Chào mừng các em học sinh lớp 8 đến với bài trắc nghiệm trực tuyến về Bài 30: Kết quả có thể và kết quả thuận lợi trong chương trình Toán 8 Kết nối tri thức. Bài trắc nghiệm này được thiết kế để giúp các em củng cố kiến thức đã học và rèn luyện kỹ năng giải bài tập.
Giaitoan.edu.vn cung cấp bộ câu hỏi trắc nghiệm đa dạng, bao gồm nhiều mức độ khó khác nhau, kèm theo đáp án chi tiết để các em tự đánh giá kết quả học tập.
Kết quả có thể là
Chọn phát biểu đúng trong các phát biểu sau
Một kết quả thuận lợi của biến cố là
Khi tung một đồng xu cân đối và quan sát mặt xuất hiện của nó. Có mấy kết quả có thể?
Gieo hai đồng tiền một lần. Kí hiệu S, N để chỉ đông tiền lật sấp, lật ngửa. Xác định kết quả thuận lợi của biến cố M “hai đồng tiền xuất hiện hai mặt không giống nhau”
Trong một trò chơi, Xuân được chọn làm người may mắn để rút thăm trúng thưởng. Gồm 4 loại thăm: hai hộp bút màu, hai bức tranh, một đôi giày và một cái bàn. Có bao nhiêu kết quả thuận lợi cho biến cố “Xuân chọn được phần thưởng là một hộp bút màu”, biết Xuân được rút duy nhất một lần.
Gieo hai con xúc xắc. Có bao nhiêu kết quả thuận lợi cho biến cố “Số chấm xuất hiện trên hai con xúc xắc là số chẵn”.
Duy có 4 hộp bút với 4 màu: xanh, đỏ, tím, đen. Duy cho Hưng 2 hộp. Hỏi 2 hộp đó có thể là hộp với những màu nào? Chọn đáp án đúng nhất
Bạn An chọn một ngày trong tuần để chơi cầu lồng. Có tất cả bao nhiêu kết quả có thể xảy ra của phép thử nghiệm này.
Gieo một con xúc xắc, số chấm trên con xúc xắc là bao nhiêu để biến cố “số chấm xuất hiện là số nguyên tố” chắc chắn xảy ra?
Chọn ngẫu nhiên một chữ cái trong từ: “HỌC SINH GIỎI”. Có mấy kết quả có thể?
Từ các chữ số 1,2,3,4 ta lập các số tự nhiên có 3 chữ số khác nhau. Phát biểu biến cố A = {123,234,124,134} dưới dạng mệnh đề:
Gieo đồng tiền hai lần. Có mấy kết quả thuận lợi cho biến cố “Mặt ngửa xuất hiện ít nhất 1 lần” là:
3
Một hộp đựng 5 thẻ, đánh số từ 1 đến 5. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn bằng 8. Số kết quả thuận lợi của biến cố A là:
Có hai hộp thẻ. Hộp thứ nhất chứa các thẻ được đánh số từ 1 đến 5, hộp thứ hai chứa các thẻ được đánh số từ 6 đến 9. Lấy ngẫu nhiên ở mỗi hộp 1 thẻ, ghép lại thành một số có hai chữ số dạng \(\overline {ab} \) . Có bao nhiêu kết quả có thể xảy ra?
Một nhóm học sinh quốc tế gồm 9 học sinh đến từ các nước Việt Nam, Brazil, Ấn Độ, Qatar, Singapore, Canada, Tây Ban Nha, Đức, Pháp; mỗi nước chỉ có đúng một học sinh. Chọn ra ngẫu nhiên một học sinh trong nhóm học sinh quốc tế trên. Tìm số phần tử của tập hợp A gồm các kết quả có thể xảy ra đối với học sinh được chọn ra của biến cố sau “Học sinh được chọn ra đến từ châu Á”.
Có hai chiếc hộp: hộp thứ nhất chứa 3 bi xanh được đánh số từ 1 đến 3, hộp thứ hai chứa 3 bi đỏ được đánh số từ 1 đến 3 và 3 bi vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên mỗi hộp một viên bi. Tính số phần tử của biến cố A: “Ba bi được chọn vừa khác màu vừa khác số"
Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 3 điểm phân biệt. Trên đường thẳng b lấy 2 điểm phân biệt. Chọn ngẫu nhiên 3 điểm. Có mấy tam giác được tạo thành từ ba điểm đã chọn?
Lời giải và đáp án
Kết quả có thể là
Đáp án : B
Sử dụng lý thuyết kết quả có thể: Kết quả có thể là các kết quả có thể xảy ra của hành động, thực nghiệm.
Trong thực tế, ta thường gặp các hành động, thực nghiệm mà kết quả của chúng không thể biết trước khi thực hiện. Tuy nhiện, trong một số trường hợp ta có thể xác định được tất cả các kết quả có thể xảy ra (gọi tắt là kết quả có thể) của hành động, thực nghiệm đó.
Chọn phát biểu đúng trong các phát biểu sau
Đáp án : A
Sử dụng lý thuyết kết quả có thể: Xét một biến cố E, mà E có thể xảy ra hay không xảy ra tùy thuộc vào kết quả của hành động, thực nghiệm T.
Xét một biến cố E, mà E có thể xảy ra hay không xảy ra tùy thuộc vào kết quả của hành động, thực nghiệm T nên: Một sự kiện có thể xảy ra hoặc không thể xảy ra tùy thuộc vào kết quả của hành động, thực nghiệm.
Một kết quả thuận lợi của biến cố là
Đáp án : A
Sử dụng lý thuyết kết quả thuận lợi: Một kết quả có thể của T để biến cố E xảy ra được gọi là kết quả thuận lợi cho biến cố E.
Một kết quả có thể của T để biến cố E xảy ra được gọi là kết quả thuận lợi cho biến cố E nên một kết quả thuận lợi của biến cố là một kết quả có thể để biến cố xảy ra.
Khi tung một đồng xu cân đối và quan sát mặt xuất hiện của nó. Có mấy kết quả có thể?
Đáp án : D
Sử dụng lý thuyết kết quả có thể: Kết quả có thể là các kết quả có thể xảy ra của hành động, thực nghiệm.
Khi tung một đồng xu, các kết quả có thể chỉ gồm: mặt sấp, mặt ngửa nên có 2 kết quả có thể.
Gieo hai đồng tiền một lần. Kí hiệu S, N để chỉ đông tiền lật sấp, lật ngửa. Xác định kết quả thuận lợi của biến cố M “hai đồng tiền xuất hiện hai mặt không giống nhau”
Đáp án : B
Sử dụng lý thuyết kết quả thuận lợi: Một kết quả có thể của T để biến cố E xảy ra được gọi là kết quả thuận lợi cho biến cố E.
Các kết quả có thể: NN, NS, SN, SS.
Kết quả thuận lợi của biến cố M “hai đồng tiền xuất hiện hai mặt không giống nhau” là
M = {NS,SN}
Trong một trò chơi, Xuân được chọn làm người may mắn để rút thăm trúng thưởng. Gồm 4 loại thăm: hai hộp bút màu, hai bức tranh, một đôi giày và một cái bàn. Có bao nhiêu kết quả thuận lợi cho biến cố “Xuân chọn được phần thưởng là một hộp bút màu”, biết Xuân được rút duy nhất một lần.
Đáp án : A
Sử dụng lý thuyết kết quả thuận lợi: Một kết quả có thể của T để biến cố E xảy ra được gọi là kết quả thuận lợi cho biến cố E.
Kí hiệu 2 hộp bút màu là A1, A2; hai bức tranh là B1, B2, một đôi giày là C1, một cái bàn là D1.
Các kết quả có thể là: A1, A2, B1, B2, C1, D1.
Kết quả thuận lợi cho biến cố “Xuân chọn được phần thưởng là một hộp bút màu” là A1, A2.
Gieo hai con xúc xắc. Có bao nhiêu kết quả thuận lợi cho biến cố “Số chấm xuất hiện trên hai con xúc xắc là số chẵn”.
Đáp án : D
Sử dụng lý thuyết kết quả thuận lợi: Một kết quả có thể của T để biến cố E xảy ra được gọi là kết quả thuận lợi cho biến cố E.
Các kết quả có thể là: mặt 1 chấm, mặt 2 chấm, mặt 3 chấm, mặt 4 chấm, mặt 5 chấm, mặt 6 chấm,
Kết quả thuận lợi cho biến cố “Số chấm xuất hiện trên hai con xúc xắc là số chẵn” là mặt 2 chấm, mặt 4 chấm, mặt 6 chấm. nên có 3 kết quả thuận lợi.
Duy có 4 hộp bút với 4 màu: xanh, đỏ, tím, đen. Duy cho Hưng 2 hộp. Hỏi 2 hộp đó có thể là hộp với những màu nào? Chọn đáp án đúng nhất
Đáp án : B
Sử dụng lý thuyết kết quả có thể: Kết quả có thể là các kết quả có thể xảy ra của hành động, thực nghiệm.
Tất cả kết quả có thể là: Xanh và đỏ, xanh và tím, xanh và đen, đỏ và tím, đỏ và đen, tím và đen nên chọn đáp án B.
Bạn An chọn một ngày trong tuần để chơi cầu lồng. Có tất cả bao nhiêu kết quả có thể xảy ra của phép thử nghiệm này.
Đáp án : C
Sử dụng lý thuyết kết quả có thể: Kết quả có thể là các kết quả có thể xảy ra của hành động, thực nghiệm.
Một tuần có 7 ngày nên An có thể chọn một trong 7 ngày đó để chơi cầu lồng. Hay số kết quả có thể xảy ra là 7.
Gieo một con xúc xắc, số chấm trên con xúc xắc là bao nhiêu để biến cố “số chấm xuất hiện là số nguyên tố” chắc chắn xảy ra?
Đáp án : B
Sử dụng lý thuyết kết quả có thể: Kết quả có thể là các kết quả có thể xảy ra của hành động, thực nghiệm.
Số chấm xuất hiện là số nguyên tố là 2, 3 , 5. Vậy biến cố “ số chấm xuất hiện là số nguyên tố chấc chắn xảy ra nếu số chấm trên con xúc xắc là 2, 3, 5.
Chọn ngẫu nhiên một chữ cái trong từ: “HỌC SINH GIỎI”. Có mấy kết quả có thể?
Đáp án : C
Kết quả có thể là các kết quả có thể xảy ra của hành động, thực nghiệm.
Các chữ cái có trong từ “HỌC SINH GIỎI” là H, O, C, S, I, N, G. Vậy có 7 kết quả có thể.
Từ các chữ số 1,2,3,4 ta lập các số tự nhiên có 3 chữ số khác nhau. Phát biểu biến cố A = {123,234,124,134} dưới dạng mệnh đề:
Đáp án : B
Ta thấy tập hợp A = {123,234,124,134} gồm các số tự nhiên có ba chữ số được tạo thành từ các chữ số 1, 2, 3, 4.
Trong các phần tử trên số 134. 124 không chia hết cho 3, 123 không chia hết cho 2 nên C sai.
Nếu các phần tử đều là số tự nhiên có ba chữ số được thành lập từ các chữ số 1, 2, 3, 4 có chữ số tận cùng là 3 hoặc 4 thì còn thiếu nhiều số nên D sai.
Nếu các phần tử đều là số tự nhiên có ba chữ số được thành lập từ các chữ số 1,2,3,4 thì thiếu nhiều số nên A sai.
Vậy B đúng.
Gieo đồng tiền hai lần. Có mấy kết quả thuận lợi cho biến cố “Mặt ngửa xuất hiện ít nhất 1 lần” là:
3
Đáp án : C
Khi gieo một đồng tiền, có thể xuất hiện mặt sấp hoặc ngửa.
Kí hiệu: mặt sấp (S), mặt ngửa (N)
Các kết quả có thể khi tung đồng tiền hai lần là: NN, NS, SS, SN.
Kết quả thuận lợi cho biến cố “Mặt ngửa xuất hiện ít nhất 1 lần” là: NN, NS, SN
Vậy có 3 kết quả thuận lợi.
Một hộp đựng 5 thẻ, đánh số từ 1 đến 5. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn bằng 8. Số kết quả thuận lợi của biến cố A là:
Đáp án : A
Xác định kết quả có thể.
Xác định kết quả thuận lợi từ các kết quả có thể.
Các kết quả có thể: (1,2,3); (1,3,4); (1,4,5); (1,2,4); (1,2,5); (1,3,5); (2,3,4); (2,3,5); (2,4,5); (3,4,5).
Trong các kết quả trên, các cặp 3 thẻ có tổng bằng 8 là: (1,3,4); (1,2,5).
Có hai hộp thẻ. Hộp thứ nhất chứa các thẻ được đánh số từ 1 đến 5, hộp thứ hai chứa các thẻ được đánh số từ 6 đến 9. Lấy ngẫu nhiên ở mỗi hộp 1 thẻ, ghép lại thành một số có hai chữ số dạng \(\overline {ab} \) . Có bao nhiêu kết quả có thể xảy ra?
Đáp án : A
Xác định các số nguyên tố được tạo thành, trong đó chữ số hàng chục được lấy từ hộp 1 từ 1 đến 5, chữ số hàng đơn vị được lấy từ hộp 2 từ 6 đến 9.
Các số được ghép lại từ hai thẻ là: 16,17,18,19,26,27,28,29,36,37,38,39,46,47,48,49,56,57,58,59.
Vậy có 20 kết quả có thể.
Một nhóm học sinh quốc tế gồm 9 học sinh đến từ các nước Việt Nam, Brazil, Ấn Độ, Qatar, Singapore, Canada, Tây Ban Nha, Đức, Pháp; mỗi nước chỉ có đúng một học sinh. Chọn ra ngẫu nhiên một học sinh trong nhóm học sinh quốc tế trên. Tìm số phần tử của tập hợp A gồm các kết quả có thể xảy ra đối với học sinh được chọn ra của biến cố sau “Học sinh được chọn ra đến từ châu Á”.
Đáp án : A
Xác định các nước thuộc châu Á từ đó suy ra số kết quả có thể của biến cố.
Các nước châu Á là: Việt Nam, Ấn Độ, Qatar, Singapore. Vậy số kết quả có thể xảy ra là 4.
Có hai chiếc hộp: hộp thứ nhất chứa 3 bi xanh được đánh số từ 1 đến 3, hộp thứ hai chứa 3 bi đỏ được đánh số từ 1 đến 3 và 3 bi vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên mỗi hộp một viên bi. Tính số phần tử của biến cố A: “Ba bi được chọn vừa khác màu vừa khác số"
Đáp án : D
Xác định các kết quả có thể xảy ra của sự kiện “Lấy ngẫu nhiên mỗi hộp một viên bi”
Xác định các kết quả thuận lợi của biến cố “Hai bi được chọn vừa khác màu vừa khác số.
Gọi hộp chứa 3 bi xanh được đánh số từ 1 đến 4 lần lượt là: X1, X2, X3.
Gọi hộp chứa 3 bi đỏ được đánh số từ 1 đến 3 lần lượt là: Đ1, Đ2, Đ3.
Gọi hộp chứa 3 bi vàng được đánh số từ 1 đến 3 lần lượt là: V1, V2, V3.
Các kết quả để ba bi được chọn vừa khác màu vừa khác số là: X1Đ2V3, X1Đ3V2, X2Đ1V3, X2Đ3V1, X3Đ2V1, X3Đ1V2.
Vậy kết quả thuận lợi của biến cố A là 6
Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 3 điểm phân biệt. Trên đường thẳng b lấy 2 điểm phân biệt. Chọn ngẫu nhiên 3 điểm. Có mấy tam giác được tạo thành từ ba điểm đã chọn?
Đáp án : A
Chọn 1 điểm thuộc đường thẳng này và hai điểm thuộc đường thẳng kia. Số cách chọn chính là số tam giác được tạo thành.
Gọi 3 điểm trên đường thẳng a lần lượt là: A1, A2, A3.
Gọi 2 điểm trên đường thẳng b lần lượt là: B1, B2.
TH1: Chọn 1 điểm thuộc đường thẳng a và hai điểm thuộc đường thẳng b: A1B1B2, A2B1B2, A3B1B2 => Có 6 tam giác được tạo thành.
TH2: Chọn 1 điểm thuộc đường thẳng b và hai điểm thuộc đường thẳng a: B1A1A2, B1A2A3, B1A1A3, B2A1A2, B2A2A3, B2A1A3 => Có 6 tam giác được tạo thành.
Vậy có 3 + 6 = 9 tam giác được tạo thành từ ba điểm đã chọn.
Kết quả có thể là
Chọn phát biểu đúng trong các phát biểu sau
Một kết quả thuận lợi của biến cố là
Khi tung một đồng xu cân đối và quan sát mặt xuất hiện của nó. Có mấy kết quả có thể?
Gieo hai đồng tiền một lần. Kí hiệu S, N để chỉ đông tiền lật sấp, lật ngửa. Xác định kết quả thuận lợi của biến cố M “hai đồng tiền xuất hiện hai mặt không giống nhau”
Trong một trò chơi, Xuân được chọn làm người may mắn để rút thăm trúng thưởng. Gồm 4 loại thăm: hai hộp bút màu, hai bức tranh, một đôi giày và một cái bàn. Có bao nhiêu kết quả thuận lợi cho biến cố “Xuân chọn được phần thưởng là một hộp bút màu”, biết Xuân được rút duy nhất một lần.
Gieo hai con xúc xắc. Có bao nhiêu kết quả thuận lợi cho biến cố “Số chấm xuất hiện trên hai con xúc xắc là số chẵn”.
Duy có 4 hộp bút với 4 màu: xanh, đỏ, tím, đen. Duy cho Hưng 2 hộp. Hỏi 2 hộp đó có thể là hộp với những màu nào? Chọn đáp án đúng nhất
Bạn An chọn một ngày trong tuần để chơi cầu lồng. Có tất cả bao nhiêu kết quả có thể xảy ra của phép thử nghiệm này.
Gieo một con xúc xắc, số chấm trên con xúc xắc là bao nhiêu để biến cố “số chấm xuất hiện là số nguyên tố” chắc chắn xảy ra?
Chọn ngẫu nhiên một chữ cái trong từ: “HỌC SINH GIỎI”. Có mấy kết quả có thể?
Từ các chữ số 1,2,3,4 ta lập các số tự nhiên có 3 chữ số khác nhau. Phát biểu biến cố A = {123,234,124,134} dưới dạng mệnh đề:
Gieo đồng tiền hai lần. Có mấy kết quả thuận lợi cho biến cố “Mặt ngửa xuất hiện ít nhất 1 lần” là:
3
Một hộp đựng 5 thẻ, đánh số từ 1 đến 5. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn bằng 8. Số kết quả thuận lợi của biến cố A là:
Có hai hộp thẻ. Hộp thứ nhất chứa các thẻ được đánh số từ 1 đến 5, hộp thứ hai chứa các thẻ được đánh số từ 6 đến 9. Lấy ngẫu nhiên ở mỗi hộp 1 thẻ, ghép lại thành một số có hai chữ số dạng \(\overline {ab} \) . Có bao nhiêu kết quả có thể xảy ra?
Một nhóm học sinh quốc tế gồm 9 học sinh đến từ các nước Việt Nam, Brazil, Ấn Độ, Qatar, Singapore, Canada, Tây Ban Nha, Đức, Pháp; mỗi nước chỉ có đúng một học sinh. Chọn ra ngẫu nhiên một học sinh trong nhóm học sinh quốc tế trên. Tìm số phần tử của tập hợp A gồm các kết quả có thể xảy ra đối với học sinh được chọn ra của biến cố sau “Học sinh được chọn ra đến từ châu Á”.
Có hai chiếc hộp: hộp thứ nhất chứa 3 bi xanh được đánh số từ 1 đến 3, hộp thứ hai chứa 3 bi đỏ được đánh số từ 1 đến 3 và 3 bi vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên mỗi hộp một viên bi. Tính số phần tử của biến cố A: “Ba bi được chọn vừa khác màu vừa khác số"
Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 3 điểm phân biệt. Trên đường thẳng b lấy 2 điểm phân biệt. Chọn ngẫu nhiên 3 điểm. Có mấy tam giác được tạo thành từ ba điểm đã chọn?
Kết quả có thể là
Đáp án : B
Sử dụng lý thuyết kết quả có thể: Kết quả có thể là các kết quả có thể xảy ra của hành động, thực nghiệm.
Trong thực tế, ta thường gặp các hành động, thực nghiệm mà kết quả của chúng không thể biết trước khi thực hiện. Tuy nhiện, trong một số trường hợp ta có thể xác định được tất cả các kết quả có thể xảy ra (gọi tắt là kết quả có thể) của hành động, thực nghiệm đó.
Chọn phát biểu đúng trong các phát biểu sau
Đáp án : A
Sử dụng lý thuyết kết quả có thể: Xét một biến cố E, mà E có thể xảy ra hay không xảy ra tùy thuộc vào kết quả của hành động, thực nghiệm T.
Xét một biến cố E, mà E có thể xảy ra hay không xảy ra tùy thuộc vào kết quả của hành động, thực nghiệm T nên: Một sự kiện có thể xảy ra hoặc không thể xảy ra tùy thuộc vào kết quả của hành động, thực nghiệm.
Một kết quả thuận lợi của biến cố là
Đáp án : A
Sử dụng lý thuyết kết quả thuận lợi: Một kết quả có thể của T để biến cố E xảy ra được gọi là kết quả thuận lợi cho biến cố E.
Một kết quả có thể của T để biến cố E xảy ra được gọi là kết quả thuận lợi cho biến cố E nên một kết quả thuận lợi của biến cố là một kết quả có thể để biến cố xảy ra.
Khi tung một đồng xu cân đối và quan sát mặt xuất hiện của nó. Có mấy kết quả có thể?
Đáp án : D
Sử dụng lý thuyết kết quả có thể: Kết quả có thể là các kết quả có thể xảy ra của hành động, thực nghiệm.
Khi tung một đồng xu, các kết quả có thể chỉ gồm: mặt sấp, mặt ngửa nên có 2 kết quả có thể.
Gieo hai đồng tiền một lần. Kí hiệu S, N để chỉ đông tiền lật sấp, lật ngửa. Xác định kết quả thuận lợi của biến cố M “hai đồng tiền xuất hiện hai mặt không giống nhau”
Đáp án : B
Sử dụng lý thuyết kết quả thuận lợi: Một kết quả có thể của T để biến cố E xảy ra được gọi là kết quả thuận lợi cho biến cố E.
Các kết quả có thể: NN, NS, SN, SS.
Kết quả thuận lợi của biến cố M “hai đồng tiền xuất hiện hai mặt không giống nhau” là
M = {NS,SN}
Trong một trò chơi, Xuân được chọn làm người may mắn để rút thăm trúng thưởng. Gồm 4 loại thăm: hai hộp bút màu, hai bức tranh, một đôi giày và một cái bàn. Có bao nhiêu kết quả thuận lợi cho biến cố “Xuân chọn được phần thưởng là một hộp bút màu”, biết Xuân được rút duy nhất một lần.
Đáp án : A
Sử dụng lý thuyết kết quả thuận lợi: Một kết quả có thể của T để biến cố E xảy ra được gọi là kết quả thuận lợi cho biến cố E.
Kí hiệu 2 hộp bút màu là A1, A2; hai bức tranh là B1, B2, một đôi giày là C1, một cái bàn là D1.
Các kết quả có thể là: A1, A2, B1, B2, C1, D1.
Kết quả thuận lợi cho biến cố “Xuân chọn được phần thưởng là một hộp bút màu” là A1, A2.
Gieo hai con xúc xắc. Có bao nhiêu kết quả thuận lợi cho biến cố “Số chấm xuất hiện trên hai con xúc xắc là số chẵn”.
Đáp án : D
Sử dụng lý thuyết kết quả thuận lợi: Một kết quả có thể của T để biến cố E xảy ra được gọi là kết quả thuận lợi cho biến cố E.
Các kết quả có thể là: mặt 1 chấm, mặt 2 chấm, mặt 3 chấm, mặt 4 chấm, mặt 5 chấm, mặt 6 chấm,
Kết quả thuận lợi cho biến cố “Số chấm xuất hiện trên hai con xúc xắc là số chẵn” là mặt 2 chấm, mặt 4 chấm, mặt 6 chấm. nên có 3 kết quả thuận lợi.
Duy có 4 hộp bút với 4 màu: xanh, đỏ, tím, đen. Duy cho Hưng 2 hộp. Hỏi 2 hộp đó có thể là hộp với những màu nào? Chọn đáp án đúng nhất
Đáp án : B
Sử dụng lý thuyết kết quả có thể: Kết quả có thể là các kết quả có thể xảy ra của hành động, thực nghiệm.
Tất cả kết quả có thể là: Xanh và đỏ, xanh và tím, xanh và đen, đỏ và tím, đỏ và đen, tím và đen nên chọn đáp án B.
Bạn An chọn một ngày trong tuần để chơi cầu lồng. Có tất cả bao nhiêu kết quả có thể xảy ra của phép thử nghiệm này.
Đáp án : C
Sử dụng lý thuyết kết quả có thể: Kết quả có thể là các kết quả có thể xảy ra của hành động, thực nghiệm.
Một tuần có 7 ngày nên An có thể chọn một trong 7 ngày đó để chơi cầu lồng. Hay số kết quả có thể xảy ra là 7.
Gieo một con xúc xắc, số chấm trên con xúc xắc là bao nhiêu để biến cố “số chấm xuất hiện là số nguyên tố” chắc chắn xảy ra?
Đáp án : B
Sử dụng lý thuyết kết quả có thể: Kết quả có thể là các kết quả có thể xảy ra của hành động, thực nghiệm.
Số chấm xuất hiện là số nguyên tố là 2, 3 , 5. Vậy biến cố “ số chấm xuất hiện là số nguyên tố chấc chắn xảy ra nếu số chấm trên con xúc xắc là 2, 3, 5.
Chọn ngẫu nhiên một chữ cái trong từ: “HỌC SINH GIỎI”. Có mấy kết quả có thể?
Đáp án : C
Kết quả có thể là các kết quả có thể xảy ra của hành động, thực nghiệm.
Các chữ cái có trong từ “HỌC SINH GIỎI” là H, O, C, S, I, N, G. Vậy có 7 kết quả có thể.
Từ các chữ số 1,2,3,4 ta lập các số tự nhiên có 3 chữ số khác nhau. Phát biểu biến cố A = {123,234,124,134} dưới dạng mệnh đề:
Đáp án : B
Ta thấy tập hợp A = {123,234,124,134} gồm các số tự nhiên có ba chữ số được tạo thành từ các chữ số 1, 2, 3, 4.
Trong các phần tử trên số 134. 124 không chia hết cho 3, 123 không chia hết cho 2 nên C sai.
Nếu các phần tử đều là số tự nhiên có ba chữ số được thành lập từ các chữ số 1, 2, 3, 4 có chữ số tận cùng là 3 hoặc 4 thì còn thiếu nhiều số nên D sai.
Nếu các phần tử đều là số tự nhiên có ba chữ số được thành lập từ các chữ số 1,2,3,4 thì thiếu nhiều số nên A sai.
Vậy B đúng.
Gieo đồng tiền hai lần. Có mấy kết quả thuận lợi cho biến cố “Mặt ngửa xuất hiện ít nhất 1 lần” là:
3
Đáp án : C
Khi gieo một đồng tiền, có thể xuất hiện mặt sấp hoặc ngửa.
Kí hiệu: mặt sấp (S), mặt ngửa (N)
Các kết quả có thể khi tung đồng tiền hai lần là: NN, NS, SS, SN.
Kết quả thuận lợi cho biến cố “Mặt ngửa xuất hiện ít nhất 1 lần” là: NN, NS, SN
Vậy có 3 kết quả thuận lợi.
Một hộp đựng 5 thẻ, đánh số từ 1 đến 5. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn bằng 8. Số kết quả thuận lợi của biến cố A là:
Đáp án : A
Xác định kết quả có thể.
Xác định kết quả thuận lợi từ các kết quả có thể.
Các kết quả có thể: (1,2,3); (1,3,4); (1,4,5); (1,2,4); (1,2,5); (1,3,5); (2,3,4); (2,3,5); (2,4,5); (3,4,5).
Trong các kết quả trên, các cặp 3 thẻ có tổng bằng 8 là: (1,3,4); (1,2,5).
Có hai hộp thẻ. Hộp thứ nhất chứa các thẻ được đánh số từ 1 đến 5, hộp thứ hai chứa các thẻ được đánh số từ 6 đến 9. Lấy ngẫu nhiên ở mỗi hộp 1 thẻ, ghép lại thành một số có hai chữ số dạng \(\overline {ab} \) . Có bao nhiêu kết quả có thể xảy ra?
Đáp án : A
Xác định các số nguyên tố được tạo thành, trong đó chữ số hàng chục được lấy từ hộp 1 từ 1 đến 5, chữ số hàng đơn vị được lấy từ hộp 2 từ 6 đến 9.
Các số được ghép lại từ hai thẻ là: 16,17,18,19,26,27,28,29,36,37,38,39,46,47,48,49,56,57,58,59.
Vậy có 20 kết quả có thể.
Một nhóm học sinh quốc tế gồm 9 học sinh đến từ các nước Việt Nam, Brazil, Ấn Độ, Qatar, Singapore, Canada, Tây Ban Nha, Đức, Pháp; mỗi nước chỉ có đúng một học sinh. Chọn ra ngẫu nhiên một học sinh trong nhóm học sinh quốc tế trên. Tìm số phần tử của tập hợp A gồm các kết quả có thể xảy ra đối với học sinh được chọn ra của biến cố sau “Học sinh được chọn ra đến từ châu Á”.
Đáp án : A
Xác định các nước thuộc châu Á từ đó suy ra số kết quả có thể của biến cố.
Các nước châu Á là: Việt Nam, Ấn Độ, Qatar, Singapore. Vậy số kết quả có thể xảy ra là 4.
Có hai chiếc hộp: hộp thứ nhất chứa 3 bi xanh được đánh số từ 1 đến 3, hộp thứ hai chứa 3 bi đỏ được đánh số từ 1 đến 3 và 3 bi vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên mỗi hộp một viên bi. Tính số phần tử của biến cố A: “Ba bi được chọn vừa khác màu vừa khác số"
Đáp án : D
Xác định các kết quả có thể xảy ra của sự kiện “Lấy ngẫu nhiên mỗi hộp một viên bi”
Xác định các kết quả thuận lợi của biến cố “Hai bi được chọn vừa khác màu vừa khác số.
Gọi hộp chứa 3 bi xanh được đánh số từ 1 đến 4 lần lượt là: X1, X2, X3.
Gọi hộp chứa 3 bi đỏ được đánh số từ 1 đến 3 lần lượt là: Đ1, Đ2, Đ3.
Gọi hộp chứa 3 bi vàng được đánh số từ 1 đến 3 lần lượt là: V1, V2, V3.
Các kết quả để ba bi được chọn vừa khác màu vừa khác số là: X1Đ2V3, X1Đ3V2, X2Đ1V3, X2Đ3V1, X3Đ2V1, X3Đ1V2.
Vậy kết quả thuận lợi của biến cố A là 6
Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 3 điểm phân biệt. Trên đường thẳng b lấy 2 điểm phân biệt. Chọn ngẫu nhiên 3 điểm. Có mấy tam giác được tạo thành từ ba điểm đã chọn?
Đáp án : A
Chọn 1 điểm thuộc đường thẳng này và hai điểm thuộc đường thẳng kia. Số cách chọn chính là số tam giác được tạo thành.
Gọi 3 điểm trên đường thẳng a lần lượt là: A1, A2, A3.
Gọi 2 điểm trên đường thẳng b lần lượt là: B1, B2.
TH1: Chọn 1 điểm thuộc đường thẳng a và hai điểm thuộc đường thẳng b: A1B1B2, A2B1B2, A3B1B2 => Có 6 tam giác được tạo thành.
TH2: Chọn 1 điểm thuộc đường thẳng b và hai điểm thuộc đường thẳng a: B1A1A2, B1A2A3, B1A1A3, B2A1A2, B2A2A3, B2A1A3 => Có 6 tam giác được tạo thành.
Vậy có 3 + 6 = 9 tam giác được tạo thành từ ba điểm đã chọn.
Bài 30 trong chương trình Toán 8 Kết nối tri thức tập trung vào việc giới thiệu khái niệm về kết quả có thể và kết quả thuận lợi trong các tình huống thực tế. Hiểu rõ hai khái niệm này là nền tảng để học sinh có thể tính toán xác suất của các sự kiện, một chủ đề quan trọng trong toán học và ứng dụng rộng rãi trong đời sống.
Kết quả có thể của một sự kiện là tất cả các kết quả mà sự kiện đó có thể xảy ra. Ví dụ, khi tung một đồng xu, kết quả có thể là mặt ngửa hoặc mặt sấp. Khi gieo một con xúc xắc, kết quả có thể là các số từ 1 đến 6.
Kết quả thuận lợi của một sự kiện là kết quả mà ta quan tâm hoặc mong muốn xảy ra. Ví dụ, nếu ta tung một đồng xu và muốn mặt ngửa xuất hiện, thì mặt ngửa là kết quả thuận lợi. Nếu ta gieo một con xúc xắc và muốn được số 6, thì số 6 là kết quả thuận lợi.
Sự khác biệt giữa kết quả có thể và kết quả thuận lợi nằm ở mục đích của người quan sát. Kết quả có thể là tất cả các khả năng, trong khi kết quả thuận lợi là những khả năng mà ta quan tâm. Để hiểu rõ hơn, ta có thể xem xét ví dụ sau:
Bài tập 1: Một hộp có 5 quả bóng, trong đó có 2 quả bóng màu đỏ, 1 quả bóng màu xanh và 2 quả bóng màu vàng. Lấy ngẫu nhiên một quả bóng từ hộp. Tính số kết quả có thể và số kết quả thuận lợi để lấy được quả bóng màu đỏ.
Giải:
Bài tập 2: Gieo một con xúc xắc. Tính số kết quả có thể và số kết quả thuận lợi để được số lẻ.
Giải:
Hiểu rõ về kết quả có thể và kết quả thuận lợi có nhiều ứng dụng trong thực tế, bao gồm:
Để nắm vững kiến thức về kết quả có thể và kết quả thuận lợi, các em nên luyện tập thêm các bài tập khác nhau. Giaitoan.edu.vn cung cấp một loạt các bài tập trắc nghiệm và bài tập tự luận để các em thực hành.
Bài 30: Kết quả có thể và kết quả thuận lợi là một bài học quan trọng trong chương trình Toán 8 Kết nối tri thức. Việc hiểu rõ hai khái niệm này không chỉ giúp các em giải quyết các bài tập toán học mà còn ứng dụng vào các tình huống thực tế. Chúc các em học tập tốt và đạt kết quả cao!