Chào mừng các em học sinh đến với bài trắc nghiệm Toán 8 Bài 12: Hình bình hành, thuộc chương trình Kết nối tri thức. Bài trắc nghiệm này được thiết kế để giúp các em ôn tập và củng cố kiến thức về hình bình hành, các tính chất và ứng dụng của nó.
Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, từ dễ đến khó, kèm theo đáp án chi tiết và lời giải thích rõ ràng. Hãy cùng thử sức để đánh giá năng lực của bản thân nhé!
Hãy chọn câu trả lời đúng
Hình bình hành ABCD thỏa mãn:
Hãy chọn câu trả lời đúng
Điền cụm từ thích hợp vào chỗ trống: “Tứ giác có hai đường chéo … thì tứ giác đó là hình bình hành”.
Cho hình bình hành ABCD có \(\widehat A = {120^o}\), các góc còn lại của hình bình hành là:
Cho hình bình hành ABCD. Qua giao điểm O của các đường chéo, vẽ một đường thẳng cắt các cạnh đối BC và AD theo thứ tự E và F (đường thẳng này không đi qua trung điểm của BC và AD). Chọn các khẳng định đúng:
Cho hình bình hành ABCD. Gọi H, K lần lượt là hình chiếu của A, C trên đường thẳng BD. Chọn khẳng định đúng:
Chu vi của hình bình hành ABCD bằng 10 cm, chu vi của tam giác ABD bằng
9 cm. Khi đó độ dài BD là:
Hãy chọn câu đúng. Cho hình bình hành ABCD có các điều kiện như hình vẽ, trong hình có:
Hãy chọn câu đúng. Cho hình bình hành ABCD, gọi E là trung điểm của AB, F là trung điểm của CD. Khi đó:
Hai góc kề nhau của một hình bình hành không thể có số đo là:
Cho tam giác ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D. Chọn câu trả lời đúng nhất. Tứ giác BDCH là hình gì?
Cho tứ giác ABCD. Gọi E, F lần lượt là giao điểm của AB và CD, AD và BC; M, N, P, Q lần lượt là các điểm sao cho MN // AC; \(MN = \frac{1}{2}AC\); PQ // AC; \(PQ = \frac{1}{2}AC\). Khi đó MNPQ là hình gì? Chọn đáp án đúng nhất.
Tỉ số độ dài hai cạnh của hình bình hành là 3 : 5. Còn chu vi của nó bằng 48cm. Độ dài cạnh kề của hình bình hành là:
Cho hình bình hành ABCD. Trên đường chéo BD lấy hai điểm E và F sao cho \(BE = DF < \frac{1}{2}B{{D}}\). Chọn khẳng định đúng.
Cho tam giác ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D. Tính số đo góc BDC, biết \(\widehat {BAC} = {50^o}\).
Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự ở E, F. Chọn khẳng định đúng.
Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA sao cho ME // AB; \(ME = \frac{{AB}}{2}\). Tứ giác ADME là:
Hình bình hành ABCD có \(\widehat A - \widehat B = {20^o}\). Số đo góc A bằng:
Cho hình bình hành có \(\widehat A = 3\widehat B\). Số đo các góc của hình bình hành là:
Cho tứ giác ABCD. Gọi E, F lần lượt là trung điểm của AB và CD; M, N, P, Q lần lượt là thuộc các cạnh AF, EC, BF, DE và \(FN = \frac{1}{2}DE;FN//DE\); \(EM = \frac{1}{2}BF;EM//BF\) . Khi đó MNPQ là hình gì? Chọn đáp án đúng nhất.
Cho hình bình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Đường chéo AC cắt BE, DF theo thứ tự ở K, I. Chọn khẳng định đúng nhất.
Lời giải và đáp án
Hãy chọn câu trả lời đúng
Đáp án : D
Dấu hiệu nhận biết: Tứ giác có các cạnh đối song song là hình bình hành.
Hình bình hành ABCD thỏa mãn:
Đáp án : B
Hãy chọn câu trả lời đúng
Đáp án : D
Trong hình bình hành hai đường chéo cắt nhau tại trung điểm của mỗi đường.
Điền cụm từ thích hợp vào chỗ trống: “Tứ giác có hai đường chéo … thì tứ giác đó là hình bình hành”.
Đáp án : C
Cho hình bình hành ABCD có \(\widehat A = {120^o}\), các góc còn lại của hình bình hành là:
Đáp án : A
Nên \(\widehat A = \widehat C = {120^o};\widehat B = \widehat D = {60^o}\)
Hình bình hành có các góc đối bằng nhau
Cho hình bình hành ABCD. Qua giao điểm O của các đường chéo, vẽ một đường thẳng cắt các cạnh đối BC và AD theo thứ tự E và F (đường thẳng này không đi qua trung điểm của BC và AD). Chọn các khẳng định đúng:
Đáp án : A
\(\Delta {{AOF = }}\Delta {{COE}}\) (g – c – g) suy ra AF = CE
Cho hình bình hành ABCD. Gọi H, K lần lượt là hình chiếu của A, C trên đường thẳng BD. Chọn khẳng định đúng:
Đáp án : D
Xét tam giác AHB và CKD có: \(\widehat {AHB} = \widehat {CK{{D}}} = {90^o}\); AB = CD; \(\widehat {ABH} = \widehat {C{{D}}K}\)
\( \Rightarrow \Delta AHB = \Delta CK{{D}} \Rightarrow AH = CK(1)\)
Lại có: \(AH \bot B{{D}};CK \bot B{{D}} \Rightarrow AH//CK(2)\)
Từ (1), (2) suy ra AHCK là hình bình hành.
Chu vi của hình bình hành ABCD bằng 10 cm, chu vi của tam giác ABD bằng
9 cm. Khi đó độ dài BD là:
Đáp án : A
Vì chu vi của hình bình hành ABCD bằng 10 cm nên:
AB + BC + CD + DA = 10
\( \Rightarrow AB + DA = 5\)
Chu vi của tam giác ABD bằng 9 cm nên: \(AB + B{{D}} + DA = 9 \Rightarrow B{{D}} = 4cm\)
Hãy chọn câu đúng. Cho hình bình hành ABCD có các điều kiện như hình vẽ, trong hình có:
Đáp án : A
+ Vì ABCD là hình bình hành nên AB // CD, AD // BC
+ Xét tam giác AEFD có AE = FD; AE // FD (do AB // CD) nên AEFD là hình bình hành.
+ Xét tứ giác BEFC có BE = FC; BE // FC (do AB // CD) nên BEFC là hình bình hành
+ Xét tứ giác AECF có AE = FC; AE // FC (do AB // CD) nên AECF là hình bình hành
+ Xét tứ giác BEDF có BE = FD, BE //FD (do AB // CD) nên BEDF là hình bình hành
+ Vì AECF là hình bình hành nên AF // EC ⇒ EH // GF; vì BEDF là hình bình hành nên ED // BF ⇒ EG // HF
Suy ra EGHF là hình bình hành
Vậy có tất cả 6 hình bình hành: ABCD; AEFD; BEFC; AECF; BEDF; EGHF
Hãy chọn câu đúng. Cho hình bình hành ABCD, gọi E là trung điểm của AB, F là trung điểm của CD. Khi đó:
Đáp án : A
Vì ABCD là hình bình hành nên AB // CD; AB = CD
+ Xét tứ giác BEDF có BE =FD; BE // FD (do AB // CD) nên BFDE là hình bình hành.
Từ đó: DE = BF (tính chất hình bình hành)
Hai góc kề nhau của một hình bình hành không thể có số đo là:
Đáp án : B
Trong hình bình hành có các góc đối nhau và tổng các góc trong hình bình hành phải bằng 3600 nên ta có:
600.2 + 1200.2 = 3600
400.2 + 500.2 = 1800 ≠ 3600
1300.2 + 500.2 = 3600
1050.2 + 750.2 = 3600
Do đó hai góc kề của hình bình hành không thể có số đo 400; 500
Cho tam giác ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D. Chọn câu trả lời đúng nhất. Tứ giác BDCH là hình gì?
Đáp án : B
Gọi BK, CI là các đường cao của tam giác ABC. Khi đó BK ⊥ AC; CI ⊥ AB hay BH ⊥ AC; CH ⊥ AB (vì H là trực tâm).
Lại có BD ⊥ AB; CD ⊥ AC (giả thiết) nên BD // CH (cùng vuông với AB) và CD // BH (cùng vuông với AC)
Suy ra tứ giác BHCD là hình bình hành
Cho tứ giác ABCD. Gọi E, F lần lượt là giao điểm của AB và CD, AD và BC; M, N, P, Q lần lượt là các điểm sao cho MN // AC; \(MN = \frac{1}{2}AC\); PQ // AC; \(PQ = \frac{1}{2}AC\). Khi đó MNPQ là hình gì? Chọn đáp án đúng nhất.
Đáp án : A
Chứng minh tứ giác MNPQ có PQ // NM; PQ = MN suy ra tứ giác MNPQ là hình bình hành.
Nối AC.
Xét tam giác EAC suy ra MN // AC; \(MN = \frac{1}{2}AC\) (1)
Xét tam giác FAC suy ra PQ // AC; \(PQ = \frac{1}{2}AC\) (2)
Từ (1) và (2) suy ra PQ // NM; PQ = MN nên MNPQ là hình bình hành.
Tỉ số độ dài hai cạnh của hình bình hành là 3 : 5. Còn chu vi của nó bằng 48cm. Độ dài cạnh kề của hình bình hành là:
Đáp án : D
Áp dụng tính chất của dãy tir số bằng nhau để tìm độ dài các cạnh.
Gọi độ dài hai cạnh của hình bình hành là a và b với a, b > 0
Theo bài ra ta có: \(\frac{a}{3} = \frac{b}{5}\)
Nửa chu của hình bình hành là: 48 : 2 = 24cm
Suy ra: a + b = 24cm. Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3} = \frac{b}{5} = \frac{{a + b}}{{3 + 5}} = \frac{{24}}{8} = 3\)
⇒ a = 3.3 = 9; b = 3.5 = 15
Vậy hai cạnh của hình bình hành là 9cm và 15cm
Cho hình bình hành ABCD. Trên đường chéo BD lấy hai điểm E và F sao cho \(BE = DF < \frac{1}{2}B{{D}}\). Chọn khẳng định đúng.
Đáp án : A
Gọi O là giao điểm của AC và BD. Ta có OA = OC, OB = OD
Mà BE = DF (gt) ⇒ OE = FO.
Tứ giác AECF có hai đường chéo AC và EF cắt nhau tại trung điểm O nên AECF là hình bình hành
⇒ FA = CE
Cho tam giác ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D. Tính số đo góc BDC, biết \(\widehat {BAC} = {50^o}\).
Đáp án : D
Xét tứ giác AIHK có:
\(\widehat A + \widehat {AIH} + \widehat {IHK} + \widehat {AKH} = {360^o}\) (định lí tổng các góc trong của tứ giác)
\( \Rightarrow \widehat {AHK} = {360^o} - {50^o} - {90^o} - {90^o} = {130^o}\)
Suy ra: \(\widehat {BHC} = \widehat {IHK} = {130^o}\) (hai góc đối đỉnh)
Vì tứ giác BHCD là hình bình hành nên: \(\widehat {B{{D}}C} = \widehat {BHC} = {130^o}\)
Vậy \(\widehat {B{{D}}C} = {130^o}\)
Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự ở E, F. Chọn khẳng định đúng.
Đáp án : B
Vì \(AK = \frac{{AB}}{2};IC = \frac{{C{{D}}}}{2}\) (gt) mà AB = CD (cạnh đối hình bình hành) nên
AK = IC
Vì AB // CD (gt), K Є AB, I Є DC ⇒ AK // IC
Tứ giác AKCI có AK // IC, AK = IC (cmt) nên là hình bình hành. Suy ra AI // CK.
Mà E Є AI, F Є CK ⇒ EI // CF, KF // AE
Xét ΔDCF có: DI = IC (gt); IE // CF (cmt) ⇒ ED = FE (1)
Xét ΔABE có: AK = KB (gt), KF // AE (cmt) ⇒ EF = FB (2)
Từ (1) và (2) suy ra ED = FE = FB
Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA sao cho ME // AB; \(ME = \frac{{AB}}{2}\). Tứ giác ADME là:
Đáp án : B
Vì \(E{\rm{A}} = EC(gt),MB = MC(gt)\)
Vì \(ME//AB\) và \(ME = \frac{{AB}}{2}\)
Lại có: \(A{\rm{D}} = DB = \frac{{AB}}{2} \Rightarrow A{\rm{D}} = ME\) nên ADME là hình bình hành.
Hình bình hành ABCD có \(\widehat A - \widehat B = {20^o}\). Số đo góc A bằng:
Đáp án : C
Ta có ABCD là hình bình hành nên \(\widehat A + \widehat B = {180^o}\) mà \(\widehat A - \widehat B = {20^o} \Rightarrow \widehat A = {100^o}\)
Cho hình bình hành có \(\widehat A = 3\widehat B\). Số đo các góc của hình bình hành là:
Đáp án : D
\( \Rightarrow 4\widehat B = {180^o} \Rightarrow \widehat B = {45^o};\widehat A = {135^o}\)
Trong hình bình hành ABCD có các góc đối bằng nhau nên \(\widehat A = \widehat C = {135^o};\widehat B = \widehat D = {45^o}\)
Cho tứ giác ABCD. Gọi E, F lần lượt là trung điểm của AB và CD; M, N, P, Q lần lượt là thuộc các cạnh AF, EC, BF, DE và \(FN = \frac{1}{2}DE;FN//DE\); \(EM = \frac{1}{2}BF;EM//BF\) . Khi đó MNPQ là hình gì? Chọn đáp án đúng nhất.
Đáp án : A
Nối EF; EP, FQ, EM, PM, QN. Gọi O là giao của QN và EF.
Xét tam giác CED ta có: \(\left\{ {\begin{array}{*{20}{c}}{FN = \frac{1}{2}DE = EQ}\\{FN//E{\rm{D}} \Rightarrow {\rm{FN//EQ}}}\end{array}} \right.\)
⇒ NFQE là hình bình hành nên hai đường chéo QN và EF giao nhau tại trung điểm của mỗi đường. Suy ra O là trung điểm của QN và EF (1)
Xét tam giác ABF ta có: \(\left\{ {\begin{array}{*{20}{c}}{EM = \frac{1}{2}BF = PF}\\{EM//BF \Rightarrow EM//PF}\end{array}} \right.\)
⇒ EMFB là hình bình hành nên hai đường chéo PM và EF giao nhau tại trung điểm của mỗi đường. Mà O là trung điểm của EF nên O cũng là trung điểm của PM (2)
Từ (1) và (2) suy ra: tứ giác QMNP có hai đường chéo QN, PM giao nhau tại trung điểm O mỗi đường nên QMNP là hình bình hành
Cho hình bình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Đường chéo AC cắt BE, DF theo thứ tự ở K, I. Chọn khẳng định đúng nhất.
Đáp án : C
Gọi O là giao điểm của AC, BD
Vì ABCD là hình bình hành nên AC, BD giao nhau tại trung điểm O mỗi đường, hay \(AO = CO = \frac{{AC}}{2}\)
Xét tam giác ABD có BE, AO là đường trung tuyến cắt nhau tại K nên K là trọng tâm ΔABD.
Suy ra \(AK = \frac{2}{3}AO = \frac{2}{3}.\frac{1}{2}AC = \frac{1}{3}AC\) (1)
Xét tam giác CBD có DF, CO là hai đường trung tuyến cắt nhau tại I nên I là trọng tâm ΔCBD.
Suy ra \(CI = \frac{2}{3}CO = \frac{2}{3}.\frac{1}{2}AC = \frac{1}{3}AC\) (2)
Lại có:
\(\begin{array}{l}AK + KI + CI = AC\\ \Rightarrow KI = AC - AK - CI\\ = AC - \frac{1}{3}AC - \frac{1}{2}AC = \frac{1}{3}AC(3)\end{array}\)
Từ (1), (2) và (3) suy ra: AK = KI = IC
Hãy chọn câu trả lời đúng
Hình bình hành ABCD thỏa mãn:
Hãy chọn câu trả lời đúng
Điền cụm từ thích hợp vào chỗ trống: “Tứ giác có hai đường chéo … thì tứ giác đó là hình bình hành”.
Cho hình bình hành ABCD có \(\widehat A = {120^o}\), các góc còn lại của hình bình hành là:
Cho hình bình hành ABCD. Qua giao điểm O của các đường chéo, vẽ một đường thẳng cắt các cạnh đối BC và AD theo thứ tự E và F (đường thẳng này không đi qua trung điểm của BC và AD). Chọn các khẳng định đúng:
Cho hình bình hành ABCD. Gọi H, K lần lượt là hình chiếu của A, C trên đường thẳng BD. Chọn khẳng định đúng:
Chu vi của hình bình hành ABCD bằng 10 cm, chu vi của tam giác ABD bằng
9 cm. Khi đó độ dài BD là:
Hãy chọn câu đúng. Cho hình bình hành ABCD có các điều kiện như hình vẽ, trong hình có:
Hãy chọn câu đúng. Cho hình bình hành ABCD, gọi E là trung điểm của AB, F là trung điểm của CD. Khi đó:
Hai góc kề nhau của một hình bình hành không thể có số đo là:
Cho tam giác ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D. Chọn câu trả lời đúng nhất. Tứ giác BDCH là hình gì?
Cho tứ giác ABCD. Gọi E, F lần lượt là giao điểm của AB và CD, AD và BC; M, N, P, Q lần lượt là các điểm sao cho MN // AC; \(MN = \frac{1}{2}AC\); PQ // AC; \(PQ = \frac{1}{2}AC\). Khi đó MNPQ là hình gì? Chọn đáp án đúng nhất.
Tỉ số độ dài hai cạnh của hình bình hành là 3 : 5. Còn chu vi của nó bằng 48cm. Độ dài cạnh kề của hình bình hành là:
Cho hình bình hành ABCD. Trên đường chéo BD lấy hai điểm E và F sao cho \(BE = DF < \frac{1}{2}B{{D}}\). Chọn khẳng định đúng.
Cho tam giác ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D. Tính số đo góc BDC, biết \(\widehat {BAC} = {50^o}\).
Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự ở E, F. Chọn khẳng định đúng.
Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA sao cho ME // AB; \(ME = \frac{{AB}}{2}\). Tứ giác ADME là:
Hình bình hành ABCD có \(\widehat A - \widehat B = {20^o}\). Số đo góc A bằng:
Cho hình bình hành có \(\widehat A = 3\widehat B\). Số đo các góc của hình bình hành là:
Cho tứ giác ABCD. Gọi E, F lần lượt là trung điểm của AB và CD; M, N, P, Q lần lượt là thuộc các cạnh AF, EC, BF, DE và \(FN = \frac{1}{2}DE;FN//DE\); \(EM = \frac{1}{2}BF;EM//BF\) . Khi đó MNPQ là hình gì? Chọn đáp án đúng nhất.
Cho hình bình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Đường chéo AC cắt BE, DF theo thứ tự ở K, I. Chọn khẳng định đúng nhất.
Hãy chọn câu trả lời đúng
Đáp án : D
Dấu hiệu nhận biết: Tứ giác có các cạnh đối song song là hình bình hành.
Hình bình hành ABCD thỏa mãn:
Đáp án : B
Hãy chọn câu trả lời đúng
Đáp án : D
Trong hình bình hành hai đường chéo cắt nhau tại trung điểm của mỗi đường.
Điền cụm từ thích hợp vào chỗ trống: “Tứ giác có hai đường chéo … thì tứ giác đó là hình bình hành”.
Đáp án : C
Cho hình bình hành ABCD có \(\widehat A = {120^o}\), các góc còn lại của hình bình hành là:
Đáp án : A
Nên \(\widehat A = \widehat C = {120^o};\widehat B = \widehat D = {60^o}\)
Hình bình hành có các góc đối bằng nhau
Cho hình bình hành ABCD. Qua giao điểm O của các đường chéo, vẽ một đường thẳng cắt các cạnh đối BC và AD theo thứ tự E và F (đường thẳng này không đi qua trung điểm của BC và AD). Chọn các khẳng định đúng:
Đáp án : A
\(\Delta {{AOF = }}\Delta {{COE}}\) (g – c – g) suy ra AF = CE
Cho hình bình hành ABCD. Gọi H, K lần lượt là hình chiếu của A, C trên đường thẳng BD. Chọn khẳng định đúng:
Đáp án : D
Xét tam giác AHB và CKD có: \(\widehat {AHB} = \widehat {CK{{D}}} = {90^o}\); AB = CD; \(\widehat {ABH} = \widehat {C{{D}}K}\)
\( \Rightarrow \Delta AHB = \Delta CK{{D}} \Rightarrow AH = CK(1)\)
Lại có: \(AH \bot B{{D}};CK \bot B{{D}} \Rightarrow AH//CK(2)\)
Từ (1), (2) suy ra AHCK là hình bình hành.
Chu vi của hình bình hành ABCD bằng 10 cm, chu vi của tam giác ABD bằng
9 cm. Khi đó độ dài BD là:
Đáp án : A
Vì chu vi của hình bình hành ABCD bằng 10 cm nên:
AB + BC + CD + DA = 10
\( \Rightarrow AB + DA = 5\)
Chu vi của tam giác ABD bằng 9 cm nên: \(AB + B{{D}} + DA = 9 \Rightarrow B{{D}} = 4cm\)
Hãy chọn câu đúng. Cho hình bình hành ABCD có các điều kiện như hình vẽ, trong hình có:
Đáp án : A
+ Vì ABCD là hình bình hành nên AB // CD, AD // BC
+ Xét tam giác AEFD có AE = FD; AE // FD (do AB // CD) nên AEFD là hình bình hành.
+ Xét tứ giác BEFC có BE = FC; BE // FC (do AB // CD) nên BEFC là hình bình hành
+ Xét tứ giác AECF có AE = FC; AE // FC (do AB // CD) nên AECF là hình bình hành
+ Xét tứ giác BEDF có BE = FD, BE //FD (do AB // CD) nên BEDF là hình bình hành
+ Vì AECF là hình bình hành nên AF // EC ⇒ EH // GF; vì BEDF là hình bình hành nên ED // BF ⇒ EG // HF
Suy ra EGHF là hình bình hành
Vậy có tất cả 6 hình bình hành: ABCD; AEFD; BEFC; AECF; BEDF; EGHF
Hãy chọn câu đúng. Cho hình bình hành ABCD, gọi E là trung điểm của AB, F là trung điểm của CD. Khi đó:
Đáp án : A
Vì ABCD là hình bình hành nên AB // CD; AB = CD
+ Xét tứ giác BEDF có BE =FD; BE // FD (do AB // CD) nên BFDE là hình bình hành.
Từ đó: DE = BF (tính chất hình bình hành)
Hai góc kề nhau của một hình bình hành không thể có số đo là:
Đáp án : B
Trong hình bình hành có các góc đối nhau và tổng các góc trong hình bình hành phải bằng 3600 nên ta có:
600.2 + 1200.2 = 3600
400.2 + 500.2 = 1800 ≠ 3600
1300.2 + 500.2 = 3600
1050.2 + 750.2 = 3600
Do đó hai góc kề của hình bình hành không thể có số đo 400; 500
Cho tam giác ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D. Chọn câu trả lời đúng nhất. Tứ giác BDCH là hình gì?
Đáp án : B
Gọi BK, CI là các đường cao của tam giác ABC. Khi đó BK ⊥ AC; CI ⊥ AB hay BH ⊥ AC; CH ⊥ AB (vì H là trực tâm).
Lại có BD ⊥ AB; CD ⊥ AC (giả thiết) nên BD // CH (cùng vuông với AB) và CD // BH (cùng vuông với AC)
Suy ra tứ giác BHCD là hình bình hành
Cho tứ giác ABCD. Gọi E, F lần lượt là giao điểm của AB và CD, AD và BC; M, N, P, Q lần lượt là các điểm sao cho MN // AC; \(MN = \frac{1}{2}AC\); PQ // AC; \(PQ = \frac{1}{2}AC\). Khi đó MNPQ là hình gì? Chọn đáp án đúng nhất.
Đáp án : A
Chứng minh tứ giác MNPQ có PQ // NM; PQ = MN suy ra tứ giác MNPQ là hình bình hành.
Nối AC.
Xét tam giác EAC suy ra MN // AC; \(MN = \frac{1}{2}AC\) (1)
Xét tam giác FAC suy ra PQ // AC; \(PQ = \frac{1}{2}AC\) (2)
Từ (1) và (2) suy ra PQ // NM; PQ = MN nên MNPQ là hình bình hành.
Tỉ số độ dài hai cạnh của hình bình hành là 3 : 5. Còn chu vi của nó bằng 48cm. Độ dài cạnh kề của hình bình hành là:
Đáp án : D
Áp dụng tính chất của dãy tir số bằng nhau để tìm độ dài các cạnh.
Gọi độ dài hai cạnh của hình bình hành là a và b với a, b > 0
Theo bài ra ta có: \(\frac{a}{3} = \frac{b}{5}\)
Nửa chu của hình bình hành là: 48 : 2 = 24cm
Suy ra: a + b = 24cm. Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3} = \frac{b}{5} = \frac{{a + b}}{{3 + 5}} = \frac{{24}}{8} = 3\)
⇒ a = 3.3 = 9; b = 3.5 = 15
Vậy hai cạnh của hình bình hành là 9cm và 15cm
Cho hình bình hành ABCD. Trên đường chéo BD lấy hai điểm E và F sao cho \(BE = DF < \frac{1}{2}B{{D}}\). Chọn khẳng định đúng.
Đáp án : A
Gọi O là giao điểm của AC và BD. Ta có OA = OC, OB = OD
Mà BE = DF (gt) ⇒ OE = FO.
Tứ giác AECF có hai đường chéo AC và EF cắt nhau tại trung điểm O nên AECF là hình bình hành
⇒ FA = CE
Cho tam giác ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D. Tính số đo góc BDC, biết \(\widehat {BAC} = {50^o}\).
Đáp án : D
Xét tứ giác AIHK có:
\(\widehat A + \widehat {AIH} + \widehat {IHK} + \widehat {AKH} = {360^o}\) (định lí tổng các góc trong của tứ giác)
\( \Rightarrow \widehat {AHK} = {360^o} - {50^o} - {90^o} - {90^o} = {130^o}\)
Suy ra: \(\widehat {BHC} = \widehat {IHK} = {130^o}\) (hai góc đối đỉnh)
Vì tứ giác BHCD là hình bình hành nên: \(\widehat {B{{D}}C} = \widehat {BHC} = {130^o}\)
Vậy \(\widehat {B{{D}}C} = {130^o}\)
Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự ở E, F. Chọn khẳng định đúng.
Đáp án : B
Vì \(AK = \frac{{AB}}{2};IC = \frac{{C{{D}}}}{2}\) (gt) mà AB = CD (cạnh đối hình bình hành) nên
AK = IC
Vì AB // CD (gt), K Є AB, I Є DC ⇒ AK // IC
Tứ giác AKCI có AK // IC, AK = IC (cmt) nên là hình bình hành. Suy ra AI // CK.
Mà E Є AI, F Є CK ⇒ EI // CF, KF // AE
Xét ΔDCF có: DI = IC (gt); IE // CF (cmt) ⇒ ED = FE (1)
Xét ΔABE có: AK = KB (gt), KF // AE (cmt) ⇒ EF = FB (2)
Từ (1) và (2) suy ra ED = FE = FB
Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA sao cho ME // AB; \(ME = \frac{{AB}}{2}\). Tứ giác ADME là:
Đáp án : B
Vì \(E{\rm{A}} = EC(gt),MB = MC(gt)\)
Vì \(ME//AB\) và \(ME = \frac{{AB}}{2}\)
Lại có: \(A{\rm{D}} = DB = \frac{{AB}}{2} \Rightarrow A{\rm{D}} = ME\) nên ADME là hình bình hành.
Hình bình hành ABCD có \(\widehat A - \widehat B = {20^o}\). Số đo góc A bằng:
Đáp án : C
Ta có ABCD là hình bình hành nên \(\widehat A + \widehat B = {180^o}\) mà \(\widehat A - \widehat B = {20^o} \Rightarrow \widehat A = {100^o}\)
Cho hình bình hành có \(\widehat A = 3\widehat B\). Số đo các góc của hình bình hành là:
Đáp án : D
\( \Rightarrow 4\widehat B = {180^o} \Rightarrow \widehat B = {45^o};\widehat A = {135^o}\)
Trong hình bình hành ABCD có các góc đối bằng nhau nên \(\widehat A = \widehat C = {135^o};\widehat B = \widehat D = {45^o}\)
Cho tứ giác ABCD. Gọi E, F lần lượt là trung điểm của AB và CD; M, N, P, Q lần lượt là thuộc các cạnh AF, EC, BF, DE và \(FN = \frac{1}{2}DE;FN//DE\); \(EM = \frac{1}{2}BF;EM//BF\) . Khi đó MNPQ là hình gì? Chọn đáp án đúng nhất.
Đáp án : A
Nối EF; EP, FQ, EM, PM, QN. Gọi O là giao của QN và EF.
Xét tam giác CED ta có: \(\left\{ {\begin{array}{*{20}{c}}{FN = \frac{1}{2}DE = EQ}\\{FN//E{\rm{D}} \Rightarrow {\rm{FN//EQ}}}\end{array}} \right.\)
⇒ NFQE là hình bình hành nên hai đường chéo QN và EF giao nhau tại trung điểm của mỗi đường. Suy ra O là trung điểm của QN và EF (1)
Xét tam giác ABF ta có: \(\left\{ {\begin{array}{*{20}{c}}{EM = \frac{1}{2}BF = PF}\\{EM//BF \Rightarrow EM//PF}\end{array}} \right.\)
⇒ EMFB là hình bình hành nên hai đường chéo PM và EF giao nhau tại trung điểm của mỗi đường. Mà O là trung điểm của EF nên O cũng là trung điểm của PM (2)
Từ (1) và (2) suy ra: tứ giác QMNP có hai đường chéo QN, PM giao nhau tại trung điểm O mỗi đường nên QMNP là hình bình hành
Cho hình bình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Đường chéo AC cắt BE, DF theo thứ tự ở K, I. Chọn khẳng định đúng nhất.
Đáp án : C
Gọi O là giao điểm của AC, BD
Vì ABCD là hình bình hành nên AC, BD giao nhau tại trung điểm O mỗi đường, hay \(AO = CO = \frac{{AC}}{2}\)
Xét tam giác ABD có BE, AO là đường trung tuyến cắt nhau tại K nên K là trọng tâm ΔABD.
Suy ra \(AK = \frac{2}{3}AO = \frac{2}{3}.\frac{1}{2}AC = \frac{1}{3}AC\) (1)
Xét tam giác CBD có DF, CO là hai đường trung tuyến cắt nhau tại I nên I là trọng tâm ΔCBD.
Suy ra \(CI = \frac{2}{3}CO = \frac{2}{3}.\frac{1}{2}AC = \frac{1}{3}AC\) (2)
Lại có:
\(\begin{array}{l}AK + KI + CI = AC\\ \Rightarrow KI = AC - AK - CI\\ = AC - \frac{1}{3}AC - \frac{1}{2}AC = \frac{1}{3}AC(3)\end{array}\)
Từ (1), (2) và (3) suy ra: AK = KI = IC
Bài 12: Hình bình hành trong chương trình Toán 8 Kết nối tri thức là một phần quan trọng, đặt nền móng cho việc học các kiến thức hình học phức tạp hơn ở các lớp trên. Việc nắm vững các định nghĩa, tính chất và dấu hiệu nhận biết hình bình hành là điều cần thiết để giải quyết các bài toán liên quan.
Hình bình hành là hình tứ giác có hai cặp cạnh đối song song. Để một tứ giác là hình bình hành, cần chứng minh một trong các điều kiện sau:
Hình bình hành có những tính chất quan trọng sau:
Để nhận biết một tứ giác là hình bình hành, ta có thể sử dụng các dấu hiệu sau:
Dưới đây là một số bài tập trắc nghiệm minh họa để giúp các em hiểu rõ hơn về kiến thức đã học:
Đáp án: B. 120 độ (vì tổng hai góc kề một cạnh bằng 180 độ)
Đáp án: B. 16cm (chu vi = 2(AB + BC) = 2(5 + 3) = 16)
Đáp án: B. OA = OC (vì O là trung điểm của AC)
Kiến thức về hình bình hành có ứng dụng rộng rãi trong thực tế, từ việc thiết kế các vật dụng đơn giản đến các công trình kiến trúc phức tạp. Ví dụ, các cửa sổ, cửa ra vào thường được thiết kế theo hình bình hành để đảm bảo tính thẩm mỹ và độ chắc chắn.
Để nắm vững kiến thức về hình bình hành, các em nên luyện tập thêm nhiều bài tập khác nhau. Giaitoan.edu.vn cung cấp một kho đề thi và bài tập phong phú, đa dạng, giúp các em rèn luyện kỹ năng giải toán một cách hiệu quả.
Hy vọng với bài viết này, các em sẽ có thêm kiến thức và tự tin hơn khi làm bài tập về hình bình hành. Chúc các em học tốt!