Logo Header
  1. Môn Toán
  2. Đề thi học kì 2 Toán 7 - Đề số 5 - Cánh diều

Đề thi học kì 2 Toán 7 - Đề số 5 - Cánh diều

Đề thi học kì 2 Toán 7 - Đề số 5 - Cánh diều: Chuẩn bị tốt nhất cho kỳ thi

Giaitoan.edu.vn xin giới thiệu Đề thi học kì 2 Toán 7 - Đề số 5 - Cánh diều, một công cụ hỗ trợ học sinh ôn luyện và đánh giá năng lực bản thân trước kỳ thi quan trọng. Đề thi được biên soạn theo chương trình học Toán 7, tập trung vào các kiến thức trọng tâm và có đáp án chi tiết để học sinh tự kiểm tra.

Đề thi này không chỉ giúp các em làm quen với cấu trúc đề thi mà còn rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và áp dụng kiến thức vào thực tế.

I. TRẮC NGHIỆM ( 2 điểm) Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Đề bài

    I. TRẮC NGHIỆM (2 điểm)

    Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

    Câu 1. Tam giác ABC có \(BC = 1cm,{\mkern 1mu} AC = 8cm.\) Tìm độ dài cạnh AB, biết độ dài này là một số nguyên \(\left( {cm} \right)\).

    A. 6cm

    B. 7cm

    C. 8cm

    D. 9cm

    Câu 2. Tập hợp các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra là B = {1; 2; 3; … ; 29,30}. Tính xác suất để kết quả rút ra là một thẻ có số chia hết cho 3

    A. 6

    B. 30

    C. \(\dfrac{1}{2}\)

    D. \(\dfrac{1}{3}\)

    Câu 3. Cho \(\Delta ABC\) có \(AB = 6cm,{\mkern 1mu} BC = 8cm,{\mkern 1mu} AC = 10cm.\) Số đo góc \(\angle A;{\mkern 1mu} \angle B;{\mkern 1mu} \angle C\) theo thứ tự là:

    A. \(\angle B < \angle C < \angle A\)

    B. \(\angle C < \angle A < \angle B\)

    C. \(\angle A > \angle B > \angle C\)

    D. \(\angle C < \angle B < \angle A\)

    Câu 4. Khẳng định nào sau đây là đúng?

    A. Số \(0\) không phải là một đa thức.

    B. Nếu \(\Delta ABC\) cân thì trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh cùng nằm trên một đường thẳng.

    C. Nếu \(\Delta ABC\) cân thì trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh cùng nằm trên một đường tròn.

    D. Số \(0\) được gọi là một đa thức không và có bậc bằng \(0\)

    Câu 5. Nghiệm của đa thức: \(P\left( x \right) = 15x - 3\) là:

    A. \(\dfrac{{ - 1}}{5}\)

    B. \(\dfrac{1}{5}\)

    C. \(5\)

    D. \( - 5\)

    Câu 6. Cho biểu đồ biểu diễn kết quả học tập của học sinh khối 7.

    Đề thi học kì 2 Toán 7 - Đề số 5 - Cánh diều 0 1

    Số học sinh học lực trung bình ít hơn số học sinh học lực khá bao nhiêu?

    A. 88 học sinh;

    B. 90 học sinh;

    C. 92 học sinh;

    D. 94 học sinh.

    Câu 7. Tung ngẫu nhiên hai đồng xu cân đối. Trong các biến cố sau, biến cố nào không là biến cố ngẫu nhiên?

    A. “Số đồng xu xuất hiện mặt sấp không vượt quá 2"

    B. “Số đồng xu xuất hiện mặt sấp gấp 2 lần số đồng xu xuất hiện mặt ngửa”

    C. “Có ít nhất một đồng xu xuất hiện mặt sấp”

    D. “Số đồng xu xuất hiện mặt ngửa gấp 2 lần số đồng xu xuất hiện mặt sấp”

    Câu 8. Cho \(\Delta ABC\) vuông tại A, có \(\angle C = {30^0}\), đường trung trực của BC cắt AC tại M. Em hãy chọn câu đúng:

    A. BM là đường trung tuyến của \(\Delta ABC\).

    B. \(BM = AB\).

    C. BM là phân giác của \(\angle ABC\).

    D. BM là đường trung trực của \(\Delta ABC\).

    II. PHẦN TỰ LUẬN (8,0 điểm)

    Bài 1. (1,5 điểm) Hai ô tô khởi hành cùng một lúc \(A\) đến \(B\). Xe thứ nhất đi từ \(A\) đến \(B\) hết \(6\) giờ, xe thứ hai đi từ \(B\) đến \(A\) hết \(3\)giờ. Đến chỗ gặp nhau, xe thứ hai đã đi được một quãng đường dài hơn xe thứ nhất đã đi là \(54\) km. Tính quãng đường \(AB\).

    Bài 2. (2,75 điểm) Cho các đa thức sau:

    \(P\left( x \right) = - 2x + \dfrac{1}{2}{x^2} + 3{x^4} - 3{x^2} - 3\)

    \(Q\left( x \right) = 3{x^4} + {x^3} - 4{x^2} + 1,5{x^3} - 3{x^4} + 2x + 1\)

    a) Thu gọn và sắp xếp các đa thức trên theo thứ tự số mũ của biến giảm dần. Xác định bậc, hệ số cao nhất và hệ số tự do của các đa thức đã cho.

    b) Xác định \(P\left( x \right) + Q\left( x \right)\),\(P\left( x \right) - Q\left( x \right)\).

    c) Xác định đa thức \(R\left( x \right)\)thỏa mãn \(R\left( x \right) + P\left( x \right) - Q\left( x \right) + {x^2} = 2{x^3} - \dfrac{3}{2}x + 1\).

    Bài 3. (3,25 điểm) Cho tam giác ABC cân tại A.Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM + AN = 2AB.

    a) Chứng minh rằng: BM = CN

    b) Chứng minh rằng: BC đi qua trung điểm của đoạn thẳng MN.

    c) Đường trung trực của MN và tia phân giác của \(\widehat {BAC}\) cắt nhau tại K. Chứng minh rằng \(\Delta BKM = \Delta CKN\) từ đó suy ra KC vuông góc với AN.

    Bài 4. (0,5 điểm) Cho \(a,\,b,\,c \ne 0\) và thỏa mãn \(\dfrac{{a + b - c}}{c} = \dfrac{{c + a - b}}{b} = \dfrac{{b + c - a}}{a}.\) Tính giá trị của biểu thức \(S = \dfrac{{\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)}}{{abc}}.\)

    Lời giải

      I. Trắc nghiệm

      1. C

      2. D

      3. B

      4. B

      5. B

      6. A

      7. A

      8. C

      Câu 1.

      Phương pháp:

      Áp dụng bất đẳng thức tam giác để tìm cạnh còn lại. Cách giải:

      Áp dụng bất đẳng thức cho tam giác ABC ta có:

      \(\begin{array}{*{20}{l}}{AC - BC < AB < AC + BC}\\{ \Rightarrow 8 - 1 < AB < 8 + 1}\\{ \Rightarrow 7 < AB < 9}\\{ \Rightarrow AB = 8\left( {cm} \right)}\end{array}\)

      ChọnC.

      Câu 2.

      Phương pháp:

      Tìm các số chia hết cho 3 từ 0 đến 30

      Cách giải:

      Các số chia hết cho 3 từ tập B = {1; 2; 3; … ; 29,30} là 3,6,9,12,15,18,21,24,27,30

      => Có tất cả 10 số chia hết cho 3.

      Vậy xác suất để thẻ rút ra là số chia hết cho 3 là: \(\dfrac{{10}}{{30}} = \dfrac{1}{3}\)

      Chọn D.

      Câu 3.

      Phương pháp:

      So sánh độ dài các cạnh rồi dựa vào mối quan hệ giữa cạnh và góc trong một tam giác để so sánh các góc với nhau. Trong một tam giác, góc đối diện với cạnh lớn hơn thì góc lớn hơn. Cách giải:

      \(\Delta ABC\) có \(AB = 6cm,{\mkern 1mu} BC = 8cm,{\mkern 1mu} AC = 10cm.\)

      Ta có: \(AB < BC < AC\) \( \Rightarrow \angle C < \angle A < \angle B\)

      ChọnB.

      Câu 4.

      Phương pháp:

      Áp dụng định nghĩa về đa thức và tính chất tam giác cân. Cách giải:

      Xét từng đáp án:

      A. Số \(0\) không phải là một đa thức. Sai Vì số 0 là đa thức 0 

      B. Nếu \(\Delta ABC\) cân thì trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh cùng nằm trên một đường thẳng. Đúng: (vẽ một tam giác cân và xác định trọng tâm, trực tâm, điểm cách đều 3 đỉnh, điểm nằm trong tam giác và cách đều 3 cạnh ta thấy chúng cùng nằm trên một đường thẳng) 

      C. Nếu \(\Delta ABC\) cân thì trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh cùng nằm trên một đường tròn. Sai Vì chúng nằm trên cùng 1 đường thẳng.

      D. Số \(0\) được gọi là một đa thức không và có bậc bằng 0. Sai Vì số 0 được gọi là đa thức không và nó là đa thức không có bậc.

      Chọn B

      Câu 5.

      Phương pháp:

      Tìm nghiệm của đa thức \(P\left( x \right)\), ta giải phương trình \(P\left( x \right) = 0\)

      Cách giải:

      Ta có: \(P\left( x \right) = 0\)

      \(\begin{array}{l}15x - 3 = 0\\15x = 3\\\,\,\,\,\,x = \dfrac{1}{5}\end{array}\)

      Vậy \(x = \dfrac{1}{5}\) là nghiệm của đa thức \(P\left( x \right) = 15x - 3\)

      Chọn B.

      Câu 6.

      Phương pháp:

      Tìm số học sinh trung bình và số học sinh khá. Sau đó tìm hiệu của chúng.

      Cách giải:

      Số học sinh khá là 140 và số học sinh trung bình là 52.

      Số học sinh học lực trung bình ít hơn số lượng học sinh học lực khá là 140 – 52 = 88 (học sinh).

      Vậy số học sinh học lực trung bình ít hơn 88 học sinh so với số lượng học sinh học lực khá.

      Chọn A.

      Câu 7.

      Phương pháp:

      Biến cố ngẫu nhiên có khi kết quả có tính ngẫu nhiên, không đoán trước được

      Cách giải:

      Vì đồng xu chỉ có 2 mặt nên sự kiện “số đồng xu xuất hiện mặt sấp không vượt quá 2” chắc chắn xảy ra, ta có thể biết được sự kiện này sẽ xảy ra trước khi thực hiện phép thử nên đây không phải là biến cố ngẫu nhiên. Do đó phương án A đúng.

      Chọn A.

      Câu 8.

      Phương pháp:

      Áp dụng tính chất tam giác cân, tính chất đường trung trực của đoạn thẳng, định lý tổng 3 góc trong tam giác.

      Cách giải:

      Đề thi học kì 2 Toán 7 - Đề số 5 - Cánh diều 1 1

      Vì \(M\) thuộc đường trung trực của BC\( \Rightarrow BM = MC\) (tính chất điểm thuộc đường trung trực của đoạn thẳng)

      \( \Rightarrow \Delta BMC\) cân tại \(M\) (dấu hiệu nhận biết tam giác cân)

      \( \Rightarrow \angle MBC = \angle C = {30^0}\) (tính chất tam giác cân)

      Xét \(\Delta ABC\) có: \(\angle A + \angle ABC + \angle C = {180^0}\) (định lý tổng 3 góc trong tam giác)

      \( \Rightarrow \angle ABC = {180^0} - \angle C - \angle A = {180^0} - {30^0} - {90^0} = {60^0}\)

      \( \Rightarrow \angle ABM + \angle MBC = \angle ABC = {60^0} \Rightarrow \angle ABM = {60^0} - \angle MBC = {60^0} - {30^0} = {30^0}\)

      \( \Rightarrow \angle ABM = \angle MBC \Rightarrow \) BM là phân giác của \(\angle ABC\).

      Chọn C.

      II. PHẦN TỰ LUẬN (8,0 điểm)

      Bài 1.

      Phương pháp:

      Tính chất dãy tỉ số bằng nhau: \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{c - a}}{{d - b}}\)

      Cách giải:

      Gọi quãng đường của xe thứ nhất đi được từ \(A\) đến chỗ gặp là \(x\) (km) \(\left( {x > 0} \right)\)

      Gọi quãng đường của xe thứ hai đi được từ \(B\) đến chỗ gặp là \(y\) (km) \(\left( {y > 0} \right)\)

      Ta có: \(\dfrac{x}{3} = \dfrac{y}{6}\)

      Quãng đường đi được của xe thứ hai dài hơn xe thứ nhất \(54\) km nên \(y - x = 54\)

      Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\dfrac{x}{3} = \dfrac{y}{6} = \dfrac{{y - x}}{{6 - 3}} = \dfrac{{54}}{3} = 18\)

      Do đó \(\dfrac{x}{3} = 18 \Rightarrow x = 54\) (thỏa mãn)

      \(\dfrac{y}{6} = 18 \Rightarrow y = 108\) (thỏa mãn)

      Quãng đường \(AB\) dài là \(54 + 108 = 162\) (km)

      Vậy quãng đường \(AB\) dài là \(162\) (km).

      Bài 2.

      Phương pháp:

      + Để thu gọn đa thức ta thực hiện phép cộng các đơn thức đồng dạng.

      + Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức đó.

      + Ta có thể mở rộng cộng (trừ) các đa thức dựa trên quy tắc “dấu ngoặc” và tính chất của các phép toán trên số.

      + Đối với đa thức một biến đã sắp xếp còn có thể cộng (trừ) bằng cách đặt tính theo cột dọc tương tự cộng (trừ) các số.

      Cách giải:

      a)

      \(\begin{array}{l}P\left( x \right) = - 2x + \dfrac{1}{2}{x^2} + 3{x^4} - 3{x^2} - 3\\\,\,\,\,\,\,\,\,\,\,\,\, = 3{x^4} + \dfrac{1}{2}{x^2} - 3{x^2} - 2x - 3\\\,\,\,\,\,\,\,\,\,\,\,\, = 3{x^4} - \dfrac{5}{2}{x^2} - 2x - 3\end{array}\)

      Vậy: \(P\) có bậc là \(4\); Hệ số cao nhất là \(3\); Hệ số tự do là \( - 3\)

      \(\begin{array}{l}Q\left( x \right) = 3{x^4} + {x^3} - 4{x^2} + 1,5{x^3} - 3{x^4} + 2x + 1\\\,\,\,\,\,\,\,\,\,\,\,\, = 3{x^4} - 3{x^4} + {x^3} + 1,5{x^3} - 4{x^2} + 2x + 1\\\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{5}{2}{x^3} - 4{x^2} + 2x + 1\end{array}\)

      Vậy: \(Q\) có bậc là \(3\); Hệ số cao nhất là \(\dfrac{5}{2}\); Hệ số tự do là \(1\)

      b)

      \(\begin{array}{l}P\left( x \right) + Q\left( x \right) = \left( {3{x^4} - \dfrac{5}{2}{x^2} - 2x - 3} \right) + \left( {\dfrac{5}{2}{x^3} - 4{x^2} + 2x + 1} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 3{x^4} + \dfrac{5}{2}{x^3} - \dfrac{5}{2}{x^2} - 4{x^2} - 2x + 2x - 3 + 1\end{array}\)

      \( = 3{x^4} + \dfrac{5}{2}{x^3} - \dfrac{{13}}{2}{x^2} - 2\)

      \(\begin{array}{l}P\left( x \right) - Q\left( x \right) = \left( {3{x^4} - \dfrac{5}{2}{x^2} - 2x - 3} \right) - \left( {\dfrac{5}{2}{x^3} - 4{x^2} + 2x + 1} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 3{x^4} - \dfrac{5}{2}{x^2} - 2x - 3 - \dfrac{5}{2}{x^3} + 4{x^2} - 2x - 1\end{array}\)

      \(\begin{array}{l} = 3{x^4} - \dfrac{5}{2}{x^3} - \dfrac{5}{2}{x^2} + 4{x^2} - 2x - 2x - 3 - 1\\ = 3{x^4} - \dfrac{5}{2}{x^3} + \dfrac{3}{2}{x^2} - 4x - 4\end{array}\)

      c) \(R\left( x \right) + P\left( x \right) - Q\left( x \right) + {x^2} = 2{x^3} - \dfrac{3}{2}x + 1\)

      \( \Leftrightarrow R\left( x \right) + \left( {3{x^4} + \dfrac{5}{2}{x^3} - \dfrac{{13}}{2}{x^2} - 2} \right) - \left( {3{x^4} - \dfrac{5}{2}{x^3} + \dfrac{3}{2}{x^2} - 4x - 4} \right) + {x^2} = 2{x^3} - \dfrac{3}{2}x + 1\)

      \( \Leftrightarrow R\left( x \right) + 3{x^4} - 3{x^4} + \dfrac{5}{2}{x^3} + \dfrac{5}{2}{x^3} - \dfrac{{13}}{2}{x^2} - \dfrac{3}{2}{x^2} + {x^2} + 4x - 2 + 4 = 2{x^3} - \dfrac{3}{2}x + 1\)

      \( \Leftrightarrow R\left( x \right) + 5{x^3} - 7{x^2} + 4x + 2 = 2{x^3} - \dfrac{3}{2}x + 1\)

      \(\begin{array}{l} \Leftrightarrow R\left( x \right) = 2{x^3} - \dfrac{3}{2}x + 1 - \left( {5{x^3} - 7{x^2} + 4x + 2} \right)\\ \Leftrightarrow R\left( x \right) = 2{x^3} - \dfrac{3}{2}x + 1 - 5{x^3} + 7{x^2} - 4x - 2\end{array}\)

      \(\begin{array}{l} \Leftrightarrow R\left( x \right) = 2{x^3} - 5{x^3} + 7{x^2} - \dfrac{3}{2}x - 4x - 2 + 1\\ \Leftrightarrow R\left( x \right) = - 3{x^3} + 7{x^2} - \dfrac{{11}}{2}x - 1\end{array}\)

      Bài 3.

      Phương pháp:

      a) Sử dụng tính chất tam giác cân, sau đó dùng giả thiết đã cho lập luận để suy ra điều phải chứng minh.

      b) Sử dụng các trường hợp bằng nhau của tam giác để suy ra các cặp tam giác bằng nhau, từ đó suy ra điều phải chứng minh.

      c) Sử dụng các trường hợp bằng nhau của tam giác để chứng minh hai góc bằng nhau, sử dụng thêm tính chất hai góc kề bù để suy ra điều phải chứng minh. Cách giải:

      Đề thi học kì 2 Toán 7 - Đề số 5 - Cánh diều 1 2

      a) Do tam giác ABC cân tại A, suy ra AB = AC.

      Ta có: AM + AN = AB – BM + AC + CN = 2AB – BM + CN.

      Ta lại có AM + AN = 2AB(gt), nên suy ra \(2AB - BM + CN = 2AB\).

      \( \Leftrightarrow - BM + CN = 0 \Leftrightarrow BM = CN\)

      b) Gọi I là giao điểm của MNBC. Vậy BM = CN (đpcm)

      Qua M kẻ đường thẳng song song với AC cắt BC tại E.

      Do ME // NC nên ta có:

      \(\widehat {IME} = \widehat {CNI}\)(hai góc so le trong)

      \(\widehat {MEI} = \widehat {NCI}\)(hai góc so le trong)

      \(\widehat {MEB} = \widehat {ACB}\) (hai góc đồng vị) nên \(\widehat {MEB} = \widehat {ABC} \Rightarrow \Delta MBE\)cân tại M nên MB = ME. Do đó, ME = CN.

      Ta chứng minh được \(\Delta MEI = \Delta NCI{\mkern 1mu} {\mkern 1mu} (g.c.g)\)

      Suy ra MI = NI (hai cạnh tương ứng), từ đó suy ra I là trung điểm của MN.

      c) Xét hai tam giác MIKNIK có:

      MI = IN (cmt), \(\widehat {MIK} = \widehat {NIK} = {90^0}\)

      IK là cạnh chung. Do đó \(\Delta MIK = \Delta NIK(c.g.c)\).

      Suy ra KM = KN (hai cạnh tương ứng).

      Xét hai tam giác ABKACK có:

      AB = AC(gt),

      \(\widehat {BAK} = \widehat {CAK}\) (do BK là tia phân giác của góc BAC),

      AK là cạnh chung,

      Do đó \(\Delta ABK = \Delta ACK(c.g.c)\).

      Suy ra KB = KC (hai cạnh tương ứng).

      Xét hai tam giác BKMCKN có:

      MB = CN, BK = KN, MK = KC,

      Do đó \(\Delta BKM = \Delta CKN(c.c.c)\),

      Suy ra \(\widehat {MBK} = \widehat {KCN}\).

      Mà \(\widehat {MBK} = \widehat {ACK} \Rightarrow \widehat {ACK} = \widehat {KCN} = {180^0}:2 = {90^0} \Rightarrow KC \bot AN.\)(đpcm)

      Bài 4.

      Áp dụng tính chất của dãy tỉ số bằng nhau.

      Cách giải:

      - Trường hợp \(1:\,a,\,b,\,c \ne 0\) và \(a + b + c = 0 \Rightarrow a + b = - c;\,\,a + c = - b;\,\,b + c = - a\) thay vảo biểu thức \(S\) ta được:

      \(S = \dfrac{{ - c.\left( { - a} \right).\left( { - b} \right)}}{{abc}} = - 1.\)

      - Trường hợp 2: \(a,\,b,\,c \ne 0\) và \(a + b + c \ne 0.\)

      Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

      \(\dfrac{{a + b - c}}{c} = \dfrac{{c + a - b}}{b} = \dfrac{{b + c - a}}{a} = \dfrac{{a + b - c + c + a - b + b + c - a}}{{c + b + a}} = 1\)

      Suy ra \(\left\{ \begin{array}{l}a + b = 2c\\c + a = 2b\\b + c = 2a\end{array} \right.\) thay vào biểu thức \(S\) ta được:

      \(S = \dfrac{{2c.2a.2b}}{{abc}} = 8\)

      Vậy: \(S = - 1\) khi \(\dfrac{{a + b - c}}{c} = \dfrac{{c + a - b}}{b} = \dfrac{{b + c - a}}{a}\) và \(a,\,b,\,c \ne 0;\) \(a + b + c = 0\)

      \(S = 8\) khi \(\dfrac{{a + b - c}}{c} = \dfrac{{c + a - b}}{b} = \dfrac{{b + c - a}}{a}\) và \(a,\,b,\,c \ne 0;\) \(a + b + c \ne 0\).

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải
      • Tải về

        Tải về đề thi và đáp án Tải về đề thi Tải về đáp án

      I. TRẮC NGHIỆM (2 điểm)

      Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

      Câu 1. Tam giác ABC có \(BC = 1cm,{\mkern 1mu} AC = 8cm.\) Tìm độ dài cạnh AB, biết độ dài này là một số nguyên \(\left( {cm} \right)\).

      A. 6cm

      B. 7cm

      C. 8cm

      D. 9cm

      Câu 2. Tập hợp các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra là B = {1; 2; 3; … ; 29,30}. Tính xác suất để kết quả rút ra là một thẻ có số chia hết cho 3

      A. 6

      B. 30

      C. \(\dfrac{1}{2}\)

      D. \(\dfrac{1}{3}\)

      Câu 3. Cho \(\Delta ABC\) có \(AB = 6cm,{\mkern 1mu} BC = 8cm,{\mkern 1mu} AC = 10cm.\) Số đo góc \(\angle A;{\mkern 1mu} \angle B;{\mkern 1mu} \angle C\) theo thứ tự là:

      A. \(\angle B < \angle C < \angle A\)

      B. \(\angle C < \angle A < \angle B\)

      C. \(\angle A > \angle B > \angle C\)

      D. \(\angle C < \angle B < \angle A\)

      Câu 4. Khẳng định nào sau đây là đúng?

      A. Số \(0\) không phải là một đa thức.

      B. Nếu \(\Delta ABC\) cân thì trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh cùng nằm trên một đường thẳng.

      C. Nếu \(\Delta ABC\) cân thì trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh cùng nằm trên một đường tròn.

      D. Số \(0\) được gọi là một đa thức không và có bậc bằng \(0\)

      Câu 5. Nghiệm của đa thức: \(P\left( x \right) = 15x - 3\) là:

      A. \(\dfrac{{ - 1}}{5}\)

      B. \(\dfrac{1}{5}\)

      C. \(5\)

      D. \( - 5\)

      Câu 6. Cho biểu đồ biểu diễn kết quả học tập của học sinh khối 7.

      Đề thi học kì 2 Toán 7 - Đề số 5 - Cánh diều 1

      Số học sinh học lực trung bình ít hơn số học sinh học lực khá bao nhiêu?

      A. 88 học sinh;

      B. 90 học sinh;

      C. 92 học sinh;

      D. 94 học sinh.

      Câu 7. Tung ngẫu nhiên hai đồng xu cân đối. Trong các biến cố sau, biến cố nào không là biến cố ngẫu nhiên?

      A. “Số đồng xu xuất hiện mặt sấp không vượt quá 2"

      B. “Số đồng xu xuất hiện mặt sấp gấp 2 lần số đồng xu xuất hiện mặt ngửa”

      C. “Có ít nhất một đồng xu xuất hiện mặt sấp”

      D. “Số đồng xu xuất hiện mặt ngửa gấp 2 lần số đồng xu xuất hiện mặt sấp”

      Câu 8. Cho \(\Delta ABC\) vuông tại A, có \(\angle C = {30^0}\), đường trung trực của BC cắt AC tại M. Em hãy chọn câu đúng:

      A. BM là đường trung tuyến của \(\Delta ABC\).

      B. \(BM = AB\).

      C. BM là phân giác của \(\angle ABC\).

      D. BM là đường trung trực của \(\Delta ABC\).

      II. PHẦN TỰ LUẬN (8,0 điểm)

      Bài 1. (1,5 điểm) Hai ô tô khởi hành cùng một lúc \(A\) đến \(B\). Xe thứ nhất đi từ \(A\) đến \(B\) hết \(6\) giờ, xe thứ hai đi từ \(B\) đến \(A\) hết \(3\)giờ. Đến chỗ gặp nhau, xe thứ hai đã đi được một quãng đường dài hơn xe thứ nhất đã đi là \(54\) km. Tính quãng đường \(AB\).

      Bài 2. (2,75 điểm) Cho các đa thức sau:

      \(P\left( x \right) = - 2x + \dfrac{1}{2}{x^2} + 3{x^4} - 3{x^2} - 3\)

      \(Q\left( x \right) = 3{x^4} + {x^3} - 4{x^2} + 1,5{x^3} - 3{x^4} + 2x + 1\)

      a) Thu gọn và sắp xếp các đa thức trên theo thứ tự số mũ của biến giảm dần. Xác định bậc, hệ số cao nhất và hệ số tự do của các đa thức đã cho.

      b) Xác định \(P\left( x \right) + Q\left( x \right)\),\(P\left( x \right) - Q\left( x \right)\).

      c) Xác định đa thức \(R\left( x \right)\)thỏa mãn \(R\left( x \right) + P\left( x \right) - Q\left( x \right) + {x^2} = 2{x^3} - \dfrac{3}{2}x + 1\).

      Bài 3. (3,25 điểm) Cho tam giác ABC cân tại A.Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM + AN = 2AB.

      a) Chứng minh rằng: BM = CN

      b) Chứng minh rằng: BC đi qua trung điểm của đoạn thẳng MN.

      c) Đường trung trực của MN và tia phân giác của \(\widehat {BAC}\) cắt nhau tại K. Chứng minh rằng \(\Delta BKM = \Delta CKN\) từ đó suy ra KC vuông góc với AN.

      Bài 4. (0,5 điểm) Cho \(a,\,b,\,c \ne 0\) và thỏa mãn \(\dfrac{{a + b - c}}{c} = \dfrac{{c + a - b}}{b} = \dfrac{{b + c - a}}{a}.\) Tính giá trị của biểu thức \(S = \dfrac{{\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)}}{{abc}}.\)

      I. Trắc nghiệm

      1. C

      2. D

      3. B

      4. B

      5. B

      6. A

      7. A

      8. C

      Câu 1.

      Phương pháp:

      Áp dụng bất đẳng thức tam giác để tìm cạnh còn lại. Cách giải:

      Áp dụng bất đẳng thức cho tam giác ABC ta có:

      \(\begin{array}{*{20}{l}}{AC - BC < AB < AC + BC}\\{ \Rightarrow 8 - 1 < AB < 8 + 1}\\{ \Rightarrow 7 < AB < 9}\\{ \Rightarrow AB = 8\left( {cm} \right)}\end{array}\)

      ChọnC.

      Câu 2.

      Phương pháp:

      Tìm các số chia hết cho 3 từ 0 đến 30

      Cách giải:

      Các số chia hết cho 3 từ tập B = {1; 2; 3; … ; 29,30} là 3,6,9,12,15,18,21,24,27,30

      => Có tất cả 10 số chia hết cho 3.

      Vậy xác suất để thẻ rút ra là số chia hết cho 3 là: \(\dfrac{{10}}{{30}} = \dfrac{1}{3}\)

      Chọn D.

      Câu 3.

      Phương pháp:

      So sánh độ dài các cạnh rồi dựa vào mối quan hệ giữa cạnh và góc trong một tam giác để so sánh các góc với nhau. Trong một tam giác, góc đối diện với cạnh lớn hơn thì góc lớn hơn. Cách giải:

      \(\Delta ABC\) có \(AB = 6cm,{\mkern 1mu} BC = 8cm,{\mkern 1mu} AC = 10cm.\)

      Ta có: \(AB < BC < AC\) \( \Rightarrow \angle C < \angle A < \angle B\)

      ChọnB.

      Câu 4.

      Phương pháp:

      Áp dụng định nghĩa về đa thức và tính chất tam giác cân. Cách giải:

      Xét từng đáp án:

      A. Số \(0\) không phải là một đa thức. Sai Vì số 0 là đa thức 0 

      B. Nếu \(\Delta ABC\) cân thì trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh cùng nằm trên một đường thẳng. Đúng: (vẽ một tam giác cân và xác định trọng tâm, trực tâm, điểm cách đều 3 đỉnh, điểm nằm trong tam giác và cách đều 3 cạnh ta thấy chúng cùng nằm trên một đường thẳng) 

      C. Nếu \(\Delta ABC\) cân thì trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh cùng nằm trên một đường tròn. Sai Vì chúng nằm trên cùng 1 đường thẳng.

      D. Số \(0\) được gọi là một đa thức không và có bậc bằng 0. Sai Vì số 0 được gọi là đa thức không và nó là đa thức không có bậc.

      Chọn B

      Câu 5.

      Phương pháp:

      Tìm nghiệm của đa thức \(P\left( x \right)\), ta giải phương trình \(P\left( x \right) = 0\)

      Cách giải:

      Ta có: \(P\left( x \right) = 0\)

      \(\begin{array}{l}15x - 3 = 0\\15x = 3\\\,\,\,\,\,x = \dfrac{1}{5}\end{array}\)

      Vậy \(x = \dfrac{1}{5}\) là nghiệm của đa thức \(P\left( x \right) = 15x - 3\)

      Chọn B.

      Câu 6.

      Phương pháp:

      Tìm số học sinh trung bình và số học sinh khá. Sau đó tìm hiệu của chúng.

      Cách giải:

      Số học sinh khá là 140 và số học sinh trung bình là 52.

      Số học sinh học lực trung bình ít hơn số lượng học sinh học lực khá là 140 – 52 = 88 (học sinh).

      Vậy số học sinh học lực trung bình ít hơn 88 học sinh so với số lượng học sinh học lực khá.

      Chọn A.

      Câu 7.

      Phương pháp:

      Biến cố ngẫu nhiên có khi kết quả có tính ngẫu nhiên, không đoán trước được

      Cách giải:

      Vì đồng xu chỉ có 2 mặt nên sự kiện “số đồng xu xuất hiện mặt sấp không vượt quá 2” chắc chắn xảy ra, ta có thể biết được sự kiện này sẽ xảy ra trước khi thực hiện phép thử nên đây không phải là biến cố ngẫu nhiên. Do đó phương án A đúng.

      Chọn A.

      Câu 8.

      Phương pháp:

      Áp dụng tính chất tam giác cân, tính chất đường trung trực của đoạn thẳng, định lý tổng 3 góc trong tam giác.

      Cách giải:

      Đề thi học kì 2 Toán 7 - Đề số 5 - Cánh diều 2

      Vì \(M\) thuộc đường trung trực của BC\( \Rightarrow BM = MC\) (tính chất điểm thuộc đường trung trực của đoạn thẳng)

      \( \Rightarrow \Delta BMC\) cân tại \(M\) (dấu hiệu nhận biết tam giác cân)

      \( \Rightarrow \angle MBC = \angle C = {30^0}\) (tính chất tam giác cân)

      Xét \(\Delta ABC\) có: \(\angle A + \angle ABC + \angle C = {180^0}\) (định lý tổng 3 góc trong tam giác)

      \( \Rightarrow \angle ABC = {180^0} - \angle C - \angle A = {180^0} - {30^0} - {90^0} = {60^0}\)

      \( \Rightarrow \angle ABM + \angle MBC = \angle ABC = {60^0} \Rightarrow \angle ABM = {60^0} - \angle MBC = {60^0} - {30^0} = {30^0}\)

      \( \Rightarrow \angle ABM = \angle MBC \Rightarrow \) BM là phân giác của \(\angle ABC\).

      Chọn C.

      II. PHẦN TỰ LUẬN (8,0 điểm)

      Bài 1.

      Phương pháp:

      Tính chất dãy tỉ số bằng nhau: \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{c - a}}{{d - b}}\)

      Cách giải:

      Gọi quãng đường của xe thứ nhất đi được từ \(A\) đến chỗ gặp là \(x\) (km) \(\left( {x > 0} \right)\)

      Gọi quãng đường của xe thứ hai đi được từ \(B\) đến chỗ gặp là \(y\) (km) \(\left( {y > 0} \right)\)

      Ta có: \(\dfrac{x}{3} = \dfrac{y}{6}\)

      Quãng đường đi được của xe thứ hai dài hơn xe thứ nhất \(54\) km nên \(y - x = 54\)

      Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\dfrac{x}{3} = \dfrac{y}{6} = \dfrac{{y - x}}{{6 - 3}} = \dfrac{{54}}{3} = 18\)

      Do đó \(\dfrac{x}{3} = 18 \Rightarrow x = 54\) (thỏa mãn)

      \(\dfrac{y}{6} = 18 \Rightarrow y = 108\) (thỏa mãn)

      Quãng đường \(AB\) dài là \(54 + 108 = 162\) (km)

      Vậy quãng đường \(AB\) dài là \(162\) (km).

      Bài 2.

      Phương pháp:

      + Để thu gọn đa thức ta thực hiện phép cộng các đơn thức đồng dạng.

      + Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức đó.

      + Ta có thể mở rộng cộng (trừ) các đa thức dựa trên quy tắc “dấu ngoặc” và tính chất của các phép toán trên số.

      + Đối với đa thức một biến đã sắp xếp còn có thể cộng (trừ) bằng cách đặt tính theo cột dọc tương tự cộng (trừ) các số.

      Cách giải:

      a)

      \(\begin{array}{l}P\left( x \right) = - 2x + \dfrac{1}{2}{x^2} + 3{x^4} - 3{x^2} - 3\\\,\,\,\,\,\,\,\,\,\,\,\, = 3{x^4} + \dfrac{1}{2}{x^2} - 3{x^2} - 2x - 3\\\,\,\,\,\,\,\,\,\,\,\,\, = 3{x^4} - \dfrac{5}{2}{x^2} - 2x - 3\end{array}\)

      Vậy: \(P\) có bậc là \(4\); Hệ số cao nhất là \(3\); Hệ số tự do là \( - 3\)

      \(\begin{array}{l}Q\left( x \right) = 3{x^4} + {x^3} - 4{x^2} + 1,5{x^3} - 3{x^4} + 2x + 1\\\,\,\,\,\,\,\,\,\,\,\,\, = 3{x^4} - 3{x^4} + {x^3} + 1,5{x^3} - 4{x^2} + 2x + 1\\\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{5}{2}{x^3} - 4{x^2} + 2x + 1\end{array}\)

      Vậy: \(Q\) có bậc là \(3\); Hệ số cao nhất là \(\dfrac{5}{2}\); Hệ số tự do là \(1\)

      b)

      \(\begin{array}{l}P\left( x \right) + Q\left( x \right) = \left( {3{x^4} - \dfrac{5}{2}{x^2} - 2x - 3} \right) + \left( {\dfrac{5}{2}{x^3} - 4{x^2} + 2x + 1} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 3{x^4} + \dfrac{5}{2}{x^3} - \dfrac{5}{2}{x^2} - 4{x^2} - 2x + 2x - 3 + 1\end{array}\)

      \( = 3{x^4} + \dfrac{5}{2}{x^3} - \dfrac{{13}}{2}{x^2} - 2\)

      \(\begin{array}{l}P\left( x \right) - Q\left( x \right) = \left( {3{x^4} - \dfrac{5}{2}{x^2} - 2x - 3} \right) - \left( {\dfrac{5}{2}{x^3} - 4{x^2} + 2x + 1} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 3{x^4} - \dfrac{5}{2}{x^2} - 2x - 3 - \dfrac{5}{2}{x^3} + 4{x^2} - 2x - 1\end{array}\)

      \(\begin{array}{l} = 3{x^4} - \dfrac{5}{2}{x^3} - \dfrac{5}{2}{x^2} + 4{x^2} - 2x - 2x - 3 - 1\\ = 3{x^4} - \dfrac{5}{2}{x^3} + \dfrac{3}{2}{x^2} - 4x - 4\end{array}\)

      c) \(R\left( x \right) + P\left( x \right) - Q\left( x \right) + {x^2} = 2{x^3} - \dfrac{3}{2}x + 1\)

      \( \Leftrightarrow R\left( x \right) + \left( {3{x^4} + \dfrac{5}{2}{x^3} - \dfrac{{13}}{2}{x^2} - 2} \right) - \left( {3{x^4} - \dfrac{5}{2}{x^3} + \dfrac{3}{2}{x^2} - 4x - 4} \right) + {x^2} = 2{x^3} - \dfrac{3}{2}x + 1\)

      \( \Leftrightarrow R\left( x \right) + 3{x^4} - 3{x^4} + \dfrac{5}{2}{x^3} + \dfrac{5}{2}{x^3} - \dfrac{{13}}{2}{x^2} - \dfrac{3}{2}{x^2} + {x^2} + 4x - 2 + 4 = 2{x^3} - \dfrac{3}{2}x + 1\)

      \( \Leftrightarrow R\left( x \right) + 5{x^3} - 7{x^2} + 4x + 2 = 2{x^3} - \dfrac{3}{2}x + 1\)

      \(\begin{array}{l} \Leftrightarrow R\left( x \right) = 2{x^3} - \dfrac{3}{2}x + 1 - \left( {5{x^3} - 7{x^2} + 4x + 2} \right)\\ \Leftrightarrow R\left( x \right) = 2{x^3} - \dfrac{3}{2}x + 1 - 5{x^3} + 7{x^2} - 4x - 2\end{array}\)

      \(\begin{array}{l} \Leftrightarrow R\left( x \right) = 2{x^3} - 5{x^3} + 7{x^2} - \dfrac{3}{2}x - 4x - 2 + 1\\ \Leftrightarrow R\left( x \right) = - 3{x^3} + 7{x^2} - \dfrac{{11}}{2}x - 1\end{array}\)

      Bài 3.

      Phương pháp:

      a) Sử dụng tính chất tam giác cân, sau đó dùng giả thiết đã cho lập luận để suy ra điều phải chứng minh.

      b) Sử dụng các trường hợp bằng nhau của tam giác để suy ra các cặp tam giác bằng nhau, từ đó suy ra điều phải chứng minh.

      c) Sử dụng các trường hợp bằng nhau của tam giác để chứng minh hai góc bằng nhau, sử dụng thêm tính chất hai góc kề bù để suy ra điều phải chứng minh. Cách giải:

      Đề thi học kì 2 Toán 7 - Đề số 5 - Cánh diều 3

      a) Do tam giác ABC cân tại A, suy ra AB = AC.

      Ta có: AM + AN = AB – BM + AC + CN = 2AB – BM + CN.

      Ta lại có AM + AN = 2AB(gt), nên suy ra \(2AB - BM + CN = 2AB\).

      \( \Leftrightarrow - BM + CN = 0 \Leftrightarrow BM = CN\)

      b) Gọi I là giao điểm của MNBC. Vậy BM = CN (đpcm)

      Qua M kẻ đường thẳng song song với AC cắt BC tại E.

      Do ME // NC nên ta có:

      \(\widehat {IME} = \widehat {CNI}\)(hai góc so le trong)

      \(\widehat {MEI} = \widehat {NCI}\)(hai góc so le trong)

      \(\widehat {MEB} = \widehat {ACB}\) (hai góc đồng vị) nên \(\widehat {MEB} = \widehat {ABC} \Rightarrow \Delta MBE\)cân tại M nên MB = ME. Do đó, ME = CN.

      Ta chứng minh được \(\Delta MEI = \Delta NCI{\mkern 1mu} {\mkern 1mu} (g.c.g)\)

      Suy ra MI = NI (hai cạnh tương ứng), từ đó suy ra I là trung điểm của MN.

      c) Xét hai tam giác MIKNIK có:

      MI = IN (cmt), \(\widehat {MIK} = \widehat {NIK} = {90^0}\)

      IK là cạnh chung. Do đó \(\Delta MIK = \Delta NIK(c.g.c)\).

      Suy ra KM = KN (hai cạnh tương ứng).

      Xét hai tam giác ABKACK có:

      AB = AC(gt),

      \(\widehat {BAK} = \widehat {CAK}\) (do BK là tia phân giác của góc BAC),

      AK là cạnh chung,

      Do đó \(\Delta ABK = \Delta ACK(c.g.c)\).

      Suy ra KB = KC (hai cạnh tương ứng).

      Xét hai tam giác BKMCKN có:

      MB = CN, BK = KN, MK = KC,

      Do đó \(\Delta BKM = \Delta CKN(c.c.c)\),

      Suy ra \(\widehat {MBK} = \widehat {KCN}\).

      Mà \(\widehat {MBK} = \widehat {ACK} \Rightarrow \widehat {ACK} = \widehat {KCN} = {180^0}:2 = {90^0} \Rightarrow KC \bot AN.\)(đpcm)

      Bài 4.

      Áp dụng tính chất của dãy tỉ số bằng nhau.

      Cách giải:

      - Trường hợp \(1:\,a,\,b,\,c \ne 0\) và \(a + b + c = 0 \Rightarrow a + b = - c;\,\,a + c = - b;\,\,b + c = - a\) thay vảo biểu thức \(S\) ta được:

      \(S = \dfrac{{ - c.\left( { - a} \right).\left( { - b} \right)}}{{abc}} = - 1.\)

      - Trường hợp 2: \(a,\,b,\,c \ne 0\) và \(a + b + c \ne 0.\)

      Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

      \(\dfrac{{a + b - c}}{c} = \dfrac{{c + a - b}}{b} = \dfrac{{b + c - a}}{a} = \dfrac{{a + b - c + c + a - b + b + c - a}}{{c + b + a}} = 1\)

      Suy ra \(\left\{ \begin{array}{l}a + b = 2c\\c + a = 2b\\b + c = 2a\end{array} \right.\) thay vào biểu thức \(S\) ta được:

      \(S = \dfrac{{2c.2a.2b}}{{abc}} = 8\)

      Vậy: \(S = - 1\) khi \(\dfrac{{a + b - c}}{c} = \dfrac{{c + a - b}}{b} = \dfrac{{b + c - a}}{a}\) và \(a,\,b,\,c \ne 0;\) \(a + b + c = 0\)

      \(S = 8\) khi \(\dfrac{{a + b - c}}{c} = \dfrac{{c + a - b}}{b} = \dfrac{{b + c - a}}{a}\) và \(a,\,b,\,c \ne 0;\) \(a + b + c \ne 0\).

      Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Đề thi học kì 2 Toán 7 - Đề số 5 - Cánh diều tại chuyên mục giải toán 7 trên học toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

      Đề thi học kì 2 Toán 7 - Đề số 5 - Cánh diều: Phân tích chi tiết và hướng dẫn giải

      Đề thi học kì 2 Toán 7 - Đề số 5 - Cánh diều là một bài kiểm tra quan trọng giúp đánh giá mức độ nắm vững kiến thức của học sinh sau một học kỳ học tập. Đề thi bao gồm nhiều dạng bài tập khác nhau, từ trắc nghiệm đến tự luận, đòi hỏi học sinh phải có sự hiểu biết sâu sắc về các khái niệm và định lý Toán 7.

      Cấu trúc đề thi

      Đề thi thường được chia thành các phần sau:

      • Phần trắc nghiệm: Kiểm tra khả năng hiểu và vận dụng kiến thức cơ bản.
      • Phần tự luận: Đòi hỏi học sinh phải trình bày lời giải chi tiết và rõ ràng.

      Nội dung đề thi

      Các chủ đề thường xuất hiện trong đề thi học kì 2 Toán 7 - Đề số 5 - Cánh diều bao gồm:

      • Số hữu tỉ: Các phép toán trên số hữu tỉ, so sánh số hữu tỉ.
      • Biểu thức đại số: Thu gọn biểu thức, tính giá trị biểu thức.
      • Phương trình bậc nhất một ẩn: Giải phương trình, ứng dụng phương trình vào giải bài toán.
      • Bất đẳng thức bậc nhất một ẩn: Giải bất đẳng thức, ứng dụng bất đẳng thức vào giải bài toán.
      • Hệ số góc của đường thẳng: Xác định hệ số góc, vẽ đường thẳng.
      • Hàm số bậc nhất: Xác định hàm số, vẽ đồ thị hàm số.
      • Tam giác: Các tính chất của tam giác, dấu hiệu nhận biết tam giác cân, tam giác đều.
      • Đường trung trực, đường cao, đường phân giác của tam giác: Tính chất và ứng dụng.

      Hướng dẫn giải một số dạng bài tập thường gặp

      Dạng 1: Giải phương trình bậc nhất một ẩn

      Để giải phương trình bậc nhất một ẩn, ta thực hiện các bước sau:

      1. Quy đồng mẫu số (nếu có).
      2. Chuyển vế các hạng tử chứa ẩn sang một vế và các hạng tử không chứa ẩn sang vế còn lại.
      3. Thu gọn hai vế.
      4. Chia cả hai vế cho hệ số của ẩn để tìm ra nghiệm.

      Dạng 2: Giải bất đẳng thức bậc nhất một ẩn

      Để giải bất đẳng thức bậc nhất một ẩn, ta thực hiện các bước tương tự như giải phương trình, nhưng lưu ý:

      • Khi nhân hoặc chia cả hai vế của bất đẳng thức với một số âm, ta phải đổi chiều bất đẳng thức.

      Dạng 3: Tính góc trong tam giác

      Tổng ba góc trong một tam giác bằng 180 độ. Nếu biết hai góc trong tam giác, ta có thể tính góc còn lại bằng công thức:

      Góc còn lại = 180 độ - (góc thứ nhất + góc thứ hai)

      Luyện tập và ôn tập

      Để đạt kết quả tốt trong kỳ thi học kì 2 Toán 7, học sinh cần luyện tập thường xuyên và ôn tập đầy đủ các kiến thức đã học. Giaitoan.edu.vn cung cấp nhiều đề thi thử và bài tập luyện tập khác nhau để giúp học sinh chuẩn bị tốt nhất cho kỳ thi.

      Tầm quan trọng của việc làm đề thi thử

      Làm đề thi thử giúp học sinh:

      • Làm quen với cấu trúc đề thi.
      • Rèn luyện kỹ năng giải đề.
      • Kiểm tra kiến thức và phát hiện những lỗ hổng kiến thức.
      • Tăng cường sự tự tin trước kỳ thi.

      Lời khuyên

      Trước khi làm đề thi, học sinh nên:

      • Đọc kỹ đề bài.
      • Lập kế hoạch giải bài.
      • Kiểm tra lại kết quả sau khi làm xong.

      Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi học kì 2 Toán 7!

      Tài liệu, đề thi và đáp án Toán 7