Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài 1: Đơn thức Toán 8 Kết nối tri thức

Trắc nghiệm Bài 1: Đơn thức Toán 8 Kết nối tri thức

Trắc nghiệm Bài 1: Đơn thức Toán 8 Kết nối tri thức

Chào mừng các em học sinh lớp 8 đến với bài trắc nghiệm về chủ đề Đơn thức trong chương trình Toán 8 Kết nối tri thức. Bài trắc nghiệm này được thiết kế để giúp các em ôn tập và củng cố kiến thức đã học về đơn thức, các phép toán trên đơn thức và ứng dụng của chúng.

Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, bao gồm các câu hỏi từ dễ đến khó, có đáp án chi tiết để các em tự đánh giá năng lực và tìm ra những điểm cần cải thiện.

Đề bài

    Câu 1 :

    Trong các biểu thức đại số sau, biểu thức nào không phải đơn thức?

    • A.
      2.
    • B.
      \(5x + 9\).
    • C.
      \({x^3}{y^2}\).
    • D.
      \(3x\).
    Câu 2 :

    Có mấy nhóm đơn thức đồng dạng với nhau trong các đơn thức sau: \( - \frac{2}{3}{x^3}y\); \( - x{y^2}\); \(5{x^2}y\); \(6x{y^2}\); \(2{x^3}y\); \(\frac{3}{4}\); \(\frac{1}{2}{x^2}y\).

    • A.
      \(2\).
    • B.
      \(3\).
    • C.
      \(4\).
    • D.
      \(5\).
    Câu 3 :

    Sau khi thu gọn đơn thức \(2.\left( { - 3{x^3}y} \right){y^2}\) ta được đơn thức:

    • A.
      \( - 6{x^3}{y^3}\).
    • B.
      \(6{x^3}{y^3}\).
    • C.
      \(6{x^3}{y^2}\).
    • D.
      \( - 6{x^2}{y^3}\).
    Câu 4 :

    Tìm hệ số trong đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\), với \(a\), \(b\) là hằng số.

    • A.
      \( - 36\).
    • B.
      \( - 36{a^2}{b^2}\).
    • C.
      \(36{a^2}{b^2}\).
    • D.
      \( - 36{a^2}\).
    Câu 5 :

    Tìm phần biến trong đơn thức \(100a{b^2}{x^2}yz\) với \(a\), \(b\) là hằng số.

    • A.
      \(a{b^2}{x^2}yz\).
    • B.
      \({x^2}y\).
    • C.
      \({x^2}yz\).
    • D.
      \(100ab\).
    Câu 6 :

    Các đơn thức \( - 10\); \(\frac{1}{3}x\); \(2{x^2}y\); \(5{x^2}.{x^2}\) có bậc lần lượt là:

    • A.

      0; 1; 3; 4.

    • B.

      0; 3; 1; 4.

    • C.
      0; 1; 2; 3.
    • D.
      0; 1; 3; 2.
    Câu 7 :

    Tổng các đơn thức \(3{x^2}{y^4}\)và \(7{x^2}{y^4}\) là

    • A.
      \(10{x^2}{y^4}\).
    • B.
      \(9{x^2}{y^4}\).
    • C.
      \( - 9{x^2}{y^4}\).
    • D.
      \( - 4{x^2}{y^4}\).
    Câu 8 :

    Hiệu của hai đơn thức \( - 9{y^2}z\) và \( - 12{y^2}z\) là

    • A.
      \( - 21{y^2}z\).
    • B.
      \( - 3{y^2}z\).
    • C.
      \(3{y^4}{z^2}\).
    • D.
      \(3{y^2}z\).
    Câu 9 :

    Kết quả sau khi thu gọn đơn thức\(1\frac{1}{4}{x^2}y\left( { - \frac{6}{5}xy} \right)\left( { - 2\frac{1}{3}xy} \right)\) là:

    • A.

      \(\frac{{7}}{{2}}{x^4}{y^3}\).

    • B.
      \(\frac{1}{2}{x^3}{y^3}\).
    • C.

      \(-\frac{{7}}{{2}}{x^4}{y^3}\).

    • D.
      \( - \frac{1}{2}{x^2}{y^2}\).
    Câu 10 :

    Hệ số của đơn thức \({\left( {2{x^2}} \right)^2}\left( { - 3{y^3}} \right){\left( { - 5xz} \right)^3}\) là:

    • A.
      \( - 1500\).
    • B.
      \( - 750\).
    • C.
      30
    • D.
      1500
    Câu 11 :

    Phần biến số của đơn thức \({\left( { - \frac{a}{4}} \right)^2}3xy\left( {4{a^2}{x^2}} \right)\left( {4\frac{1}{2}a{y^2}} \right)\) (với \(a\), \(b\) là hằng số) là:

    • A.
      \(\frac{{27}}{8}{a^5}{x^3}{y^3}\).
    • B.
      \({a^5}{x^3}{y^3}\).
    • C.
      \(\frac{{27}}{8}{a^5}\).
    • D.
      \({x^3}{y^3}\).
    Câu 12 :

    Tính giá trị của đơn thức \(5{x^4}{y^2}{z^3}\) tại \(x = - 1\); \(y = - 1\); \(z = - 2\).

    • A.

      \(10\).

    • B.

      \(20\).

    • C.

      \( - 40\).

    • D.

      \(40\).

    Câu 13 :

    Kết quả sau khi thu gọn biểu thức đại số \(9{\left( {{x^2}{y^2}} \right)^2}x - {\left( { - 2xy} \right)^3}{x^2}y + 3{\left( {2x} \right)^4}x{y^4}\)

    • A.
      \(59{x^5}{y^4}\).
    • B.
      \(49{x^5}{y^4}\).
    • C.
      \(65{x^5}{y^4}\).
    • D.
      \(17{x^5}{y^4}\).
    Câu 14 :

    Xác định hằng số \(a\) để các đơn thức \({ax}{y^3}{,^{}} - 4{x}{y^3}{,^{}}7x{y^3}\)có tổng bằng \(6x{y^3}\).

    • A.
      a = 9.
    • B.
      a = 1.
    • C.
      a = 3.
    • D.
      a = 2.
    Câu 15 :

    Cho đơn thức \(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\)\(\left( {a \ne 0} \right)\). Chọn khẳng định đúng:

    • A.
      Giá trị của \(A\) luôn không âm với mọi \(x\), \(y\), \(z\).
    • B.
      Nếu \(A = 0\) thì \(x = y = z = 0\).
    • C.
      Chỉ có 1 giá trị của \(x\) để \(A = 0\).
    • D.
      Chỉ có 1 giá trị của \(y\) để \(A = 0\).

    Lời giải và đáp án

    Câu 1 :

    Trong các biểu thức đại số sau, biểu thức nào không phải đơn thức?

    • A.
      2.
    • B.
      \(5x + 9\).
    • C.
      \({x^3}{y^2}\).
    • D.
      \(3x\).

    Đáp án : B

    Phương pháp giải :

    Sử dụng định nghĩa đơn thức: Đơn thức là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và các biến.

    Lời giải chi tiết :

    Theo định nghĩa đơn thức thì \(5x + 9\) không là đơn thức.

    Câu 2 :

    Có mấy nhóm đơn thức đồng dạng với nhau trong các đơn thức sau: \( - \frac{2}{3}{x^3}y\); \( - x{y^2}\); \(5{x^2}y\); \(6x{y^2}\); \(2{x^3}y\); \(\frac{3}{4}\); \(\frac{1}{2}{x^2}y\).

    • A.
      \(2\).
    • B.
      \(3\).
    • C.
      \(4\).
    • D.
      \(5\).

    Đáp án : B

    Phương pháp giải :

    Sử dụng định nghĩa đơn thức đồng dạng: Hai đơn thức đồng dạng là hai đơn thức có hệ số khác \(0\)và có cùng phần biến. Các số khác \(0\) được coi là những đơn thức đồng dạng.

    Lời giải chi tiết :

    Có ba nhóm đơn thức đồng dạng trong các đơn thức đã cho gồm :

    Nhóm thứ nhất : \( - \frac{2}{3}{x^3}y\), \(2{x^3}y\).

    Nhóm thứ hai: \(5{x^2}y\), \(\frac{1}{2}{x^2}y\).

    Nhóm thứ ba: \( - x{y^2}\), \(6x{y^2}\).

    \( \frac {3}{4} \) không có đơn thức nào đồng dạng.

    Câu 3 :

    Sau khi thu gọn đơn thức \(2.\left( { - 3{x^3}y} \right){y^2}\) ta được đơn thức:

    • A.
      \( - 6{x^3}{y^3}\).
    • B.
      \(6{x^3}{y^3}\).
    • C.
      \(6{x^3}{y^2}\).
    • D.
      \( - 6{x^2}{y^3}\).

    Đáp án : A

    Phương pháp giải :
    Sử dụng quy tắc nhân hai đơn thức với nhau: Ta nhân các hệ số với nhau, các biến với nhau (chú ý dấu của hệ số và biến)
    Lời giải chi tiết :

    Ta có: \(2.\left( { - 3{x^3}y} \right){y^2} = 2.\left( { - 3} \right).{x^3}.y.{y^2} = - 6{x^3}{y^3}\).

    Câu 4 :

    Tìm hệ số trong đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\), với \(a\), \(b\) là hằng số.

    • A.
      \( - 36\).
    • B.
      \( - 36{a^2}{b^2}\).
    • C.
      \(36{a^2}{b^2}\).
    • D.
      \( - 36{a^2}\).

    Đáp án : B

    Phương pháp giải :
    Các số, hằng số của đơn thức là hệ số
    Lời giải chi tiết :
    Đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\) với \(a,b\) là hằng số có hệ số là: \( - 36{a^2}{b^2}.\)
    Câu 5 :

    Tìm phần biến trong đơn thức \(100a{b^2}{x^2}yz\) với \(a\), \(b\) là hằng số.

    • A.
      \(a{b^2}{x^2}yz\).
    • B.
      \({x^2}y\).
    • C.
      \({x^2}yz\).
    • D.
      \(100ab\).

    Đáp án : C

    Phương pháp giải :
    Phần chứa biến là phần biến của đơn thức
    Lời giải chi tiết :
    Đơn thức \(100ab{x^2}yz\) với \(a,b\) là hằng số có phần biến số là: \({x^2}yz\).
    Câu 6 :

    Các đơn thức \( - 10\); \(\frac{1}{3}x\); \(2{x^2}y\); \(5{x^2}.{x^2}\) có bậc lần lượt là:

    • A.

      0; 1; 3; 4.

    • B.

      0; 3; 1; 4.

    • C.
      0; 1; 2; 3.
    • D.
      0; 1; 3; 2.

    Đáp án : A

    Phương pháp giải :
    Bậc của đơn thức là tổng các số mũ của biến
    Lời giải chi tiết :

    Đơn thức\( - 10\)có bậc là \(0\).

    Đơn thức \(\frac{1}{3}x\) có bậc là \(1.\)

    Đơn thức\(2{x^2}y\) có bậc là \(2 + 1 = 3.\)

    Đơn thức\(5{x^2}.{x^2} = 5{x^4}\) có bậc là \(4.\)

    Các đơn thức \( - 10\); \(\frac{1}{3}x\); \(2{x^2}y\); \(5{x^2}.{x^2}\) có bậc lần lượt là: 0; 1; 3; 4.

    Câu 7 :

    Tổng các đơn thức \(3{x^2}{y^4}\)và \(7{x^2}{y^4}\) là

    • A.
      \(10{x^2}{y^4}\).
    • B.
      \(9{x^2}{y^4}\).
    • C.
      \( - 9{x^2}{y^4}\).
    • D.
      \( - 4{x^2}{y^4}\).

    Đáp án : A

    Phương pháp giải :
    Sử dụng quy tắc cộng hai đơn thức đồng dạng
    Lời giải chi tiết :

    \(3{x^2}{y^4} + 7{x^2}{y^4} = \left( {3 + 7} \right){x^2}{y^4} = 10{x^2}{y^4}\)

    Câu 8 :

    Hiệu của hai đơn thức \( - 9{y^2}z\) và \( - 12{y^2}z\) là

    • A.
      \( - 21{y^2}z\).
    • B.
      \( - 3{y^2}z\).
    • C.
      \(3{y^4}{z^2}\).
    • D.
      \(3{y^2}z\).

    Đáp án : D

    Phương pháp giải :
    Sử dụng quy tắc trừ hai đơn thức đồng dạng
    Lời giải chi tiết :

    \( - 9{y^2}z - \left( { - 12{y^2}z} \right) = \left( { - 9 + 12} \right){y^2}z\)\( = 3{y^2}z\).

    Câu 9 :

    Kết quả sau khi thu gọn đơn thức\(1\frac{1}{4}{x^2}y\left( { - \frac{6}{5}xy} \right)\left( { - 2\frac{1}{3}xy} \right)\) là:

    • A.

      \(\frac{{7}}{{2}}{x^4}{y^3}\).

    • B.
      \(\frac{1}{2}{x^3}{y^3}\).
    • C.

      \(-\frac{{7}}{{2}}{x^4}{y^3}\).

    • D.
      \( - \frac{1}{2}{x^2}{y^2}\).

    Đáp án : A

    Phương pháp giải :
    Thu gọn đơn thức: hệ số nhân với nhau, các biến nhân với nhau
    Lời giải chi tiết :

    Ta có:

    \(1\frac{1}{4}{x^2}y\left( { - \frac{6}{5}xy} \right)\left( { - 2\frac{1}{3}xy} \right) = \left[ {\frac{5}{4}.\left( { - \frac{6}{5}} \right).\left( {\frac{{ - 7}}{3}} \right)} \right]\left( {{x^2}.x.x} \right).\left( {y.y.y} \right) = \frac{{7}}{{2}}{x^4}{y^3}.\)

    Câu 10 :

    Hệ số của đơn thức \({\left( {2{x^2}} \right)^2}\left( { - 3{y^3}} \right){\left( { - 5xz} \right)^3}\) là:

    • A.
      \( - 1500\).
    • B.
      \( - 750\).
    • C.
      30
    • D.
      1500

    Đáp án : D

    Phương pháp giải :
    Thu gọn các đơn thức theo quy tắc thu gọn, phần hệ số chứa các số không có biến
    Lời giải chi tiết :

    Ta có:

    \(\begin{array}{l}{\left( {2{x^2}} \right)^2}\left( { - 3{y^3}} \right){\left( { - 5xz} \right)^3} \\= 4{x^4}.\left( { - 3{y^3}} \right).\left( { - 125{x^3}{z^3}} \right)\\= 4.\left( { - 3} \right).\left( { - 125} \right).{x^4}.{x^3}.{y^3}.{z^3}\\= 1500{x^7}{y^3}{z^3}.\end{array}\)

    Hệ số của đơn thức đã cho là \(1500.\)

    Câu 11 :

    Phần biến số của đơn thức \({\left( { - \frac{a}{4}} \right)^2}3xy\left( {4{a^2}{x^2}} \right)\left( {4\frac{1}{2}a{y^2}} \right)\) (với \(a\), \(b\) là hằng số) là:

    • A.
      \(\frac{{27}}{8}{a^5}{x^3}{y^3}\).
    • B.
      \({a^5}{x^3}{y^3}\).
    • C.
      \(\frac{{27}}{8}{a^5}\).
    • D.
      \({x^3}{y^3}\).

    Đáp án : D

    Phương pháp giải :
    Thu gọn các đơn thức theo quy tắc thu gọn, phần biến là chứa các biến x, y
    Lời giải chi tiết :
    Ta có:

    \(\begin{array}{l}{\left( { - \frac{a}{4}} \right)^2}3xy\left( {4{a^2}{x^2}} \right)\left( {4\frac{1}{2}a{y^2}} \right) = \frac{{{a^2}}}{{16}}.3xy.4{a^2}{x^2}.\frac{9}{2}a{y^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {\frac{{{a^2}}}{{16}}.3.4{a^2}.\frac{9}{2}a} \right).{x^3}{y^3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{27}}{8}{a^5}{x^3}{y^3}.\end{array}\)

    Phần biến số của đơn thức đã cho là: \({x^3}{y^3}.\)

    Câu 12 :

    Tính giá trị của đơn thức \(5{x^4}{y^2}{z^3}\) tại \(x = - 1\); \(y = - 1\); \(z = - 2\).

    • A.

      \(10\).

    • B.

      \(20\).

    • C.

      \( - 40\).

    • D.

      \(40\).

    Đáp án : C

    Phương pháp giải :
    Thay các giá trị x =-1; y = -1; z = -2 vào đơn thức \(5{x^4}{y^2}{z^3}\)
    Lời giải chi tiết :

    Thay \(x = - 1\), \(y = - 1\), \(z = - 2\) vào đơn thức \(5{x^4}{y^2}{z^3}\) ta được: \(5.{\left( { - 1} \right)^4}.{\left( { - 1} \right)^2}.{\left( { - 2} \right)^3} = - 40.\)

    Câu 13 :

    Kết quả sau khi thu gọn biểu thức đại số \(9{\left( {{x^2}{y^2}} \right)^2}x - {\left( { - 2xy} \right)^3}{x^2}y + 3{\left( {2x} \right)^4}x{y^4}\)

    • A.
      \(59{x^5}{y^4}\).
    • B.
      \(49{x^5}{y^4}\).
    • C.
      \(65{x^5}{y^4}\).
    • D.
      \(17{x^5}{y^4}\).

    Đáp án : C

    Phương pháp giải :

    Thu gọn các đơn thức nhỏ trong biểu thức đại số rồi mới tiến hằng cộng, trừ các đơn thức đồng dạng.

    Áp dụng các công thức \({\left( {{a^m}} \right)^n} = {a^{m.n}}\), \({a^m}.{a^n} = {a^{m + n}}\), \({\left( {x.y} \right)^n} = {x^n}.{y^m}\).

    Lời giải chi tiết :

    Ta có:

    \(9{\left( {{x^2}{y^2}} \right)^2}x - {\left( { - 2xy} \right)^3}{x^2}y + 3{\left( {2x} \right)^4}x{y^4}\)

    \( = 9{\left( {{x^2}} \right)^2}{\left( {{y^2}} \right)^2}x - {\left( { - 2} \right)^3}{x^3}{y^3}{x^2}y + {3.2^4}{x^4}x{y^4}\)

    \( = 9{x^4}{y^4}x - \left( { - 8} \right){x^3}{y^3}{x^2}y + 48{x^4}x{y^4}\)

    \( = 9{x^5}{y^4} + 8{x^5}{y^4} + 48{x^5}{y^4}\)

    \( = \left( {9 + 8 + 48} \right){x^5}{y^4}\)

    \( = 65{x^5}{y^4}\).

    Câu 14 :

    Xác định hằng số \(a\) để các đơn thức \({ax}{y^3}{,^{}} - 4{x}{y^3}{,^{}}7x{y^3}\)có tổng bằng \(6x{y^3}\).

    • A.
      a = 9.
    • B.
      a = 1.
    • C.
      a = 3.
    • D.
      a = 2.

    Đáp án : C

    Phương pháp giải :

    Thực hiện cộng các đơn thức rồi cho kết quả hệ số bằng 6. Từ đó tìm ra hằng số a

    Lời giải chi tiết :

    Ta có \(ax{y^3} + \left( { - 4xy^3} \right) + 7x{y^3} = \left( {a - 4 + 7} \right)x{y^3}\)

    Từ giả thiết suy ra:

    \(a + 3 = 6 \\ a = 6 - 3 \\ a = 3\)

    Câu 15 :

    Cho đơn thức \(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\)\(\left( {a \ne 0} \right)\). Chọn khẳng định đúng:

    • A.
      Giá trị của \(A\) luôn không âm với mọi \(x\), \(y\), \(z\).
    • B.
      Nếu \(A = 0\) thì \(x = y = z = 0\).
    • C.
      Chỉ có 1 giá trị của \(x\) để \(A = 0\).
    • D.
      Chỉ có 1 giá trị của \(y\) để \(A = 0\).

    Đáp án : A

    Phương pháp giải :

    Ta xét dấu của các hệ số và các biến.

    Các số không âm nhân với nhau ta được tích là số không âm.

    Lời giải chi tiết :

    \(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\,\,\,\left( {a \ne 0} \right).\)

    Ta có: \(2{a^2} + \frac{1}{{{a^2}}} > 0\) với \(a \ne 0.\)

    Lại có: \({x^2} \ge 0;\,\,{y^4} \ge 0;\,\,{z^6} \ge 0\) nên \({x^2}{y^4}{z^6} \ge 0\) với mọi \(x;\,y;\,z.\)

    Lời giải và đáp án

      Câu 1 :

      Trong các biểu thức đại số sau, biểu thức nào không phải đơn thức?

      • A.
        2.
      • B.
        \(5x + 9\).
      • C.
        \({x^3}{y^2}\).
      • D.
        \(3x\).
      Câu 2 :

      Có mấy nhóm đơn thức đồng dạng với nhau trong các đơn thức sau: \( - \frac{2}{3}{x^3}y\); \( - x{y^2}\); \(5{x^2}y\); \(6x{y^2}\); \(2{x^3}y\); \(\frac{3}{4}\); \(\frac{1}{2}{x^2}y\).

      • A.
        \(2\).
      • B.
        \(3\).
      • C.
        \(4\).
      • D.
        \(5\).
      Câu 3 :

      Sau khi thu gọn đơn thức \(2.\left( { - 3{x^3}y} \right){y^2}\) ta được đơn thức:

      • A.
        \( - 6{x^3}{y^3}\).
      • B.
        \(6{x^3}{y^3}\).
      • C.
        \(6{x^3}{y^2}\).
      • D.
        \( - 6{x^2}{y^3}\).
      Câu 4 :

      Tìm hệ số trong đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\), với \(a\), \(b\) là hằng số.

      • A.
        \( - 36\).
      • B.
        \( - 36{a^2}{b^2}\).
      • C.
        \(36{a^2}{b^2}\).
      • D.
        \( - 36{a^2}\).
      Câu 5 :

      Tìm phần biến trong đơn thức \(100a{b^2}{x^2}yz\) với \(a\), \(b\) là hằng số.

      • A.
        \(a{b^2}{x^2}yz\).
      • B.
        \({x^2}y\).
      • C.
        \({x^2}yz\).
      • D.
        \(100ab\).
      Câu 6 :

      Các đơn thức \( - 10\); \(\frac{1}{3}x\); \(2{x^2}y\); \(5{x^2}.{x^2}\) có bậc lần lượt là:

      • A.

        0; 1; 3; 4.

      • B.

        0; 3; 1; 4.

      • C.
        0; 1; 2; 3.
      • D.
        0; 1; 3; 2.
      Câu 7 :

      Tổng các đơn thức \(3{x^2}{y^4}\)và \(7{x^2}{y^4}\) là

      • A.
        \(10{x^2}{y^4}\).
      • B.
        \(9{x^2}{y^4}\).
      • C.
        \( - 9{x^2}{y^4}\).
      • D.
        \( - 4{x^2}{y^4}\).
      Câu 8 :

      Hiệu của hai đơn thức \( - 9{y^2}z\) và \( - 12{y^2}z\) là

      • A.
        \( - 21{y^2}z\).
      • B.
        \( - 3{y^2}z\).
      • C.
        \(3{y^4}{z^2}\).
      • D.
        \(3{y^2}z\).
      Câu 9 :

      Kết quả sau khi thu gọn đơn thức\(1\frac{1}{4}{x^2}y\left( { - \frac{6}{5}xy} \right)\left( { - 2\frac{1}{3}xy} \right)\) là:

      • A.

        \(\frac{{7}}{{2}}{x^4}{y^3}\).

      • B.
        \(\frac{1}{2}{x^3}{y^3}\).
      • C.

        \(-\frac{{7}}{{2}}{x^4}{y^3}\).

      • D.
        \( - \frac{1}{2}{x^2}{y^2}\).
      Câu 10 :

      Hệ số của đơn thức \({\left( {2{x^2}} \right)^2}\left( { - 3{y^3}} \right){\left( { - 5xz} \right)^3}\) là:

      • A.
        \( - 1500\).
      • B.
        \( - 750\).
      • C.
        30
      • D.
        1500
      Câu 11 :

      Phần biến số của đơn thức \({\left( { - \frac{a}{4}} \right)^2}3xy\left( {4{a^2}{x^2}} \right)\left( {4\frac{1}{2}a{y^2}} \right)\) (với \(a\), \(b\) là hằng số) là:

      • A.
        \(\frac{{27}}{8}{a^5}{x^3}{y^3}\).
      • B.
        \({a^5}{x^3}{y^3}\).
      • C.
        \(\frac{{27}}{8}{a^5}\).
      • D.
        \({x^3}{y^3}\).
      Câu 12 :

      Tính giá trị của đơn thức \(5{x^4}{y^2}{z^3}\) tại \(x = - 1\); \(y = - 1\); \(z = - 2\).

      • A.

        \(10\).

      • B.

        \(20\).

      • C.

        \( - 40\).

      • D.

        \(40\).

      Câu 13 :

      Kết quả sau khi thu gọn biểu thức đại số \(9{\left( {{x^2}{y^2}} \right)^2}x - {\left( { - 2xy} \right)^3}{x^2}y + 3{\left( {2x} \right)^4}x{y^4}\)

      • A.
        \(59{x^5}{y^4}\).
      • B.
        \(49{x^5}{y^4}\).
      • C.
        \(65{x^5}{y^4}\).
      • D.
        \(17{x^5}{y^4}\).
      Câu 14 :

      Xác định hằng số \(a\) để các đơn thức \({ax}{y^3}{,^{}} - 4{x}{y^3}{,^{}}7x{y^3}\)có tổng bằng \(6x{y^3}\).

      • A.
        a = 9.
      • B.
        a = 1.
      • C.
        a = 3.
      • D.
        a = 2.
      Câu 15 :

      Cho đơn thức \(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\)\(\left( {a \ne 0} \right)\). Chọn khẳng định đúng:

      • A.
        Giá trị của \(A\) luôn không âm với mọi \(x\), \(y\), \(z\).
      • B.
        Nếu \(A = 0\) thì \(x = y = z = 0\).
      • C.
        Chỉ có 1 giá trị của \(x\) để \(A = 0\).
      • D.
        Chỉ có 1 giá trị của \(y\) để \(A = 0\).
      Câu 1 :

      Trong các biểu thức đại số sau, biểu thức nào không phải đơn thức?

      • A.
        2.
      • B.
        \(5x + 9\).
      • C.
        \({x^3}{y^2}\).
      • D.
        \(3x\).

      Đáp án : B

      Phương pháp giải :

      Sử dụng định nghĩa đơn thức: Đơn thức là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và các biến.

      Lời giải chi tiết :

      Theo định nghĩa đơn thức thì \(5x + 9\) không là đơn thức.

      Câu 2 :

      Có mấy nhóm đơn thức đồng dạng với nhau trong các đơn thức sau: \( - \frac{2}{3}{x^3}y\); \( - x{y^2}\); \(5{x^2}y\); \(6x{y^2}\); \(2{x^3}y\); \(\frac{3}{4}\); \(\frac{1}{2}{x^2}y\).

      • A.
        \(2\).
      • B.
        \(3\).
      • C.
        \(4\).
      • D.
        \(5\).

      Đáp án : B

      Phương pháp giải :

      Sử dụng định nghĩa đơn thức đồng dạng: Hai đơn thức đồng dạng là hai đơn thức có hệ số khác \(0\)và có cùng phần biến. Các số khác \(0\) được coi là những đơn thức đồng dạng.

      Lời giải chi tiết :

      Có ba nhóm đơn thức đồng dạng trong các đơn thức đã cho gồm :

      Nhóm thứ nhất : \( - \frac{2}{3}{x^3}y\), \(2{x^3}y\).

      Nhóm thứ hai: \(5{x^2}y\), \(\frac{1}{2}{x^2}y\).

      Nhóm thứ ba: \( - x{y^2}\), \(6x{y^2}\).

      \( \frac {3}{4} \) không có đơn thức nào đồng dạng.

      Câu 3 :

      Sau khi thu gọn đơn thức \(2.\left( { - 3{x^3}y} \right){y^2}\) ta được đơn thức:

      • A.
        \( - 6{x^3}{y^3}\).
      • B.
        \(6{x^3}{y^3}\).
      • C.
        \(6{x^3}{y^2}\).
      • D.
        \( - 6{x^2}{y^3}\).

      Đáp án : A

      Phương pháp giải :
      Sử dụng quy tắc nhân hai đơn thức với nhau: Ta nhân các hệ số với nhau, các biến với nhau (chú ý dấu của hệ số và biến)
      Lời giải chi tiết :

      Ta có: \(2.\left( { - 3{x^3}y} \right){y^2} = 2.\left( { - 3} \right).{x^3}.y.{y^2} = - 6{x^3}{y^3}\).

      Câu 4 :

      Tìm hệ số trong đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\), với \(a\), \(b\) là hằng số.

      • A.
        \( - 36\).
      • B.
        \( - 36{a^2}{b^2}\).
      • C.
        \(36{a^2}{b^2}\).
      • D.
        \( - 36{a^2}\).

      Đáp án : B

      Phương pháp giải :
      Các số, hằng số của đơn thức là hệ số
      Lời giải chi tiết :
      Đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\) với \(a,b\) là hằng số có hệ số là: \( - 36{a^2}{b^2}.\)
      Câu 5 :

      Tìm phần biến trong đơn thức \(100a{b^2}{x^2}yz\) với \(a\), \(b\) là hằng số.

      • A.
        \(a{b^2}{x^2}yz\).
      • B.
        \({x^2}y\).
      • C.
        \({x^2}yz\).
      • D.
        \(100ab\).

      Đáp án : C

      Phương pháp giải :
      Phần chứa biến là phần biến của đơn thức
      Lời giải chi tiết :
      Đơn thức \(100ab{x^2}yz\) với \(a,b\) là hằng số có phần biến số là: \({x^2}yz\).
      Câu 6 :

      Các đơn thức \( - 10\); \(\frac{1}{3}x\); \(2{x^2}y\); \(5{x^2}.{x^2}\) có bậc lần lượt là:

      • A.

        0; 1; 3; 4.

      • B.

        0; 3; 1; 4.

      • C.
        0; 1; 2; 3.
      • D.
        0; 1; 3; 2.

      Đáp án : A

      Phương pháp giải :
      Bậc của đơn thức là tổng các số mũ của biến
      Lời giải chi tiết :

      Đơn thức\( - 10\)có bậc là \(0\).

      Đơn thức \(\frac{1}{3}x\) có bậc là \(1.\)

      Đơn thức\(2{x^2}y\) có bậc là \(2 + 1 = 3.\)

      Đơn thức\(5{x^2}.{x^2} = 5{x^4}\) có bậc là \(4.\)

      Các đơn thức \( - 10\); \(\frac{1}{3}x\); \(2{x^2}y\); \(5{x^2}.{x^2}\) có bậc lần lượt là: 0; 1; 3; 4.

      Câu 7 :

      Tổng các đơn thức \(3{x^2}{y^4}\)và \(7{x^2}{y^4}\) là

      • A.
        \(10{x^2}{y^4}\).
      • B.
        \(9{x^2}{y^4}\).
      • C.
        \( - 9{x^2}{y^4}\).
      • D.
        \( - 4{x^2}{y^4}\).

      Đáp án : A

      Phương pháp giải :
      Sử dụng quy tắc cộng hai đơn thức đồng dạng
      Lời giải chi tiết :

      \(3{x^2}{y^4} + 7{x^2}{y^4} = \left( {3 + 7} \right){x^2}{y^4} = 10{x^2}{y^4}\)

      Câu 8 :

      Hiệu của hai đơn thức \( - 9{y^2}z\) và \( - 12{y^2}z\) là

      • A.
        \( - 21{y^2}z\).
      • B.
        \( - 3{y^2}z\).
      • C.
        \(3{y^4}{z^2}\).
      • D.
        \(3{y^2}z\).

      Đáp án : D

      Phương pháp giải :
      Sử dụng quy tắc trừ hai đơn thức đồng dạng
      Lời giải chi tiết :

      \( - 9{y^2}z - \left( { - 12{y^2}z} \right) = \left( { - 9 + 12} \right){y^2}z\)\( = 3{y^2}z\).

      Câu 9 :

      Kết quả sau khi thu gọn đơn thức\(1\frac{1}{4}{x^2}y\left( { - \frac{6}{5}xy} \right)\left( { - 2\frac{1}{3}xy} \right)\) là:

      • A.

        \(\frac{{7}}{{2}}{x^4}{y^3}\).

      • B.
        \(\frac{1}{2}{x^3}{y^3}\).
      • C.

        \(-\frac{{7}}{{2}}{x^4}{y^3}\).

      • D.
        \( - \frac{1}{2}{x^2}{y^2}\).

      Đáp án : A

      Phương pháp giải :
      Thu gọn đơn thức: hệ số nhân với nhau, các biến nhân với nhau
      Lời giải chi tiết :

      Ta có:

      \(1\frac{1}{4}{x^2}y\left( { - \frac{6}{5}xy} \right)\left( { - 2\frac{1}{3}xy} \right) = \left[ {\frac{5}{4}.\left( { - \frac{6}{5}} \right).\left( {\frac{{ - 7}}{3}} \right)} \right]\left( {{x^2}.x.x} \right).\left( {y.y.y} \right) = \frac{{7}}{{2}}{x^4}{y^3}.\)

      Câu 10 :

      Hệ số của đơn thức \({\left( {2{x^2}} \right)^2}\left( { - 3{y^3}} \right){\left( { - 5xz} \right)^3}\) là:

      • A.
        \( - 1500\).
      • B.
        \( - 750\).
      • C.
        30
      • D.
        1500

      Đáp án : D

      Phương pháp giải :
      Thu gọn các đơn thức theo quy tắc thu gọn, phần hệ số chứa các số không có biến
      Lời giải chi tiết :

      Ta có:

      \(\begin{array}{l}{\left( {2{x^2}} \right)^2}\left( { - 3{y^3}} \right){\left( { - 5xz} \right)^3} \\= 4{x^4}.\left( { - 3{y^3}} \right).\left( { - 125{x^3}{z^3}} \right)\\= 4.\left( { - 3} \right).\left( { - 125} \right).{x^4}.{x^3}.{y^3}.{z^3}\\= 1500{x^7}{y^3}{z^3}.\end{array}\)

      Hệ số của đơn thức đã cho là \(1500.\)

      Câu 11 :

      Phần biến số của đơn thức \({\left( { - \frac{a}{4}} \right)^2}3xy\left( {4{a^2}{x^2}} \right)\left( {4\frac{1}{2}a{y^2}} \right)\) (với \(a\), \(b\) là hằng số) là:

      • A.
        \(\frac{{27}}{8}{a^5}{x^3}{y^3}\).
      • B.
        \({a^5}{x^3}{y^3}\).
      • C.
        \(\frac{{27}}{8}{a^5}\).
      • D.
        \({x^3}{y^3}\).

      Đáp án : D

      Phương pháp giải :
      Thu gọn các đơn thức theo quy tắc thu gọn, phần biến là chứa các biến x, y
      Lời giải chi tiết :
      Ta có:

      \(\begin{array}{l}{\left( { - \frac{a}{4}} \right)^2}3xy\left( {4{a^2}{x^2}} \right)\left( {4\frac{1}{2}a{y^2}} \right) = \frac{{{a^2}}}{{16}}.3xy.4{a^2}{x^2}.\frac{9}{2}a{y^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {\frac{{{a^2}}}{{16}}.3.4{a^2}.\frac{9}{2}a} \right).{x^3}{y^3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{27}}{8}{a^5}{x^3}{y^3}.\end{array}\)

      Phần biến số của đơn thức đã cho là: \({x^3}{y^3}.\)

      Câu 12 :

      Tính giá trị của đơn thức \(5{x^4}{y^2}{z^3}\) tại \(x = - 1\); \(y = - 1\); \(z = - 2\).

      • A.

        \(10\).

      • B.

        \(20\).

      • C.

        \( - 40\).

      • D.

        \(40\).

      Đáp án : C

      Phương pháp giải :
      Thay các giá trị x =-1; y = -1; z = -2 vào đơn thức \(5{x^4}{y^2}{z^3}\)
      Lời giải chi tiết :

      Thay \(x = - 1\), \(y = - 1\), \(z = - 2\) vào đơn thức \(5{x^4}{y^2}{z^3}\) ta được: \(5.{\left( { - 1} \right)^4}.{\left( { - 1} \right)^2}.{\left( { - 2} \right)^3} = - 40.\)

      Câu 13 :

      Kết quả sau khi thu gọn biểu thức đại số \(9{\left( {{x^2}{y^2}} \right)^2}x - {\left( { - 2xy} \right)^3}{x^2}y + 3{\left( {2x} \right)^4}x{y^4}\)

      • A.
        \(59{x^5}{y^4}\).
      • B.
        \(49{x^5}{y^4}\).
      • C.
        \(65{x^5}{y^4}\).
      • D.
        \(17{x^5}{y^4}\).

      Đáp án : C

      Phương pháp giải :

      Thu gọn các đơn thức nhỏ trong biểu thức đại số rồi mới tiến hằng cộng, trừ các đơn thức đồng dạng.

      Áp dụng các công thức \({\left( {{a^m}} \right)^n} = {a^{m.n}}\), \({a^m}.{a^n} = {a^{m + n}}\), \({\left( {x.y} \right)^n} = {x^n}.{y^m}\).

      Lời giải chi tiết :

      Ta có:

      \(9{\left( {{x^2}{y^2}} \right)^2}x - {\left( { - 2xy} \right)^3}{x^2}y + 3{\left( {2x} \right)^4}x{y^4}\)

      \( = 9{\left( {{x^2}} \right)^2}{\left( {{y^2}} \right)^2}x - {\left( { - 2} \right)^3}{x^3}{y^3}{x^2}y + {3.2^4}{x^4}x{y^4}\)

      \( = 9{x^4}{y^4}x - \left( { - 8} \right){x^3}{y^3}{x^2}y + 48{x^4}x{y^4}\)

      \( = 9{x^5}{y^4} + 8{x^5}{y^4} + 48{x^5}{y^4}\)

      \( = \left( {9 + 8 + 48} \right){x^5}{y^4}\)

      \( = 65{x^5}{y^4}\).

      Câu 14 :

      Xác định hằng số \(a\) để các đơn thức \({ax}{y^3}{,^{}} - 4{x}{y^3}{,^{}}7x{y^3}\)có tổng bằng \(6x{y^3}\).

      • A.
        a = 9.
      • B.
        a = 1.
      • C.
        a = 3.
      • D.
        a = 2.

      Đáp án : C

      Phương pháp giải :

      Thực hiện cộng các đơn thức rồi cho kết quả hệ số bằng 6. Từ đó tìm ra hằng số a

      Lời giải chi tiết :

      Ta có \(ax{y^3} + \left( { - 4xy^3} \right) + 7x{y^3} = \left( {a - 4 + 7} \right)x{y^3}\)

      Từ giả thiết suy ra:

      \(a + 3 = 6 \\ a = 6 - 3 \\ a = 3\)

      Câu 15 :

      Cho đơn thức \(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\)\(\left( {a \ne 0} \right)\). Chọn khẳng định đúng:

      • A.
        Giá trị của \(A\) luôn không âm với mọi \(x\), \(y\), \(z\).
      • B.
        Nếu \(A = 0\) thì \(x = y = z = 0\).
      • C.
        Chỉ có 1 giá trị của \(x\) để \(A = 0\).
      • D.
        Chỉ có 1 giá trị của \(y\) để \(A = 0\).

      Đáp án : A

      Phương pháp giải :

      Ta xét dấu của các hệ số và các biến.

      Các số không âm nhân với nhau ta được tích là số không âm.

      Lời giải chi tiết :

      \(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\,\,\,\left( {a \ne 0} \right).\)

      Ta có: \(2{a^2} + \frac{1}{{{a^2}}} > 0\) với \(a \ne 0.\)

      Lại có: \({x^2} \ge 0;\,\,{y^4} \ge 0;\,\,{z^6} \ge 0\) nên \({x^2}{y^4}{z^6} \ge 0\) với mọi \(x;\,y;\,z.\)

      Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Trắc nghiệm Bài 1: Đơn thức Toán 8 Kết nối tri thức đặc sắc thuộc chuyên mục toán 8 sgk trên môn toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

      Trắc nghiệm Bài 1: Đơn thức Toán 8 Kết nối tri thức - Tổng quan

      Bài 1: Đơn thức trong chương trình Toán 8 Kết nối tri thức là nền tảng quan trọng để học sinh tiếp cận với các khái niệm phức tạp hơn trong đại số. Hiểu rõ về đơn thức, các yếu tố của đơn thức, bậc của đơn thức và các phép toán trên đơn thức là điều kiện cần thiết để giải quyết các bài toán liên quan.

      Khái niệm Đơn thức

      Đơn thức là biểu thức đại số chỉ chứa tích của các số và các biến, với số mũ của mỗi biến là một số nguyên không âm. Ví dụ: 3x2y, -5ab3, 7 là các đơn thức.

      Các yếu tố của Đơn thức

      • Phần biến: Gồm các biến và số mũ của chúng.
      • Phần hệ số: Gồm các số.

      Bậc của Đơn thức

      Bậc của đơn thức là tổng số mũ của các biến trong phần biến. Ví dụ: Bậc của đơn thức 3x2y là 3 (2 + 1).

      Các phép toán trên Đơn thức

      Phép cộng, trừ Đơn thức đồng dạng

      Hai đơn thức được gọi là đồng dạng nếu chúng có cùng phần biến. Để cộng hoặc trừ các đơn thức đồng dạng, ta cộng hoặc trừ các hệ số và giữ nguyên phần biến.

      Ví dụ: 2x2y + 3x2y = 5x2y

      Phép nhân Đơn thức

      Để nhân hai đơn thức, ta nhân các hệ số với nhau và nhân các phần biến với nhau. Khi nhân các phần biến, ta sử dụng quy tắc nhân hai lũy thừa cùng cơ số: am * an = am+n.

      Ví dụ: (2x2y) * (3xy2) = 6x3y3

      Phép chia Đơn thức

      Để chia một đơn thức cho một đơn thức, ta chia các hệ số với nhau và chia các phần biến với nhau. Khi chia các phần biến, ta sử dụng quy tắc chia hai lũy thừa cùng cơ số: am / an = am-n.

      Ví dụ: (6x3y3) / (2xy) = 3x2y2

      Bài tập Trắc nghiệm minh họa

      1. Đơn thức nào sau đây là đơn thức đồng dạng với 2x2y?
        • A. 3xy2
        • B. -5x2y
        • C. 7x3y
        • D. 4x2z

        Đáp án: B

      2. Tính: (4x3y2) * (-2xy)
        • A. -8x4y3
        • B. 8x4y3
        • C. -6x4y3
        • D. 6x4y3

        Đáp án: A

      3. Rút gọn biểu thức: 5x2y - 3x2y + 2xy2
        • A. 2x2y + 2xy2
        • B. 8x2y + 2xy2
        • C. 2x2y - 2xy2
        • D. 8x2y - 2xy2

        Đáp án: A

      Mẹo làm bài Trắc nghiệm Đơn thức hiệu quả

      • Nắm vững định nghĩa và các yếu tố của đơn thức.
      • Thành thạo các phép toán trên đơn thức, đặc biệt là phép cộng, trừ, nhân, chia.
      • Chú ý đến các đơn thức đồng dạng.
      • Kiểm tra kỹ các đáp án trước khi lựa chọn.

      Kết luận

      Hy vọng với bộ trắc nghiệm này, các em học sinh lớp 8 sẽ có thêm công cụ để ôn tập và củng cố kiến thức về đơn thức. Chúc các em học tập tốt và đạt kết quả cao trong các kỳ thi!

      Tài liệu, đề thi và đáp án Toán 8