2} \right].2,75 = 93,5\,{m^2}\)

      Diện tích đáy bể:

      \(12.5 = 60\,{m^2}\)

      b) Diện tích cần lát gạch:

      \(93,5 + 60 = 153,5\,{m^2}\)

      Diện tích mỗi viên gạch:

      \(0,25.0,2 = 0,05\,{m^2}\)

      Số viên gạch cần lát là: \(153,5:0,05 = 3070\)(viên).

      Vậy cần dùng 3070 viên gạch để lát.

      Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 tại chuyên mục giải toán 7 trên đề thi toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

      Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14: Tổng quan và hướng dẫn giải chi tiết

      Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 là một bài kiểm tra quan trọng giúp đánh giá mức độ nắm vững kiến thức của học sinh sau một học kì học tập. Đề thi bao gồm các dạng bài tập khác nhau, tập trung vào các chủ đề chính như số hữu tỉ, số thực, biểu thức đại số, phương trình bậc nhất một ẩn, bất đẳng thức và các ứng dụng thực tế của toán học.

      Cấu trúc đề thi học kì 1 Toán 7 Cánh diều - Đề số 14

      Thông thường, đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 sẽ có cấu trúc gồm các phần sau:

      • Phần trắc nghiệm: Kiểm tra khả năng hiểu và vận dụng kiến thức cơ bản.
      • Phần tự luận: Yêu cầu học sinh trình bày chi tiết lời giải cho các bài toán.

      Tỷ lệ điểm giữa phần trắc nghiệm và phần tự luận có thể khác nhau tùy theo quy định của từng trường.

      Nội dung chi tiết đề thi học kì 1 Toán 7 Cánh diều - Đề số 14

      Dưới đây là một số dạng bài tập thường xuất hiện trong đề thi học kì 1 Toán 7 Cánh diều - Đề số 14:

      1. Số hữu tỉ và số thực

      Các bài tập về số hữu tỉ và số thực thường yêu cầu học sinh:

      • Biểu diễn số hữu tỉ và số thực trên trục số.
      • So sánh và sắp xếp các số hữu tỉ và số thực.
      • Thực hiện các phép toán cộng, trừ, nhân, chia trên số hữu tỉ và số thực.

      2. Biểu thức đại số

      Các bài tập về biểu thức đại số thường yêu cầu học sinh:

      • Thu gọn biểu thức đại số.
      • Tính giá trị của biểu thức đại số tại một giá trị cụ thể của biến.
      • Phân tích đa thức thành nhân tử.

      3. Phương trình bậc nhất một ẩn

      Các bài tập về phương trình bậc nhất một ẩn thường yêu cầu học sinh:

      • Giải phương trình bậc nhất một ẩn.
      • Áp dụng phương trình bậc nhất một ẩn để giải các bài toán thực tế.

      4. Bất đẳng thức

      Các bài tập về bất đẳng thức thường yêu cầu học sinh:

      • Giải bất đẳng thức bậc nhất một ẩn.
      • Biểu diễn tập nghiệm của bất đẳng thức trên trục số.

      Hướng dẫn giải đề thi học kì 1 Toán 7 Cánh diều - Đề số 14

      Để đạt kết quả tốt trong kỳ thi học kì 1 Toán 7 Cánh diều - Đề số 14, học sinh cần:

      1. Nắm vững kiến thức cơ bản về các chủ đề đã học.
      2. Luyện tập giải nhiều dạng bài tập khác nhau.
      3. Đọc kỹ đề bài và xác định đúng yêu cầu của bài toán.
      4. Trình bày lời giải một cách rõ ràng, logic và chính xác.
      5. Kiểm tra lại kết quả sau khi giải xong.

      Lợi ích của việc luyện tập với đề thi học kì 1 Toán 7 Cánh diều - Đề số 14

      Việc luyện tập với đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 mang lại nhiều lợi ích cho học sinh:

      • Giúp học sinh làm quen với cấu trúc đề thi và các dạng bài tập thường gặp.
      • Giúp học sinh rèn luyện kỹ năng giải toán và tư duy logic.
      • Giúp học sinh tự đánh giá năng lực và tìm ra những kiến thức còn yếu để bổ sung.
      • Giúp học sinh tự tin hơn khi bước vào kỳ thi thực tế.

      Kết luận

      Đề thi học kì 1 Toán 7 Cánh diều - Đề số 14 là một công cụ hữu ích giúp học sinh ôn tập và chuẩn bị cho kỳ thi quan trọng này. Hãy luyện tập chăm chỉ và áp dụng những kiến thức đã học để đạt kết quả tốt nhất!

      Tài liệu, đề thi và đáp án Toán 7