Chào mừng các em học sinh đến với bài trắc nghiệm Bài 4: Phép nhân đa thức môn Toán lớp 8 chương trình Kết nối tri thức. Bài trắc nghiệm này được thiết kế để giúp các em ôn tập và củng cố kiến thức về phép nhân đa thức đã học.
Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, bao gồm nhiều dạng bài tập khác nhau, từ cơ bản đến nâng cao, giúp các em tự đánh giá năng lực và chuẩn bị tốt nhất cho các bài kiểm tra sắp tới.
Thực hiện phép tính nhân \(x\left( {2{x^2} + 1} \right)\)ta được kết quả:
Giá trị của \(a\), \(b\), \(c\) biết \(\left( {a{x^2} + bx + c} \right)\left( {x + 3} \right) = {x^3} + 2{x^2} - 3x\) là
\(a = 1\), \(b = 1\), \(c = 0\).
\(a = 2\), \(b = 1\), \(c = 1\).
\(a = 1\), \(b = - 1\), \(c = 0\).
\(a = - 1\), \(b = 2\), \(c = 1\).
Thực hiện phép tính nhân \(\left( {x - 1} \right)\left( {x + 3} \right)\)ta được kết quả
Giá trị của biểu thức \({x^2}\left( {x + y} \right) - y\left( {{x^2} - {y^2}} \right)\)tại \(x = - 1;y = 10\) là:
Hệ số của \({x^3}\) và \({x^2}\)trong đa thức \(B = \left( {{x^3} - 3{x^2} + 2x + 1} \right)\left( { - {x^2}} \right) - x\left( {2{x^2} - 3x + 1} \right)\) là
Giá trị \(m\) thỏa mãn \(\left( {{x^2} - x + 1} \right)x - \left( {x + 1} \right){x^2} + m - 5 = - 2{x^2} + x\) là
Rút gọn biểu thức \(\left( {3x - 5} \right)\left( {2x + 11} \right) - \left( {2x + 3} \right)\left( {3x + 7} \right)\). Khẳng định nào sau đây là đúng?
Giá trị \(x\), thỏa mãn \(3x\left( {12x - 4} \right) - 9x\left( {4x - 3} \right) = 30\) là
Kết quả rút gọn biểu thức \(3x\left( {x - 5y} \right) + \left( {y - 5x} \right)\left( { - 3y} \right) - 3\left( {{x^2} - {y^2}} \right) - 1\) là
\(0\).
\( - 1\).
\(1\).
Gọi x là giá trị thỏa mãn
(3x – 4)(x – 2) = 3x(x – 9) – 3. Khi đó
Cho x2 + y2 = 2, đẳng thức nào sau đây đúng?
Cho B = (m – 1)(m + 6) – (m + 1)(m – 6). Chọn kết luận đúng.
Cho m số mà mỗi số bằng 3n – 1 và n số mà mỗi số bằng 9 – 3m. Biết tổng tất cả các số đó bằng 5 lần tổng m + n. Khi đó:
Giá trị biểu thức \({x^4} - 2022{x^3} + 2022{x^2} - 2022x + 2022\) tại \(x = 2021\)là
Xác định ba số tự nhiên liên tiếp biết tích hai số đầu nhỏ hơn tích giữa số đầu và số cuối là \(9\).
Lời giải và đáp án
Thực hiện phép tính nhân \(x\left( {2{x^2} + 1} \right)\)ta được kết quả:
Đáp án : C
Giá trị của \(a\), \(b\), \(c\) biết \(\left( {a{x^2} + bx + c} \right)\left( {x + 3} \right) = {x^3} + 2{x^2} - 3x\) là
\(a = 1\), \(b = 1\), \(c = 0\).
\(a = 2\), \(b = 1\), \(c = 1\).
\(a = 1\), \(b = - 1\), \(c = 0\).
\(a = - 1\), \(b = 2\), \(c = 1\).
Đáp án : C
Áp dụng quy tắc nhân đa thức với đa thức và áp dụng hai đa thức bằng nhau khi các giá trị tương ứng có hệ số bằng nhau. Từ đó tìm ra a, b.
\(\left( {a{x^2} + bx + c} \right)\left( {x + 3} \right) = {x^3} + 2{x^2} - 3x\)
\(a{x^3} + 3a{x^2} + b{x^2} + 3bx + cx + 3c = {x^3} + 2{x^2} - 3x\)
\(a{x^3} + \left( {3a + b} \right){x^2} + \left( {3b + c} \right)x + 3c = {x^3} + 2{x^2} - 3x\)
Suy ra \(a = 1\); \(3a + b = 2\); \(3b + c = - 3\); \(3c = 0\).
Suy ra \(a = 1\), \(b = - 1\), \(c = 0\).
Thực hiện phép tính nhân \(\left( {x - 1} \right)\left( {x + 3} \right)\)ta được kết quả
Đáp án : C
Giá trị của biểu thức \({x^2}\left( {x + y} \right) - y\left( {{x^2} - {y^2}} \right)\)tại \(x = - 1;y = 10\) là:
Đáp án : C
Tại \(x = - 1;y = 10\) thì giá trị biểu thức là: \({\left( { - 1} \right)^3} + {10^3} = 999\)
Hệ số của \({x^3}\) và \({x^2}\)trong đa thức \(B = \left( {{x^3} - 3{x^2} + 2x + 1} \right)\left( { - {x^2}} \right) - x\left( {2{x^2} - 3x + 1} \right)\) là
Đáp án : A
\(B = \left( {{x^3} - 3{x^2} + 2x + 1} \right)\left( { - {x^2}} \right) - x\left( {2{x^2} - 3x + 1} \right)\)
\( = - {x^5} + 3{x^4} - 2{x^3} - {x^2} - 2{x^3} + 3{x^2} - x\)
\( = - {x^5} + 3{x^4} - 4{x^3} + 2{x^2} - x\)
Hệ số của \({x^3}\) và \({x^2}\) trong đa thức \(B\) lần lượt là \( - 4\) và \(2\)
Giá trị \(m\) thỏa mãn \(\left( {{x^2} - x + 1} \right)x - \left( {x + 1} \right){x^2} + m - 5 = - 2{x^2} + x\) là
Đáp án : B
\(\left( {{x^2} - x + 1} \right)x - \left( {x + 1} \right){x^2} + m - 5 = - 2{x^2} + x\)
\({x^3} - {x^2} + x - {x^3} - {x^2} + m - 5 = - 2{x^2} + x\)
\( - 2{x^2} + x + m - 5 = - 2{x^2} + x\)
Vậy giá trị \(m\)cần tìm là \(m = 5\).
Rút gọn biểu thức \(\left( {3x - 5} \right)\left( {2x + 11} \right) - \left( {2x + 3} \right)\left( {3x + 7} \right)\). Khẳng định nào sau đây là đúng?
Đáp án : B
\(\left( {3x - 5} \right)\left( {2x + 11} \right) - \left( {2x + 3} \right)\left( {3x + 7} \right)\)
\( = \left( {6{x^2} + 23x - 55} \right) - \left( {6{x^2} + 23x + 21} \right)\)
\( = 6{x^2} + 23x - 55 - 6{x^2} - 23x - 21 = - 76\)
Vậy giá trị biểu thức không phụ thuộc vào giá trị của biến \(x\).
Giá trị \(x\), thỏa mãn \(3x\left( {12x - 4} \right) - 9x\left( {4x - 3} \right) = 30\) là
Đáp án : D
\(3x\left( {12x - 4} \right) - 9x\left( {4x - 3} \right) = 30\)
\(36x^2 - 12x - 36x^2 + 27x = 30\)
\(15x = 30\)
\(x = 2\)
Vậy \(x = 2\)
Kết quả rút gọn biểu thức \(3x\left( {x - 5y} \right) + \left( {y - 5x} \right)\left( { - 3y} \right) - 3\left( {{x^2} - {y^2}} \right) - 1\) là
\(0\).
\( - 1\).
\(1\).
Đáp án : C
\(3x\left( {x - 5y} \right) + \left( {y - 5x} \right)\left( { - 3y} \right) - 3\left( {{x^2} - {y^2}} \right) - 1 \\= 3{x^2} - 15xy - 3{y^2} + 15xy - 3{x^2} + 3{y^2} - 1 \\= \left(3{x^2}- 3{x^2}\right) - \left(15xy - 15xy\right) - \left(3{y^2} - 3{y^2}\right) - 1 \\= - 1\)
Gọi x là giá trị thỏa mãn
(3x – 4)(x – 2) = 3x(x – 9) – 3. Khi đó
Đáp án : A
Ta có:
(3x – 4)(x – 2) = 3x(x – 9) – 3
3x.x+ 3x.(-2) – 4.x – 4.(-2) = 3x.x + 3x.(-9) – 3
3x2 – 6x - 4x + 8 = 3x2 – 27x – 3
17x = -11
\(x = \frac{{ - 11}}{{17}}\)
Vậy \(x = \frac{{ - 11}}{{17}} < 0\)
Cho x2 + y2 = 2, đẳng thức nào sau đây đúng?
Đáp án : B
Ta có 2(x + 1)(y + 1) = 2(xy + x + y + 1) = 2xy + 2x + 2y + 2
Thay x2 + y2 = 2 ta được
2xy + 2x + 2y + x2+ y2
= (x2+ xy + 2x) + (y2 + xy + 2y)
= x(x + y + 2) + y(x + y + 2)
= (x + y)(x + y +2)
Từ đó ta có 2(x + 1)(y + 1) = (x + y)(x + y + 2)
Cho B = (m – 1)(m + 6) – (m + 1)(m – 6). Chọn kết luận đúng.
Đáp án : A
Ta có B = (m – 1)(m + 6) – (m + 1)(m – 6)
= m2 + 6m – m – 6 – (m2 – 6m + m – 6)
= m2 + 5m – 6 – m2 + 6m – m + 6 = 10m
Nhận thấy 10 ⁝ 10 ⇒ 10.m ⁝ 10 nên B ⁝ 10 với mọi giá trị nguyên của m.
Cho m số mà mỗi số bằng 3n – 1 và n số mà mỗi số bằng 9 – 3m. Biết tổng tất cả các số đó bằng 5 lần tổng m + n. Khi đó:
Đáp án : A
+ Tổng của m số mà mỗi số bằng 3n – 1 là m(3n – 1)
+ Tổng của n số mà mỗi số bằng 9 – 3m là n(9 – 3m)
Tổng tất cả các số trên là m(3n – 1) + n(9 – 3m)
Theo đề bài ta có
m(3n – 1) + n(9 – 3m) = 5(m + n)
⇔ 3mn – m + 9n – 3mn = 5m + 5n
⇔ 6m = 4n ⇔ \(m = \frac{2}{3}n\)
Giá trị biểu thức \({x^4} - 2022{x^3} + 2022{x^2} - 2022x + 2022\) tại \(x = 2021\)là
Đáp án : C
Ta biến đổi biểu thức đã cho có x + 1 rồi thay các giá trị.
Ta có \({x^4} - 2022{x^3} + 2022{x^2} - 2022x + 2022\)
\( = {x^4} - \left( {x + 1} \right){x^3} + \left( {x + 1} \right){x^2} - \left( {x + 1} \right)x + \left( {x + 1} \right)\)
\( = {x^4} - {x^4} - {x^3} + {x^3} + {x^2} - {x^2} - x + x + 1 = 1\)
Giá trị biểu thức \({x^4} - 2022{x^3} + 2022{x^2} - 2022x + 2022\) tại \(x = 2021\) là \(1\).
Xác định ba số tự nhiên liên tiếp biết tích hai số đầu nhỏ hơn tích giữa số đầu và số cuối là \(9\).
Đáp án : A
Gọi ba số tự nhiên liên tiếp là \(n,{\rm{ }}n + 1,{\rm{ }}n + 2\) \(\left( {n \in \mathbb{N}} \right)\)
Ta có \(n\left( {n + 2} \right) - n\left( {n + 1} \right) = 9\)
\({n^2} + 2n - {n^2} - n = 9\)
\(n = 9\)
Vậy ba số cần tìm là \(9;10;11\)
Bài 4 trong chương trình Toán 8 Kết nối tri thức tập trung vào phép nhân đa thức, một trong những kỹ năng cơ bản và quan trọng trong đại số. Việc nắm vững phép nhân đa thức không chỉ giúp học sinh giải quyết các bài toán đại số một cách hiệu quả mà còn là nền tảng cho các kiến thức nâng cao hơn trong các lớp học tiếp theo.
Các bài trắc nghiệm về phép nhân đa thức thường bao gồm các dạng bài sau:
Để giải các bài tập trắc nghiệm về phép nhân đa thức một cách hiệu quả, học sinh cần:
Ví dụ 1: Tính (2x2 - 3x + 1)(x - 2)
Giải:
(2x2 - 3x + 1)(x - 2) = 2x2(x - 2) - 3x(x - 2) + 1(x - 2) = 2x3 - 4x2 - 3x2 + 6x + x - 2 = 2x3 - 7x2 + 7x - 2
Luyện tập trắc nghiệm về phép nhân đa thức mang lại nhiều lợi ích cho học sinh:
Để học tốt môn Toán, đặc biệt là phần đại số, học sinh cần:
Trắc nghiệm Bài 4: Phép nhân đa thức Toán 8 Kết nối tri thức là một phần quan trọng trong chương trình học. Hy vọng rằng bộ đề trắc nghiệm này sẽ giúp các em học sinh ôn tập và củng cố kiến thức một cách hiệu quả. Chúc các em học tốt!