Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài 9: Phân tích đa thức thành nhân tử Toán 8 Kết nối tri thức

Trắc nghiệm Bài 9: Phân tích đa thức thành nhân tử Toán 8 Kết nối tri thức

Trắc nghiệm Bài 9: Phân tích đa thức thành nhân tử Toán 8 Kết nối tri thức

Chào mừng bạn đến với bài trắc nghiệm trực tuyến giúp bạn ôn luyện và kiểm tra kiến thức về phân tích đa thức thành nhân tử trong chương trình Toán 8 Kết nối tri thức. Bài trắc nghiệm này được thiết kế để giúp bạn nắm vững các phương pháp phân tích đa thức, rèn luyện kỹ năng giải toán và chuẩn bị tốt cho các bài kiểm tra sắp tới.

Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, kèm đáp án chi tiết và lời giải thích rõ ràng, giúp bạn hiểu sâu sắc kiến thức và tự tin hơn trong quá trình học tập.

Đề bài

    Câu 1 :

    Với a3 + b3 + c3 = 3abc thì

    • A.
      \(a = b = c\).
    • B.
      \(a + b + c = 1\).
    • C.
      \(a = b = c\) hoặc \(a + b + c = 0\).
    • D.
      \(a = b = c\) hoặc \(a + b + c = 1\).
    Câu 2 :

    Gọi \({x_1};{x_2};{x_3}\) là các giá trị thỏa mãn \(4{\left( {2x-5} \right)^2}\;-9{(4{x^2}\;-25)^2}\; = 0\). Khi đó \({x_1}\; + {x_2}\; + {x_3}\) bằng

    • A.
      \( - 3\).
    • B.
      \( - 1\).
    • C.
      \(\frac{{ - 5}}{3}\).
    • D.

      \(\frac{-5}{2}\).

    Câu 3 :

    Cho biểu thức \(A = {7^{19}} + {7^{20}} + {7^{21}}\). Khẳng định nào đúng cho biểu thức A.

    • A.
      A không chia hết cho 7.
    • B.
      A chia hết cho 2.
    • C.
      A chia hết cho 57.
    • D.
      A chia hết cho 114.
    Câu 4 :

    Tính giá trị của biểu thức \(A = {x^6} - {x^4} - x({x^3} - x)\) biết \({x^3} - x = 9\)

    • A.
      \(A = 0\).
    • B.
      \(A = 9\).
    • C.
      \(A = 27\).
    • D.
      \(A = 81\).
    Câu 5 :

    Có bao nhiêu giá trị của x thỏa mãn\({\left( {2x-5} \right)^2}\;-4{\left( {x-2} \right)^2}\; = 0\)?

    • A.
      \(2\).
    • B.
      \(1\).
    • C.
      \(0\).
    • D.
      \(4\).
    Câu 6 :

    Tính giá trị của biểu thức \(A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\) tại \(x = 5\).

    • A.
      \(A = 20\;\).
    • B.
      \(A = {\rm{ 4}}0\;\).
    • C.
      \(A = {\rm{ 16}}\;\).
    • D.
      \(A = 28\).
    Câu 7 :

    Cho \({x^2}\;-4{y^2}\;-2x-4y = \left( {x + my} \right)\left( {x-2y + n} \right)\) với \(m,n \in \mathbb{R}\). Tìm m và n.

    • A.
      \(m = 2,n = 2\)
    • B.
      \(m = - 2,n = 2\)
    • C.
      \(m = 2,n = - 2\)
    • D.
      \(m = - 2,n = - 2\)
    Câu 8 :

    Giá trị của x thỏa mãn \(5{x^2} - 10x + 5 = 0\) là

    • A.
      \(x = 1\).
    • B.
      \(x = - 1\).
    • C.
      \(x = 2\).
    • D.
      \(x = 5\).
    Câu 9 :

    Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho

    • A.
      7.
    • B.
      8.
    • C.
      9.
    • D.
      10.
    Câu 10 :

    Cho \(x = 20-y\). Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức \(B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}\)

    • A.
      \(B < 8300\).
    • B.
      \(B > 8500\).
    • C.
      \(B < 0\).
    • D.
      \(B > 8300\).
    Câu 11 :

    Cho \({(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2} = m(x + n)(x - 1)\). Khi đó \(\frac{m}{n}\) bằng:

    • A.
      \(\frac{m}{n} = 36\).
    • B.
      \(\frac{m}{n} = - 36\).
    • C.
      \(\frac{m}{n} = 18\).
    • D.
      \(\frac{m}{n} = - 18\).
    Câu 12 :

    Tính nhanh \(B = 5.101,5 - 50.0,15\)

    • A.
      \(100\).
    • B.
      \(50\).
    • C.
      \(500\).
    • D.
      \(1000\).
    Câu 13 :

    Cho \(\left| x \right| < 3\). Khẳng định nào sau đây đúng khi nói về giá trị của biểu thức \(A = {x^4} + 3{x^3} - 27x - 81\)

    • A.
      \(A > 1\).
    • B.
      \(A > 0\).
    • C.
      \(A < 0\).
    • D.
      \(A \ge 1\).
    Câu 14 :

    Cho \({\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2} = mx(x + 1)\) với \(m \in \mathbb{R}\). Chọn câu đúng

    • A.
      \(m > - 59\).
    • B.
      \(m < 0\).
    • C.
      \(m \vdots 9\).
    • D.
      \(m\) là số nguyên tố.
    Câu 15 :

    Phân tích đa thức \(3{x^3} - 8{x^2} - 41x + 30\) thành nhân tử

    • A.
      \((3x - 2)(x + 3)(x - 5)\).
    • B.
      \(3(x - 2)(x + 3)(x - 5)\).
    • C.
      \((3x - 2)(x - 3)(x + 5)\).
    • D.
      \((x - 2)(3x + 3)(x - 5)\).
    Câu 16 :

    Có bao nhiêu giá trị của x thỏa mãn \({x^3}\; + 2{x^2}\;-9x-18 = 0\)

    • A.
      \(0\).
    • B.
      \(1\).
    • C.
      \(2\).
    • D.
      \(3\).
    Câu 17 :

    Chọn câu sai.

    • A.
      \({x^2} - 6x + 9 = {(x - 3)^2}\).
    • B.
      \(\frac{{{x^2}}}{4} + 2xy + 4{y^2} = {\left( {\frac{x}{4} + 2y} \right)^2}\).
    • C.
      \(\frac{{{x^2}}}{4} + 2xy + 4{y^2} = {\left( {\frac{x}{2} + 2y} \right)^2}\).
    • D.
      \(4{x^2} - 4xy + {y^2} = {(2x - y)^2}\).
    Câu 18 :

    Cho\({x_1}\) và\({x_2}\) là hai giá trị thỏa mãn \(4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - x} \right) = 0\). Khi đó \({x_1}\; + {x_2}\;\)bằng

    • A.
      5.
    • B.
      7.
    • C.
      3.
    • D.
      -2.
    Câu 19 :

    Thực hiện phép chia: \(\left( {{x^5} + {x^3} + {x^2} + 1} \right):\left( {{x^3} + 1} \right)\)

    • A.
      \({x^2} + 1\).
    • B.
      \({(x + 1)^2}\).
    • C.
      \({x^2} - 1\).
    • D.
      \({x^2} + x + 1\).
    Câu 20 :

    Nhân tử chung của biểu thức \(30{\left( {4-2x} \right)^2}\; + 3x-6\) có thể là

    • A.
      \(x + 2\).
    • B.
      \(3(x - 2)\).
    • C.
      \({(x - 2)^2}\).
    • D.
      \({(x + 2)^2}\).
    Câu 21 :

    Tính nhanh giá trị của biểu thức \({x^2} + 2x + 1 - {y^2}\) tại x = 94,5 và y = 4,5.

    • A.
      \(8900\).
    • B.
      \(9000\).
    • C.
      \(9050\).
    • D.
      \(9100\).
    Câu 22 :

    Phân tích đa thức \({x^2} - 2xy + {y^2}{{ - }}81\) thành nhân tử:

    • A.
      \((x - y - 3)(x - y + 3)\).
    • B.

      \(\left( {x - y - 9} \right)\left( {x - y + 9} \right)\).

    • C.
      \((x + y - 3)(x + y + 3)\).
    • D.
      \((x + y - 9)(x + y - 9)\).
    Câu 23 :

    Tính nhanh biểu thức \({37^2} - {13^2}\)

    • A.
      \(1200\).
    • B.
      \(800\).
    • C.
      \(1500\).
    • D.
      \(1800\).
    Câu 24 :

    Chọn câu sai.

    • A.

      \({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = {({x-1}) ^2}({x + 1}) \).

    • B.

      \({({x-1}) ^3}\; + 2({x-1}) = ({x-1}) [{({x-1}) ^2}\; + 2]\).

    • C.

      \({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) [{({x-1}) ^2}\; + 2x-2]\).

    • D.

      \({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) ({x + 3}) \).

    Câu 25 :

    Tìm x, biết \(2 - 25{x^2} = 0\)

    • A.
      \(x = \frac{{\sqrt 2 }}{5}\).
    • B.
      \(x = \frac{{ - \sqrt 2 }}{5}\).
    • C.
      \(\frac{2}{{25}}\).
    • D.
      \(x = \frac{{\sqrt 2 }}{5}\) hoặc \(x = \frac{{ - \sqrt 2 }}{5}\).
    Câu 26 :

    Phân tích đa thức thành nhân tử: \({x^2} + 6x + 9\;\)

    • A.
      \((x + 3)(x - 3)\).
    • B.
      \((x - 1)(x + 9)\).
    • C.
      \({(x + 3)^2}\).
    • D.
      \((x + 6)(x - 3)\).
    Câu 27 :

    Kết quả phân tích đa thức \({x^2}\;-xy + x-y\) thành nhân tử là:

    • A.

      \(({x + 1}) ({x - y}) \).

    • B.

      \(({x - y}) ({x - 1}) \).

    • C.

      \(({x - y}) ({x + y}) \).

    • D.

      \(x({x - y}) \).

    Câu 28 :

    Phân tích đa thức \(15{x^3} - 5{x^2} + 10x\) thành nhân tử.

    • A.
      \(5({x^3} - {x^2} + 2x)\).
    • B.

      \(5x({{x^2} - x + 1}) \).

    • C.

      \(5x({3{x^2} - x + 1}) \).

    • D.

      \(5x({3{x^2} - x + 2}) \).

    Lời giải và đáp án

    Câu 1 :

    Với a3 + b3 + c3 = 3abc thì

    • A.
      \(a = b = c\).
    • B.
      \(a + b + c = 1\).
    • C.
      \(a = b = c\) hoặc \(a + b + c = 0\).
    • D.
      \(a = b = c\) hoặc \(a + b + c = 1\).

    Đáp án : C

    Phương pháp giải :
    Sử dụng đẳng thức đặc biệt \({a^3}\; + {b^3}\; + {c^3}\; - 3abc = \;\left( {a + b + c} \right)\left( {{a^2}\; + {b^2}\; + {c^2}\; - ab - bc - ac} \right)\);
    Lời giải chi tiết :

    Từ đẳng thức đã cho suy ra \({a^3}\; + {b^3}\; + {c^3}\; - 3abc = 0\)

    \({b^3}\; + {c^3}\; = \left( {b + c} \right)\left( {{b^2}\; + {c^2}\; - bc} \right)\)\( = \left( {b + c} \right)\left[ {{{\left( {b + c} \right)}^2}\; - 3bc} \right]\)\( = {\left( {b + c} \right)^3}\; - 3bc\left( {b + c} \right)\)\( \Rightarrow {a^3}\; + {b^3}\; + {c^3}\; - 3abc = {a^3}\; + \left( {{b^3}\; + {c^3}} \right) - 3abc\)\( = {a^3}\; + {\left( {b + c} \right)^3} - 3bc\left( {b + c} \right) - 3abc\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}} \right) - \left[ {3bc\left( {b + c} \right) + 3abc} \right]\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}} \right) - 3bc\left( {a + b + c} \right)\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}\; - 3bc} \right)\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - ab\; - ac + {b^2}\; + 2bc + {c^2}\; - 3bc} \right)\)\( = \left( {a + b + c} \right)\left( {{a^2}\; + {b^2}\; + {c^2}\; - ab - ac - bc} \right)\)

    Do đó nếu \({a^3}\; + \left( {{b^3}\; + {c^3}} \right) - 3abc = 0\) thì \(a + b + c\; = 0\) hoặc \({a^2}\; + {b^2}\; + {c^2}\; - ab - ac - bc = 0\)

    Mà \({a^2}\; + {b^2}\; + {c^2}\; - ab - ac - bc = \left[ {{{\left( {a - b} \right)}^2}\; + {{\left( {a - c} \right)}^2}\; + {{\left( {b - c} \right)}^2}} \right]\)

    Nếu \({\left( {a - b} \right)^2}\; + {\left( {a - c} \right)^2}\; + {\left( {b - c} \right)^2}\; = 0 \Leftrightarrow \;\left\{ {\begin{array}{*{20}{l}}{a - b = 0}\\{b - c = 0}\\{a - c = 0}\end{array}} \right. \Rightarrow a = b = c\)

    Vậy \({a^3}\; + \left( {{b^3}\; + {c^3}} \right) = 3abc\) thì \(a = b = c\) hoặc \(a + b + c = 0\).

    Câu 2 :

    Gọi \({x_1};{x_2};{x_3}\) là các giá trị thỏa mãn \(4{\left( {2x-5} \right)^2}\;-9{(4{x^2}\;-25)^2}\; = 0\). Khi đó \({x_1}\; + {x_2}\; + {x_3}\) bằng

    • A.
      \( - 3\).
    • B.
      \( - 1\).
    • C.
      \(\frac{{ - 5}}{3}\).
    • D.

      \(\frac{-5}{2}\).

    Đáp án : D

    Phương pháp giải :

    Sử dụng hằng đẳng thức \(a^2 - b^2 = (a-b)(a+b)\) để phân tích đa thức thành nhân tử.

    Lời giải chi tiết :

    \(\left( {2x-5} \right)^2-9{(4{x^2}-25)^2}= 0\)\(4{{\left( {2x-5} \right)}^2}-9{{[{{\left( {2x} \right)}^2}-{5^2}]}^2}= 0\)\(4{{\left( {2x-5} \right)}^2}-9{{\left[ {\left( {2x-5} \right)\left( {2x + 5} \right)} \right]}^2}= 0\)\(4{{\left( {2x-5} \right)}^2}-9{{\left( {{{2x }}-5} \right)}^2}{{\left( {2x + 5} \right)}^2}= 0\)\(\left( {2x-5} \right)^2[4-9{{\left( {2x + 5} \right)}^2}] = 0\)\(\left( {2x-5} \right)^2[4-{{\left( {3\left( {2x + 5} \right)} \right)}^2}] = 0\)\(\left( {2x-5} \right)^2({2^2}-{{\left( {6x + 15} \right)}^2}) = 0\)\(\left( {2x-5} \right)^2({2^2}-{{\left( {6x + 15} \right)}^2}) = 0\)\(\left( {2x-5} \right)^2\left( {2 + {{ 6}}x + 15} \right)\left( {2-{{ 6}}x-15} \right) = 0\)\(\left( {2x-5} \right)^2\left( {6x + 17} \right)\left( { - 6x-13} \right) = 0\)Suy ra \(x = \frac{5}{2}\) hoặc \(x = \frac{{ - 17}}{6}\) hoặc \(x = \frac{{-13}}{6}\)Suy ra \({x_1} + {x_2} + {x_3} = \frac{5}{2} - \frac{{17}}{6} + \frac{{-13}}{6} = \frac{{15 - 17 - 13}}{6} = \frac{-5}{2}\)

    Câu 3 :

    Cho biểu thức \(A = {7^{19}} + {7^{20}} + {7^{21}}\). Khẳng định nào đúng cho biểu thức A.

    • A.
      A không chia hết cho 7.
    • B.
      A chia hết cho 2.
    • C.
      A chia hết cho 57.
    • D.
      A chia hết cho 114.

    Đáp án : C

    Phương pháp giải :
    Phân tích biểu thức A thành nhân tử bằng phương pháp đặt nhân tử chung.
    Lời giải chi tiết :

    \(\begin{array}{l}A = {7^{19}} + {7^{20}} + {7^{21}}\\ = {7^{19}} + {7^{19}}.7 + {7^{19}}{.7^2}\\ = {7^{19}}.(1 + 7 + {7^2})\\ = {7^{19}}.57\end{array}\)

    Do \({7^{19}} \vdots 7 \Rightarrow {7^{19}}.57 \vdots 7\) (A sai)

    Ta có \({7^{19}}\) là số lẻ, 57 là số lẻ nên tích \({7^{19}}.57\) là số lẻ \( \Rightarrow {7^{19}}.57\) không chia hết cho 2. (B sai)

    A chia hết cho 57. (C đúng)

    A chia hết cho 57 nhưng A không chia hết cho 2 nên A không chia hết cho 57.2 = 114 (D sai)

    Câu 4 :

    Tính giá trị của biểu thức \(A = {x^6} - {x^4} - x({x^3} - x)\) biết \({x^3} - x = 9\)

    • A.
      \(A = 0\).
    • B.
      \(A = 9\).
    • C.
      \(A = 27\).
    • D.
      \(A = 81\).

    Đáp án : D

    Phương pháp giải :
    Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
    Lời giải chi tiết :
    Ta có:

    \(\begin{array}{l}A = {x^6} - {x^4} - x({x^3} - x)\\ = {x^3}.{x^3} - {x^3}.x - x\left( {{x^3} - x} \right)\\ = {x^3}({x^3} - x) - x({x^3} - x)\\ = \left( {{x^3} - x} \right)\left( {{x^3} - x} \right)\\ = {\left( {{x^3} - x} \right)^2}\end{array}\)

    Với \({x^3} - x = 9\), giá trị của biểu thức \(A = {9^2} = 81\)

    Câu 5 :

    Có bao nhiêu giá trị của x thỏa mãn\({\left( {2x-5} \right)^2}\;-4{\left( {x-2} \right)^2}\; = 0\)?

    • A.
      \(2\).
    • B.
      \(1\).
    • C.
      \(0\).
    • D.
      \(4\).

    Đáp án : B

    Phương pháp giải :
    Phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức.
    Lời giải chi tiết :
    Ta có:

    \(\begin{array}{*{20}{l}}{{{\left( {2x-5} \right)}^2}\;-4{{\left( {x-2} \right)}^2}\; = 0}\\{ \Leftrightarrow {{\left( {2x-5} \right)}^2}\;-{{\left[ {2\left( {x-2} \right)} \right]}^2}\; = 0}\\{ \Leftrightarrow {{\left( {2x-5} \right)}^2}\;-{{\left( {2x-4} \right)}^2}\; = 0}\\{ \Leftrightarrow \left( {2x-5 + 2x-4} \right)\left( {2x-5-2x + 4} \right) = 0}\\{ \Leftrightarrow \left( {4x-9} \right).\left( { - 1} \right) = 0}\\{ \Leftrightarrow - 4x + 9 = 0}\\{ \Leftrightarrow 4x = 9}\\{ \Leftrightarrow x = \;\frac{9}{4}}\end{array}\)

    Câu 6 :

    Tính giá trị của biểu thức \(A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\) tại \(x = 5\).

    • A.
      \(A = 20\;\).
    • B.
      \(A = {\rm{ 4}}0\;\).
    • C.
      \(A = {\rm{ 16}}\;\).
    • D.
      \(A = 28\).

    Đáp án : B

    Phương pháp giải :
    Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
    Lời giải chi tiết :
    Ta có:

    \(\begin{array}{l}A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\\\begin{array}{*{20}{l}}{ \Leftrightarrow A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + \left( {x-1} \right)}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-3} \right) + \left( {x-2} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-3 + 1} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-2} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)[{{\left( {x-2} \right)}^2}\; + 1]}\end{array}\end{array}\)

    Tại x = 5, ta có:

    \(A = \left( {5-1} \right)[{\left( {5-2} \right)^2}\; + 1] = 4.({3^2}\; + 1) = 4.\left( {9 + 1} \right) = 4.10 = 40\)

    Câu 7 :

    Cho \({x^2}\;-4{y^2}\;-2x-4y = \left( {x + my} \right)\left( {x-2y + n} \right)\) với \(m,n \in \mathbb{R}\). Tìm m và n.

    • A.
      \(m = 2,n = 2\)
    • B.
      \(m = - 2,n = 2\)
    • C.
      \(m = 2,n = - 2\)
    • D.
      \(m = - 2,n = - 2\)

    Đáp án : C

    Phương pháp giải :
    Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
    Lời giải chi tiết :

    Ta có:

    \(\begin{array}{*{20}{l}}{{x^2}\;-4{y^2}\;-2x-4y}\\{ = \left( {{x^2}\;-4{y^2}} \right)-\left( {2x + 4y} \right)}\\{ = \left( {x-2y} \right)\left( {x + 2y} \right)-2\left( {x + 2y} \right)}\\{ = \left( {x + 2y} \right)\left( {x-2y-2} \right)}\end{array}\)

    Suy ra m = 2, n = -2

    Câu 8 :

    Giá trị của x thỏa mãn \(5{x^2} - 10x + 5 = 0\) là

    • A.
      \(x = 1\).
    • B.
      \(x = - 1\).
    • C.
      \(x = 2\).
    • D.
      \(x = 5\).

    Đáp án : A

    Phương pháp giải :
    Phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức.
    Lời giải chi tiết :
    Ta có:

    \(\begin{array}{l}5{x^2} - 10x + 5 = 0\\ \Leftrightarrow 5({x^2} - 2x + 1) = 0\\ \Leftrightarrow {(x - 1)^2} = 0\\ \Leftrightarrow x - 1 = 0\\ \Leftrightarrow x = 1\end{array}\)

    Câu 9 :

    Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho

    • A.
      7.
    • B.
      8.
    • C.
      9.
    • D.
      10.

    Đáp án : B

    Phương pháp giải :
    Phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức \({A^2} - {B^2} = (A - B)(A + B)\).
    Lời giải chi tiết :
    Ta có:

    Gọi hai số lẻ liên tiếp là \(2k-1;2k + 1(k \in N*)\)

    Theo bài ra ta có:

    \({\left( {2k + 1} \right)^{2}}-{\left( {2k-1} \right)^{2}} = 4{k^2} + 4k + 1-4{k^2} + 4k-1 = 8k \vdots 8,\forall k \in \mathbb{N}*\)

    Câu 10 :

    Cho \(x = 20-y\). Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức \(B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}\)

    • A.
      \(B < 8300\).
    • B.
      \(B > 8500\).
    • C.
      \(B < 0\).
    • D.
      \(B > 8300\).

    Đáp án : D

    Phương pháp giải :

    Phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức.

    Lời giải chi tiết :
    Ta có:

    \(\begin{array}{*{20}{l}}{B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}}\\{ = \left( {{x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}} \right) + \left( {{x^2}\; + 2xy + {y^2}} \right)}\\{ = {{\left( {x + y} \right)}^3}\; + {{\left( {x + y} \right)}^2}\; = {{\left( {x + y} \right)}^2}\left( {x + y + 1} \right)}\end{array}\)

    Vì \(x = 20-y\) nên \(x + y = 20\). Thay \(x + y = 20\) vào \(B = {\left( {x + y} \right)^2}\left( {x + y + 1} \right)\) ta được:

    \(B = {\left( {20} \right)^2}\left( {{\rm{20 }} + 1} \right) = 400.21 = 8400\).

    Vậy \(B > 8300\) khi \(x = 20-y\).

    Câu 11 :

    Cho \({(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2} = m(x + n)(x - 1)\). Khi đó \(\frac{m}{n}\) bằng:

    • A.
      \(\frac{m}{n} = 36\).
    • B.
      \(\frac{m}{n} = - 36\).
    • C.
      \(\frac{m}{n} = 18\).
    • D.
      \(\frac{m}{n} = - 18\).

    Đáp án : B

    Phương pháp giải :
    Phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức.
    Lời giải chi tiết :
    Ta có:

    \(\begin{array}{l}{(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2}\\ = (3{x^2} + 6x - 18 - 3{x^2} - 6x)(3{x^2} + 6x - 18 + 3{x^2} + 6x)\\ = - 18(6{x^2} + 12x - 18)\\ = - 18.6({x^2} + 2x - 3)\\ = - 108({x^2} + 2x - 3)\\ = - 108({x^2} - x + 3x - 3)\\ = - 108\left[ {x(x - 1) + 3(x - 1)} \right]\\ = - 108(x + 3)(x - 1)\end{array}\)

    Khi đó, m = -108; n = 3 \( \Rightarrow \frac{m}{n} = \frac{{ - 108}}{3} = - 36\)

    Câu 12 :

    Tính nhanh \(B = 5.101,5 - 50.0,15\)

    • A.
      \(100\).
    • B.
      \(50\).
    • C.
      \(500\).
    • D.
      \(1000\).

    Đáp án : C

    Phương pháp giải :
    Biến đổi để phân tích đa thức thành nhân tử bằng đặt nhân tử chung.
    Lời giải chi tiết :
    Ta có:

    \(\begin{array}{l}B = 5.101,5 - 50.0,15\\ = 5.101,5 - 5.1,5\\ = 5(101,5 - 1,5)\\ = 5.100\\ = 500\end{array}\)

    Câu 13 :

    Cho \(\left| x \right| < 3\). Khẳng định nào sau đây đúng khi nói về giá trị của biểu thức \(A = {x^4} + 3{x^3} - 27x - 81\)

    • A.
      \(A > 1\).
    • B.
      \(A > 0\).
    • C.
      \(A < 0\).
    • D.
      \(A \ge 1\).

    Đáp án : C

    Phương pháp giải :
    Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tửvà sử dụng hằng đẳng thức.
    Lời giải chi tiết :
    Ta có:

    \(\begin{array}{l}A = {x^4} + 3{x^3} - 27x - 81\\ = ({x^4} - 81) + (3{x^3} - 27x)\\ = ({x^2} - 9)({x^2} + 9) + 3x({x^2} - 9)\\ = ({x^2} - 9)({x^2} + 3x + 9)\end{array}\)

    Ta có: \({x^2} + 3x + 9 = {x^2} + 2.\frac{3}{2}x + \frac{9}{4} + \frac{{27}}{4} \ge \frac{{27}}{4} > 0,\forall x\)

    Mà \(\left| x \right| < 3 \Leftrightarrow {x^2} < 9 \Leftrightarrow {x^2} - 9 < 0\)

    \( \Rightarrow A = ({x^2} - 9)({x^2} + 3x + 9) < 0\) khi \(\left| x \right| < 3\).

    Câu 14 :

    Cho \({\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2} = mx(x + 1)\) với \(m \in \mathbb{R}\). Chọn câu đúng

    • A.
      \(m > - 59\).
    • B.
      \(m < 0\).
    • C.
      \(m \vdots 9\).
    • D.
      \(m\) là số nguyên tố.

    Đáp án : B

    Phương pháp giải :
    Áp dụng hằng đẳng thức: \({A^2} - {B^2} = (A - B)(A + B)\)
    Lời giải chi tiết :

    Ta có:

    \(\begin{array}{l}{\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2}\\ = (3{x^2} + 3x - 5 - 3{x^2} - 3x - 5)(3{x^2} + 3x - 5 + 3{x^2} + 3x + 5)\\ = - 10(6{x^2} + 6x)\\ = - 10.6x(x + 1)\\ = - 60x(x + 1)\\ = mx(x + 1)\\ \Rightarrow m = - 60 < 0\end{array}\)

    Câu 15 :

    Phân tích đa thức \(3{x^3} - 8{x^2} - 41x + 30\) thành nhân tử

    • A.
      \((3x - 2)(x + 3)(x - 5)\).
    • B.
      \(3(x - 2)(x + 3)(x - 5)\).
    • C.
      \((3x - 2)(x - 3)(x + 5)\).
    • D.
      \((x - 2)(3x + 3)(x - 5)\).

    Đáp án : A

    Phương pháp giải :
    Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử và đặt nhân tử chung.
    Lời giải chi tiết :
    Theo đề ra ta có:

    \(\begin{array}{l}3{x^3} - 8{x^2} - 41x + 30\\ = 3{x^3} - 2{x^2} - 6{x^2} + 4x - 45x + 30\\ = \left( {3{x^3} - 2{x^2}} \right) - \left( {6{x^2} - 4x} \right) - \left( {45x - 30} \right)\\ = {x^2}(3x - 2) - 2x(3x - 2) - 15(3x - 2)\\ = ({x^2} - 2x - 15)(3x - 2)\\ = ({x^2} + 3x - 5x - 15)(3x - 2)\\ = \left[ {\left( {{x^2} + 3x} \right) - \left( {5x + 15} \right)} \right](3x - 2)\\ = \left[ {x(x + 3) - 5(x + 3)} \right](3x - 2)\\ = (3x - 2)(x - 5)(x + 3)\end{array}\)

    Câu 16 :

    Có bao nhiêu giá trị của x thỏa mãn \({x^3}\; + 2{x^2}\;-9x-18 = 0\)

    • A.
      \(0\).
    • B.
      \(1\).
    • C.
      \(2\).
    • D.
      \(3\).

    Đáp án : D

    Phương pháp giải :
    Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
    Lời giải chi tiết :
    Ta có:

    \(\begin{array}{l}{x^3} + 2{x^2} - 9x - 18 = 0\\ \Leftrightarrow ({x^3} + 2{x^2}) - (9x - 18) = 0\\ \Leftrightarrow {x^2}(x + 2) - 9(x - 2) = 0\\ \Leftrightarrow ({x^2} - 9)(x + 2) = 0\\ \Leftrightarrow (x - 3)(x + 3)(x + 2) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 3 = 0\\x + 3 = 0\\x - 2 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = - 3\\x = - 2\end{array} \right.\end{array}\)

    Câu 17 :

    Chọn câu sai.

    • A.
      \({x^2} - 6x + 9 = {(x - 3)^2}\).
    • B.
      \(\frac{{{x^2}}}{4} + 2xy + 4{y^2} = {\left( {\frac{x}{4} + 2y} \right)^2}\).
    • C.
      \(\frac{{{x^2}}}{4} + 2xy + 4{y^2} = {\left( {\frac{x}{2} + 2y} \right)^2}\).
    • D.
      \(4{x^2} - 4xy + {y^2} = {(2x - y)^2}\).

    Đáp án : B

    Phương pháp giải :
    Áp dụng 7 hằng đẳng thức đáng nhớ
    Lời giải chi tiết :
    Ta có:

    +) \({x^2} - 6x + 9 = {x^2} - 2.3x + {3^2} = {(x - 3)^2}\) nên A đúng.

    +) \(\frac{{{x^2}}}{4} + 2xy + 4{y^2} = {\left( {\frac{x}{2}} \right)^2}.2.\frac{x}{2}.2y + {\left( {2y} \right)^2} = {\left( {\frac{x}{2} + 2y} \right)^2}\) nên B sai, C đúng.

    +) \(4{x^2} - 4xy + {y^2} = {\left( {2x} \right)^2} - 2.2x.y + {y^2} = {(2x - y)^2}\) nên D đúng.

    Câu 18 :

    Cho\({x_1}\) và\({x_2}\) là hai giá trị thỏa mãn \(4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - x} \right) = 0\). Khi đó \({x_1}\; + {x_2}\;\)bằng

    • A.
      5.
    • B.
      7.
    • C.
      3.
    • D.
      -2.

    Đáp án : C

    Phương pháp giải :
    Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung; sau đó giải phương trình để tìm x.
    Lời giải chi tiết :
    Ta có:

    \(\begin{array}{l}4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - x} \right) = 0\\ \Leftrightarrow 4\left( {x - {\rm{ 5}}} \right)\; + \;2x\left( {x - {\rm{ 5}}} \right) = 0\\ \Leftrightarrow \left( {x - {\rm{ 5}}} \right)\left( {{\rm{4}} + 2x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 5 = 0\\4 + 2x = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = - 2\end{array} \right.\\ \Rightarrow {x_1} + {x_2} = 5 - 2 = 3\end{array}\)

    Câu 19 :

    Thực hiện phép chia: \(\left( {{x^5} + {x^3} + {x^2} + 1} \right):\left( {{x^3} + 1} \right)\)

    • A.
      \({x^2} + 1\).
    • B.
      \({(x + 1)^2}\).
    • C.
      \({x^2} - 1\).
    • D.
      \({x^2} + x + 1\).

    Đáp án : A

    Phương pháp giải :
    Phân tích đa thức \({x^5} + {x^3} + {x^2} + 1\) thành nhân tử rồi sau đó thực hiện phép chia.
    Lời giải chi tiết :

    \(\begin{array}{*{20}{l}}{{x^5} + {x^3} + {x^2}\; + 1}\\{ = {x^3}\left( {{x^2}\; + 1} \right) + {x^2}\; + 1}\\{ = \left( {{x^2}\; + 1} \right)\left( {{x^3}\; + 1} \right)}\end{array}\)

    nên

    \(\begin{array}{*{20}{l}}{\left( {{x^5}\; + {x^3}\; + {x^2}\; + 1} \right):\left( {{x^3}\; + 1} \right)}\\{ = \left( {{x^2}\; + 1} \right)\left( {{x^3}\; + 1} \right):\left( {{x^3}\; + 1} \right)}\\{ = \left( {{x^2}\; + 1} \right)}\end{array}\)

    Câu 20 :

    Nhân tử chung của biểu thức \(30{\left( {4-2x} \right)^2}\; + 3x-6\) có thể là

    • A.
      \(x + 2\).
    • B.
      \(3(x - 2)\).
    • C.
      \({(x - 2)^2}\).
    • D.
      \({(x + 2)^2}\).

    Đáp án : B

    Phương pháp giải :
    Phân tích đa thức thành nhân tử để tìm nhân tử chung của biểu thức.
    Lời giải chi tiết :

    Ta có:

    \(\begin{array}{*{20}{l}}{30{{\left( {4-2x} \right)}^2}\; + 3x-6 = 30{{\left( {2x-4} \right)}^2}\; + 3\left( {x-2} \right)}\\{ = {{30.2}^2}\left( {x-2} \right) + 3\left( {x-2} \right)}\\{ = 120{{\left( {x-2} \right)}^2}\; + 3\left( {x-2} \right)}\\{ = 3\left( {x-2} \right)\left( {40\left( {x-2} \right) + 1} \right) = 3\left( {x-2} \right)\left( {40x-79} \right)}\end{array}\)

    Nhân tử chung có thể là \(3(x - 2)\).

    Câu 21 :

    Tính nhanh giá trị của biểu thức \({x^2} + 2x + 1 - {y^2}\) tại x = 94,5 và y = 4,5.

    • A.
      \(8900\).
    • B.
      \(9000\).
    • C.
      \(9050\).
    • D.
      \(9100\).

    Đáp án : D

    Phương pháp giải :
    Phân tích đa thức thành nhân tử rồi mới thay số vào tính.
    Lời giải chi tiết :

    \({x^2}{\rm{ }} + {\rm{ }}2x{\rm{ }} + {\rm{ }}1{\rm{ }} - {\rm{ }}{y^2}{\rm{ }} = {\rm{ }}\left( {{x^2}{\rm{ }} + {\rm{ }}2x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} - {\rm{ }}{y^2}\;\) (nhóm hạng tử)

    \( = {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}1} \right)^2}{\rm{ }} - {\rm{ }}{y^2}\) (áp dụng hằng đẳng thức)

    \( = {\rm{ }}\left( {x{\rm{ }} + {\rm{ }}1{\rm{ }} - {\rm{ }}y} \right)\left( {x{\rm{ }} + {\rm{ }}1{\rm{ }} + {\rm{ }}y} \right)\)

    Thay x = 94,5 và y = 4,5 vào biểu thức, ta được:

    \(\begin{array}{l}\left( {{\rm{94,5 }} + {\rm{ }}1{\rm{ }} - 4,5} \right)\left( {{\rm{94,5 }} + {\rm{ }}1{\rm{ }} + {\rm{ 4,5}}} \right)\\ = 91.100\\ = 9100\end{array}\)

    Câu 22 :

    Phân tích đa thức \({x^2} - 2xy + {y^2}{{ - }}81\) thành nhân tử:

    • A.
      \((x - y - 3)(x - y + 3)\).
    • B.

      \(\left( {x - y - 9} \right)\left( {x - y + 9} \right)\).

    • C.
      \((x + y - 3)(x + y + 3)\).
    • D.
      \((x + y - 9)(x + y - 9)\).

    Đáp án : B

    Phương pháp giải :
    Sử dụng kết hợp phương pháp nhóm hạng tử và dùng hằng đẳng thức đáng nhớ.
    Lời giải chi tiết :

    \({x^2} - 2xy + {y^2}{\rm{ - }}81\; = \;\left( {{x^2} - 2xy + {y^2}} \right) - 81\) (nhóm 3 hạng tử đầu để xuất hiện bình phương một hiệu)

    \( = {\rm{ }}{\left( {x{\rm{ }} - {\rm{ }}y} \right)^2}{\rm{ }} - {\rm{ }}{9^2}\) (áp dụng hằng đẳng thức \({A^2} - {\rm{ }}{B^2} = {\rm{ }}\left( {A{\rm{ }} - {\rm{ }}B} \right)\left( {A{\rm{ }} + {\rm{ }}B} \right)\))

    \( = {\rm{ }}\left( {x{\rm{ }} - {\rm{ }}y{\rm{ }} - {\rm{ }}9} \right)\left( {x{\rm{ }} - {\rm{ }}y{\rm{ }} + {\rm{ }}9} \right)\).

    Câu 23 :

    Tính nhanh biểu thức \({37^2} - {13^2}\)

    • A.
      \(1200\).
    • B.
      \(800\).
    • C.
      \(1500\).
    • D.
      \(1800\).

    Đáp án : A

    Phương pháp giải :

    Áp dụng hằng đẳng thức \({A^2} - {B^2} = ({A - B}) ({A + B}) \) để thực hiện phép tính.

    Lời giải chi tiết :

    \(\begin{array}{l}{37^2} - {13^2}\\ = ({37 - 13}) ({37 + 13}) \\ = 24.50\\ = 1200\end{array}\)

    Câu 24 :

    Chọn câu sai.

    • A.

      \({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = {({x-1}) ^2}({x + 1}) \).

    • B.

      \({({x-1}) ^3}\; + 2({x-1}) = ({x-1}) [{({x-1}) ^2}\; + 2]\).

    • C.

      \({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) [{({x-1}) ^2}\; + 2x-2]\).

    • D.

      \({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) ({x + 3}) \).

    Đáp án : D

    Phương pháp giải :
    Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.
    Lời giải chi tiết :

    Ta có

    +) \({\left( {x-1} \right)^3} + 2{\left( {x-1} \right)^2}\)

    \(= {\left( {x-1} \right)^2}\left( {x-1} \right) + 2{\left( {x-1} \right)^2}\\ = {\left( {x-1} \right)^2}(x-1 + 2\\ = {\left( {x-1} \right)^2}\left( {x + 1} \right)\)

    nên A đúng

    +) \( {{{\left( {x-1} \right)}^3} + 2\left( {x-1} \right)}\)

    \({ = \left( {x-1} \right).{{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)}\\ = \left( {x-1} \right)[{\left( {x-1} \right)^2} + 2]\)

     nên B đúng

    +) \({{{\left( {x-1} \right)}^3} + 2{{\left( {x-1} \right)}^2}}\)

    \({ = \left( {x-1} \right){{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)\left( {x-1} \right)}\\{ = \left( {x-1} \right)[{{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)]}\\ = \left( {x-1} \right)[{\left( {x-1} \right)^2} + 2x-2]\)

     nên C đúng

    +) \({{{\left( {x-1} \right)}^3} + 2{{\left( {x-1} \right)}^2}}\)

    \({ = {{\left( {x-1} \right)}^2}\left( {x + 1} \right)}\\ \ne \left( {x-1} \right)\left( {x + 3} \right)\)

    nên D sai

    Câu 25 :

    Tìm x, biết \(2 - 25{x^2} = 0\)

    • A.
      \(x = \frac{{\sqrt 2 }}{5}\).
    • B.
      \(x = \frac{{ - \sqrt 2 }}{5}\).
    • C.
      \(\frac{2}{{25}}\).
    • D.
      \(x = \frac{{\sqrt 2 }}{5}\) hoặc \(x = \frac{{ - \sqrt 2 }}{5}\).

    Đáp án : D

    Phương pháp giải :
    Phân tích đa thức thành nhân tử, dựa vào hằng đẳng thức \({A^2} - {B^2} = {A - B} {A + B} \); sau đó giải phương trình để tìm x.
    Lời giải chi tiết :

    \({2 - 25{x^2} = 0\;}\)\((\sqrt 2 - 5x)(\sqrt 2 + 5x) = 0\)\(\sqrt 2 - 5x = 0\) hoặc \(\sqrt 2 + 5x = 0\)\(x = \frac{{\sqrt 2 }}{5}\) hoặc \(x = \frac{{ - \sqrt 2 }}{5}\)

    Câu 26 :

    Phân tích đa thức thành nhân tử: \({x^2} + 6x + 9\;\)

    • A.
      \((x + 3)(x - 3)\).
    • B.
      \((x - 1)(x + 9)\).
    • C.
      \({(x + 3)^2}\).
    • D.
      \((x + 6)(x - 3)\).

    Đáp án : C

    Phương pháp giải :
    Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức.
    Lời giải chi tiết :

    Ta dễ dàng nhận thấy \({x^2} + 2x.3 + {3^2}\)

    \({x^2} + 6x + 9 = {({x + 3}) ^2}\)

    Câu 27 :

    Kết quả phân tích đa thức \({x^2}\;-xy + x-y\) thành nhân tử là:

    • A.

      \(({x + 1}) ({x - y}) \).

    • B.

      \(({x - y}) ({x - 1}) \).

    • C.

      \(({x - y}) ({x + y}) \).

    • D.

      \(x({x - y}) \).

    Đáp án : A

    Phương pháp giải :
    Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
    Lời giải chi tiết :

    Ta có:

    \(\begin{array}{l}{x^2}\;-xy + x-y\\ = x(x - y) + (x - y)\\ = (x + 1)(x - y)\end{array}\)

    Câu 28 :

    Phân tích đa thức \(15{x^3} - 5{x^2} + 10x\) thành nhân tử.

    • A.
      \(5({x^3} - {x^2} + 2x)\).
    • B.

      \(5x({{x^2} - x + 1}) \).

    • C.

      \(5x({3{x^2} - x + 1}) \).

    • D.

      \(5x({3{x^2} - x + 2}) \).

    Đáp án : D

    Phương pháp giải :
    Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.
    Lời giải chi tiết :

    Ta có:

    \(\begin{array}{l}15{x^3} - 5{x^2} + 10x\\ = \;5x.3{x^2} - \;5x.x + \;5x.2\\ = \;5x({3{x^2} - x + 2}) \end{array}\)

    Lời giải và đáp án

      Câu 1 :

      Với a3 + b3 + c3 = 3abc thì

      • A.
        \(a = b = c\).
      • B.
        \(a + b + c = 1\).
      • C.
        \(a = b = c\) hoặc \(a + b + c = 0\).
      • D.
        \(a = b = c\) hoặc \(a + b + c = 1\).
      Câu 2 :

      Gọi \({x_1};{x_2};{x_3}\) là các giá trị thỏa mãn \(4{\left( {2x-5} \right)^2}\;-9{(4{x^2}\;-25)^2}\; = 0\). Khi đó \({x_1}\; + {x_2}\; + {x_3}\) bằng

      • A.
        \( - 3\).
      • B.
        \( - 1\).
      • C.
        \(\frac{{ - 5}}{3}\).
      • D.

        \(\frac{-5}{2}\).

      Câu 3 :

      Cho biểu thức \(A = {7^{19}} + {7^{20}} + {7^{21}}\). Khẳng định nào đúng cho biểu thức A.

      • A.
        A không chia hết cho 7.
      • B.
        A chia hết cho 2.
      • C.
        A chia hết cho 57.
      • D.
        A chia hết cho 114.
      Câu 4 :

      Tính giá trị của biểu thức \(A = {x^6} - {x^4} - x({x^3} - x)\) biết \({x^3} - x = 9\)

      • A.
        \(A = 0\).
      • B.
        \(A = 9\).
      • C.
        \(A = 27\).
      • D.
        \(A = 81\).
      Câu 5 :

      Có bao nhiêu giá trị của x thỏa mãn\({\left( {2x-5} \right)^2}\;-4{\left( {x-2} \right)^2}\; = 0\)?

      • A.
        \(2\).
      • B.
        \(1\).
      • C.
        \(0\).
      • D.
        \(4\).
      Câu 6 :

      Tính giá trị của biểu thức \(A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\) tại \(x = 5\).

      • A.
        \(A = 20\;\).
      • B.
        \(A = {\rm{ 4}}0\;\).
      • C.
        \(A = {\rm{ 16}}\;\).
      • D.
        \(A = 28\).
      Câu 7 :

      Cho \({x^2}\;-4{y^2}\;-2x-4y = \left( {x + my} \right)\left( {x-2y + n} \right)\) với \(m,n \in \mathbb{R}\). Tìm m và n.

      • A.
        \(m = 2,n = 2\)
      • B.
        \(m = - 2,n = 2\)
      • C.
        \(m = 2,n = - 2\)
      • D.
        \(m = - 2,n = - 2\)
      Câu 8 :

      Giá trị của x thỏa mãn \(5{x^2} - 10x + 5 = 0\) là

      • A.
        \(x = 1\).
      • B.
        \(x = - 1\).
      • C.
        \(x = 2\).
      • D.
        \(x = 5\).
      Câu 9 :

      Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho

      • A.
        7.
      • B.
        8.
      • C.
        9.
      • D.
        10.
      Câu 10 :

      Cho \(x = 20-y\). Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức \(B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}\)

      • A.
        \(B < 8300\).
      • B.
        \(B > 8500\).
      • C.
        \(B < 0\).
      • D.
        \(B > 8300\).
      Câu 11 :

      Cho \({(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2} = m(x + n)(x - 1)\). Khi đó \(\frac{m}{n}\) bằng:

      • A.
        \(\frac{m}{n} = 36\).
      • B.
        \(\frac{m}{n} = - 36\).
      • C.
        \(\frac{m}{n} = 18\).
      • D.
        \(\frac{m}{n} = - 18\).
      Câu 12 :

      Tính nhanh \(B = 5.101,5 - 50.0,15\)

      • A.
        \(100\).
      • B.
        \(50\).
      • C.
        \(500\).
      • D.
        \(1000\).
      Câu 13 :

      Cho \(\left| x \right| < 3\). Khẳng định nào sau đây đúng khi nói về giá trị của biểu thức \(A = {x^4} + 3{x^3} - 27x - 81\)

      • A.
        \(A > 1\).
      • B.
        \(A > 0\).
      • C.
        \(A < 0\).
      • D.
        \(A \ge 1\).
      Câu 14 :

      Cho \({\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2} = mx(x + 1)\) với \(m \in \mathbb{R}\). Chọn câu đúng

      • A.
        \(m > - 59\).
      • B.
        \(m < 0\).
      • C.
        \(m \vdots 9\).
      • D.
        \(m\) là số nguyên tố.
      Câu 15 :

      Phân tích đa thức \(3{x^3} - 8{x^2} - 41x + 30\) thành nhân tử

      • A.
        \((3x - 2)(x + 3)(x - 5)\).
      • B.
        \(3(x - 2)(x + 3)(x - 5)\).
      • C.
        \((3x - 2)(x - 3)(x + 5)\).
      • D.
        \((x - 2)(3x + 3)(x - 5)\).
      Câu 16 :

      Có bao nhiêu giá trị của x thỏa mãn \({x^3}\; + 2{x^2}\;-9x-18 = 0\)

      • A.
        \(0\).
      • B.
        \(1\).
      • C.
        \(2\).
      • D.
        \(3\).
      Câu 17 :

      Chọn câu sai.

      • A.
        \({x^2} - 6x + 9 = {(x - 3)^2}\).
      • B.
        \(\frac{{{x^2}}}{4} + 2xy + 4{y^2} = {\left( {\frac{x}{4} + 2y} \right)^2}\).
      • C.
        \(\frac{{{x^2}}}{4} + 2xy + 4{y^2} = {\left( {\frac{x}{2} + 2y} \right)^2}\).
      • D.
        \(4{x^2} - 4xy + {y^2} = {(2x - y)^2}\).
      Câu 18 :

      Cho\({x_1}\) và\({x_2}\) là hai giá trị thỏa mãn \(4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - x} \right) = 0\). Khi đó \({x_1}\; + {x_2}\;\)bằng

      • A.
        5.
      • B.
        7.
      • C.
        3.
      • D.
        -2.
      Câu 19 :

      Thực hiện phép chia: \(\left( {{x^5} + {x^3} + {x^2} + 1} \right):\left( {{x^3} + 1} \right)\)

      • A.
        \({x^2} + 1\).
      • B.
        \({(x + 1)^2}\).
      • C.
        \({x^2} - 1\).
      • D.
        \({x^2} + x + 1\).
      Câu 20 :

      Nhân tử chung của biểu thức \(30{\left( {4-2x} \right)^2}\; + 3x-6\) có thể là

      • A.
        \(x + 2\).
      • B.
        \(3(x - 2)\).
      • C.
        \({(x - 2)^2}\).
      • D.
        \({(x + 2)^2}\).
      Câu 21 :

      Tính nhanh giá trị của biểu thức \({x^2} + 2x + 1 - {y^2}\) tại x = 94,5 và y = 4,5.

      • A.
        \(8900\).
      • B.
        \(9000\).
      • C.
        \(9050\).
      • D.
        \(9100\).
      Câu 22 :

      Phân tích đa thức \({x^2} - 2xy + {y^2}{{ - }}81\) thành nhân tử:

      • A.
        \((x - y - 3)(x - y + 3)\).
      • B.

        \(\left( {x - y - 9} \right)\left( {x - y + 9} \right)\).

      • C.
        \((x + y - 3)(x + y + 3)\).
      • D.
        \((x + y - 9)(x + y - 9)\).
      Câu 23 :

      Tính nhanh biểu thức \({37^2} - {13^2}\)

      • A.
        \(1200\).
      • B.
        \(800\).
      • C.
        \(1500\).
      • D.
        \(1800\).
      Câu 24 :

      Chọn câu sai.

      • A.

        \({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = {({x-1}) ^2}({x + 1}) \).

      • B.

        \({({x-1}) ^3}\; + 2({x-1}) = ({x-1}) [{({x-1}) ^2}\; + 2]\).

      • C.

        \({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) [{({x-1}) ^2}\; + 2x-2]\).

      • D.

        \({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) ({x + 3}) \).

      Câu 25 :

      Tìm x, biết \(2 - 25{x^2} = 0\)

      • A.
        \(x = \frac{{\sqrt 2 }}{5}\).
      • B.
        \(x = \frac{{ - \sqrt 2 }}{5}\).
      • C.
        \(\frac{2}{{25}}\).
      • D.
        \(x = \frac{{\sqrt 2 }}{5}\) hoặc \(x = \frac{{ - \sqrt 2 }}{5}\).
      Câu 26 :

      Phân tích đa thức thành nhân tử: \({x^2} + 6x + 9\;\)

      • A.
        \((x + 3)(x - 3)\).
      • B.
        \((x - 1)(x + 9)\).
      • C.
        \({(x + 3)^2}\).
      • D.
        \((x + 6)(x - 3)\).
      Câu 27 :

      Kết quả phân tích đa thức \({x^2}\;-xy + x-y\) thành nhân tử là:

      • A.

        \(({x + 1}) ({x - y}) \).

      • B.

        \(({x - y}) ({x - 1}) \).

      • C.

        \(({x - y}) ({x + y}) \).

      • D.

        \(x({x - y}) \).

      Câu 28 :

      Phân tích đa thức \(15{x^3} - 5{x^2} + 10x\) thành nhân tử.

      • A.
        \(5({x^3} - {x^2} + 2x)\).
      • B.

        \(5x({{x^2} - x + 1}) \).

      • C.

        \(5x({3{x^2} - x + 1}) \).

      • D.

        \(5x({3{x^2} - x + 2}) \).

      Câu 1 :

      Với a3 + b3 + c3 = 3abc thì

      • A.
        \(a = b = c\).
      • B.
        \(a + b + c = 1\).
      • C.
        \(a = b = c\) hoặc \(a + b + c = 0\).
      • D.
        \(a = b = c\) hoặc \(a + b + c = 1\).

      Đáp án : C

      Phương pháp giải :
      Sử dụng đẳng thức đặc biệt \({a^3}\; + {b^3}\; + {c^3}\; - 3abc = \;\left( {a + b + c} \right)\left( {{a^2}\; + {b^2}\; + {c^2}\; - ab - bc - ac} \right)\);
      Lời giải chi tiết :

      Từ đẳng thức đã cho suy ra \({a^3}\; + {b^3}\; + {c^3}\; - 3abc = 0\)

      \({b^3}\; + {c^3}\; = \left( {b + c} \right)\left( {{b^2}\; + {c^2}\; - bc} \right)\)\( = \left( {b + c} \right)\left[ {{{\left( {b + c} \right)}^2}\; - 3bc} \right]\)\( = {\left( {b + c} \right)^3}\; - 3bc\left( {b + c} \right)\)\( \Rightarrow {a^3}\; + {b^3}\; + {c^3}\; - 3abc = {a^3}\; + \left( {{b^3}\; + {c^3}} \right) - 3abc\)\( = {a^3}\; + {\left( {b + c} \right)^3} - 3bc\left( {b + c} \right) - 3abc\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}} \right) - \left[ {3bc\left( {b + c} \right) + 3abc} \right]\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}} \right) - 3bc\left( {a + b + c} \right)\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}\; - 3bc} \right)\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - ab\; - ac + {b^2}\; + 2bc + {c^2}\; - 3bc} \right)\)\( = \left( {a + b + c} \right)\left( {{a^2}\; + {b^2}\; + {c^2}\; - ab - ac - bc} \right)\)

      Do đó nếu \({a^3}\; + \left( {{b^3}\; + {c^3}} \right) - 3abc = 0\) thì \(a + b + c\; = 0\) hoặc \({a^2}\; + {b^2}\; + {c^2}\; - ab - ac - bc = 0\)

      Mà \({a^2}\; + {b^2}\; + {c^2}\; - ab - ac - bc = \left[ {{{\left( {a - b} \right)}^2}\; + {{\left( {a - c} \right)}^2}\; + {{\left( {b - c} \right)}^2}} \right]\)

      Nếu \({\left( {a - b} \right)^2}\; + {\left( {a - c} \right)^2}\; + {\left( {b - c} \right)^2}\; = 0 \Leftrightarrow \;\left\{ {\begin{array}{*{20}{l}}{a - b = 0}\\{b - c = 0}\\{a - c = 0}\end{array}} \right. \Rightarrow a = b = c\)

      Vậy \({a^3}\; + \left( {{b^3}\; + {c^3}} \right) = 3abc\) thì \(a = b = c\) hoặc \(a + b + c = 0\).

      Câu 2 :

      Gọi \({x_1};{x_2};{x_3}\) là các giá trị thỏa mãn \(4{\left( {2x-5} \right)^2}\;-9{(4{x^2}\;-25)^2}\; = 0\). Khi đó \({x_1}\; + {x_2}\; + {x_3}\) bằng

      • A.
        \( - 3\).
      • B.
        \( - 1\).
      • C.
        \(\frac{{ - 5}}{3}\).
      • D.

        \(\frac{-5}{2}\).

      Đáp án : D

      Phương pháp giải :

      Sử dụng hằng đẳng thức \(a^2 - b^2 = (a-b)(a+b)\) để phân tích đa thức thành nhân tử.

      Lời giải chi tiết :

      \(\left( {2x-5} \right)^2-9{(4{x^2}-25)^2}= 0\)\(4{{\left( {2x-5} \right)}^2}-9{{[{{\left( {2x} \right)}^2}-{5^2}]}^2}= 0\)\(4{{\left( {2x-5} \right)}^2}-9{{\left[ {\left( {2x-5} \right)\left( {2x + 5} \right)} \right]}^2}= 0\)\(4{{\left( {2x-5} \right)}^2}-9{{\left( {{{2x }}-5} \right)}^2}{{\left( {2x + 5} \right)}^2}= 0\)\(\left( {2x-5} \right)^2[4-9{{\left( {2x + 5} \right)}^2}] = 0\)\(\left( {2x-5} \right)^2[4-{{\left( {3\left( {2x + 5} \right)} \right)}^2}] = 0\)\(\left( {2x-5} \right)^2({2^2}-{{\left( {6x + 15} \right)}^2}) = 0\)\(\left( {2x-5} \right)^2({2^2}-{{\left( {6x + 15} \right)}^2}) = 0\)\(\left( {2x-5} \right)^2\left( {2 + {{ 6}}x + 15} \right)\left( {2-{{ 6}}x-15} \right) = 0\)\(\left( {2x-5} \right)^2\left( {6x + 17} \right)\left( { - 6x-13} \right) = 0\)Suy ra \(x = \frac{5}{2}\) hoặc \(x = \frac{{ - 17}}{6}\) hoặc \(x = \frac{{-13}}{6}\)Suy ra \({x_1} + {x_2} + {x_3} = \frac{5}{2} - \frac{{17}}{6} + \frac{{-13}}{6} = \frac{{15 - 17 - 13}}{6} = \frac{-5}{2}\)

      Câu 3 :

      Cho biểu thức \(A = {7^{19}} + {7^{20}} + {7^{21}}\). Khẳng định nào đúng cho biểu thức A.

      • A.
        A không chia hết cho 7.
      • B.
        A chia hết cho 2.
      • C.
        A chia hết cho 57.
      • D.
        A chia hết cho 114.

      Đáp án : C

      Phương pháp giải :
      Phân tích biểu thức A thành nhân tử bằng phương pháp đặt nhân tử chung.
      Lời giải chi tiết :

      \(\begin{array}{l}A = {7^{19}} + {7^{20}} + {7^{21}}\\ = {7^{19}} + {7^{19}}.7 + {7^{19}}{.7^2}\\ = {7^{19}}.(1 + 7 + {7^2})\\ = {7^{19}}.57\end{array}\)

      Do \({7^{19}} \vdots 7 \Rightarrow {7^{19}}.57 \vdots 7\) (A sai)

      Ta có \({7^{19}}\) là số lẻ, 57 là số lẻ nên tích \({7^{19}}.57\) là số lẻ \( \Rightarrow {7^{19}}.57\) không chia hết cho 2. (B sai)

      A chia hết cho 57. (C đúng)

      A chia hết cho 57 nhưng A không chia hết cho 2 nên A không chia hết cho 57.2 = 114 (D sai)

      Câu 4 :

      Tính giá trị của biểu thức \(A = {x^6} - {x^4} - x({x^3} - x)\) biết \({x^3} - x = 9\)

      • A.
        \(A = 0\).
      • B.
        \(A = 9\).
      • C.
        \(A = 27\).
      • D.
        \(A = 81\).

      Đáp án : D

      Phương pháp giải :
      Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
      Lời giải chi tiết :
      Ta có:

      \(\begin{array}{l}A = {x^6} - {x^4} - x({x^3} - x)\\ = {x^3}.{x^3} - {x^3}.x - x\left( {{x^3} - x} \right)\\ = {x^3}({x^3} - x) - x({x^3} - x)\\ = \left( {{x^3} - x} \right)\left( {{x^3} - x} \right)\\ = {\left( {{x^3} - x} \right)^2}\end{array}\)

      Với \({x^3} - x = 9\), giá trị của biểu thức \(A = {9^2} = 81\)

      Câu 5 :

      Có bao nhiêu giá trị của x thỏa mãn\({\left( {2x-5} \right)^2}\;-4{\left( {x-2} \right)^2}\; = 0\)?

      • A.
        \(2\).
      • B.
        \(1\).
      • C.
        \(0\).
      • D.
        \(4\).

      Đáp án : B

      Phương pháp giải :
      Phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức.
      Lời giải chi tiết :
      Ta có:

      \(\begin{array}{*{20}{l}}{{{\left( {2x-5} \right)}^2}\;-4{{\left( {x-2} \right)}^2}\; = 0}\\{ \Leftrightarrow {{\left( {2x-5} \right)}^2}\;-{{\left[ {2\left( {x-2} \right)} \right]}^2}\; = 0}\\{ \Leftrightarrow {{\left( {2x-5} \right)}^2}\;-{{\left( {2x-4} \right)}^2}\; = 0}\\{ \Leftrightarrow \left( {2x-5 + 2x-4} \right)\left( {2x-5-2x + 4} \right) = 0}\\{ \Leftrightarrow \left( {4x-9} \right).\left( { - 1} \right) = 0}\\{ \Leftrightarrow - 4x + 9 = 0}\\{ \Leftrightarrow 4x = 9}\\{ \Leftrightarrow x = \;\frac{9}{4}}\end{array}\)

      Câu 6 :

      Tính giá trị của biểu thức \(A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\) tại \(x = 5\).

      • A.
        \(A = 20\;\).
      • B.
        \(A = {\rm{ 4}}0\;\).
      • C.
        \(A = {\rm{ 16}}\;\).
      • D.
        \(A = 28\).

      Đáp án : B

      Phương pháp giải :
      Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
      Lời giải chi tiết :
      Ta có:

      \(\begin{array}{l}A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\\\begin{array}{*{20}{l}}{ \Leftrightarrow A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + \left( {x-1} \right)}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-3} \right) + \left( {x-2} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-3 + 1} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-2} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)[{{\left( {x-2} \right)}^2}\; + 1]}\end{array}\end{array}\)

      Tại x = 5, ta có:

      \(A = \left( {5-1} \right)[{\left( {5-2} \right)^2}\; + 1] = 4.({3^2}\; + 1) = 4.\left( {9 + 1} \right) = 4.10 = 40\)

      Câu 7 :

      Cho \({x^2}\;-4{y^2}\;-2x-4y = \left( {x + my} \right)\left( {x-2y + n} \right)\) với \(m,n \in \mathbb{R}\). Tìm m và n.

      • A.
        \(m = 2,n = 2\)
      • B.
        \(m = - 2,n = 2\)
      • C.
        \(m = 2,n = - 2\)
      • D.
        \(m = - 2,n = - 2\)

      Đáp án : C

      Phương pháp giải :
      Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
      Lời giải chi tiết :

      Ta có:

      \(\begin{array}{*{20}{l}}{{x^2}\;-4{y^2}\;-2x-4y}\\{ = \left( {{x^2}\;-4{y^2}} \right)-\left( {2x + 4y} \right)}\\{ = \left( {x-2y} \right)\left( {x + 2y} \right)-2\left( {x + 2y} \right)}\\{ = \left( {x + 2y} \right)\left( {x-2y-2} \right)}\end{array}\)

      Suy ra m = 2, n = -2

      Câu 8 :

      Giá trị của x thỏa mãn \(5{x^2} - 10x + 5 = 0\) là

      • A.
        \(x = 1\).
      • B.
        \(x = - 1\).
      • C.
        \(x = 2\).
      • D.
        \(x = 5\).

      Đáp án : A

      Phương pháp giải :
      Phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức.
      Lời giải chi tiết :
      Ta có:

      \(\begin{array}{l}5{x^2} - 10x + 5 = 0\\ \Leftrightarrow 5({x^2} - 2x + 1) = 0\\ \Leftrightarrow {(x - 1)^2} = 0\\ \Leftrightarrow x - 1 = 0\\ \Leftrightarrow x = 1\end{array}\)

      Câu 9 :

      Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho

      • A.
        7.
      • B.
        8.
      • C.
        9.
      • D.
        10.

      Đáp án : B

      Phương pháp giải :
      Phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức \({A^2} - {B^2} = (A - B)(A + B)\).
      Lời giải chi tiết :
      Ta có:

      Gọi hai số lẻ liên tiếp là \(2k-1;2k + 1(k \in N*)\)

      Theo bài ra ta có:

      \({\left( {2k + 1} \right)^{2}}-{\left( {2k-1} \right)^{2}} = 4{k^2} + 4k + 1-4{k^2} + 4k-1 = 8k \vdots 8,\forall k \in \mathbb{N}*\)

      Câu 10 :

      Cho \(x = 20-y\). Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức \(B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}\)

      • A.
        \(B < 8300\).
      • B.
        \(B > 8500\).
      • C.
        \(B < 0\).
      • D.
        \(B > 8300\).

      Đáp án : D

      Phương pháp giải :

      Phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức.

      Lời giải chi tiết :
      Ta có:

      \(\begin{array}{*{20}{l}}{B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}}\\{ = \left( {{x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}} \right) + \left( {{x^2}\; + 2xy + {y^2}} \right)}\\{ = {{\left( {x + y} \right)}^3}\; + {{\left( {x + y} \right)}^2}\; = {{\left( {x + y} \right)}^2}\left( {x + y + 1} \right)}\end{array}\)

      Vì \(x = 20-y\) nên \(x + y = 20\). Thay \(x + y = 20\) vào \(B = {\left( {x + y} \right)^2}\left( {x + y + 1} \right)\) ta được:

      \(B = {\left( {20} \right)^2}\left( {{\rm{20 }} + 1} \right) = 400.21 = 8400\).

      Vậy \(B > 8300\) khi \(x = 20-y\).

      Câu 11 :

      Cho \({(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2} = m(x + n)(x - 1)\). Khi đó \(\frac{m}{n}\) bằng:

      • A.
        \(\frac{m}{n} = 36\).
      • B.
        \(\frac{m}{n} = - 36\).
      • C.
        \(\frac{m}{n} = 18\).
      • D.
        \(\frac{m}{n} = - 18\).

      Đáp án : B

      Phương pháp giải :
      Phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức.
      Lời giải chi tiết :
      Ta có:

      \(\begin{array}{l}{(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2}\\ = (3{x^2} + 6x - 18 - 3{x^2} - 6x)(3{x^2} + 6x - 18 + 3{x^2} + 6x)\\ = - 18(6{x^2} + 12x - 18)\\ = - 18.6({x^2} + 2x - 3)\\ = - 108({x^2} + 2x - 3)\\ = - 108({x^2} - x + 3x - 3)\\ = - 108\left[ {x(x - 1) + 3(x - 1)} \right]\\ = - 108(x + 3)(x - 1)\end{array}\)

      Khi đó, m = -108; n = 3 \( \Rightarrow \frac{m}{n} = \frac{{ - 108}}{3} = - 36\)

      Câu 12 :

      Tính nhanh \(B = 5.101,5 - 50.0,15\)

      • A.
        \(100\).
      • B.
        \(50\).
      • C.
        \(500\).
      • D.
        \(1000\).

      Đáp án : C

      Phương pháp giải :
      Biến đổi để phân tích đa thức thành nhân tử bằng đặt nhân tử chung.
      Lời giải chi tiết :
      Ta có:

      \(\begin{array}{l}B = 5.101,5 - 50.0,15\\ = 5.101,5 - 5.1,5\\ = 5(101,5 - 1,5)\\ = 5.100\\ = 500\end{array}\)

      Câu 13 :

      Cho \(\left| x \right| < 3\). Khẳng định nào sau đây đúng khi nói về giá trị của biểu thức \(A = {x^4} + 3{x^3} - 27x - 81\)

      • A.
        \(A > 1\).
      • B.
        \(A > 0\).
      • C.
        \(A < 0\).
      • D.
        \(A \ge 1\).

      Đáp án : C

      Phương pháp giải :
      Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tửvà sử dụng hằng đẳng thức.
      Lời giải chi tiết :
      Ta có:

      \(\begin{array}{l}A = {x^4} + 3{x^3} - 27x - 81\\ = ({x^4} - 81) + (3{x^3} - 27x)\\ = ({x^2} - 9)({x^2} + 9) + 3x({x^2} - 9)\\ = ({x^2} - 9)({x^2} + 3x + 9)\end{array}\)

      Ta có: \({x^2} + 3x + 9 = {x^2} + 2.\frac{3}{2}x + \frac{9}{4} + \frac{{27}}{4} \ge \frac{{27}}{4} > 0,\forall x\)

      Mà \(\left| x \right| < 3 \Leftrightarrow {x^2} < 9 \Leftrightarrow {x^2} - 9 < 0\)

      \( \Rightarrow A = ({x^2} - 9)({x^2} + 3x + 9) < 0\) khi \(\left| x \right| < 3\).

      Câu 14 :

      Cho \({\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2} = mx(x + 1)\) với \(m \in \mathbb{R}\). Chọn câu đúng

      • A.
        \(m > - 59\).
      • B.
        \(m < 0\).
      • C.
        \(m \vdots 9\).
      • D.
        \(m\) là số nguyên tố.

      Đáp án : B

      Phương pháp giải :
      Áp dụng hằng đẳng thức: \({A^2} - {B^2} = (A - B)(A + B)\)
      Lời giải chi tiết :

      Ta có:

      \(\begin{array}{l}{\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2}\\ = (3{x^2} + 3x - 5 - 3{x^2} - 3x - 5)(3{x^2} + 3x - 5 + 3{x^2} + 3x + 5)\\ = - 10(6{x^2} + 6x)\\ = - 10.6x(x + 1)\\ = - 60x(x + 1)\\ = mx(x + 1)\\ \Rightarrow m = - 60 < 0\end{array}\)

      Câu 15 :

      Phân tích đa thức \(3{x^3} - 8{x^2} - 41x + 30\) thành nhân tử

      • A.
        \((3x - 2)(x + 3)(x - 5)\).
      • B.
        \(3(x - 2)(x + 3)(x - 5)\).
      • C.
        \((3x - 2)(x - 3)(x + 5)\).
      • D.
        \((x - 2)(3x + 3)(x - 5)\).

      Đáp án : A

      Phương pháp giải :
      Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử và đặt nhân tử chung.
      Lời giải chi tiết :
      Theo đề ra ta có:

      \(\begin{array}{l}3{x^3} - 8{x^2} - 41x + 30\\ = 3{x^3} - 2{x^2} - 6{x^2} + 4x - 45x + 30\\ = \left( {3{x^3} - 2{x^2}} \right) - \left( {6{x^2} - 4x} \right) - \left( {45x - 30} \right)\\ = {x^2}(3x - 2) - 2x(3x - 2) - 15(3x - 2)\\ = ({x^2} - 2x - 15)(3x - 2)\\ = ({x^2} + 3x - 5x - 15)(3x - 2)\\ = \left[ {\left( {{x^2} + 3x} \right) - \left( {5x + 15} \right)} \right](3x - 2)\\ = \left[ {x(x + 3) - 5(x + 3)} \right](3x - 2)\\ = (3x - 2)(x - 5)(x + 3)\end{array}\)

      Câu 16 :

      Có bao nhiêu giá trị của x thỏa mãn \({x^3}\; + 2{x^2}\;-9x-18 = 0\)

      • A.
        \(0\).
      • B.
        \(1\).
      • C.
        \(2\).
      • D.
        \(3\).

      Đáp án : D

      Phương pháp giải :
      Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
      Lời giải chi tiết :
      Ta có:

      \(\begin{array}{l}{x^3} + 2{x^2} - 9x - 18 = 0\\ \Leftrightarrow ({x^3} + 2{x^2}) - (9x - 18) = 0\\ \Leftrightarrow {x^2}(x + 2) - 9(x - 2) = 0\\ \Leftrightarrow ({x^2} - 9)(x + 2) = 0\\ \Leftrightarrow (x - 3)(x + 3)(x + 2) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 3 = 0\\x + 3 = 0\\x - 2 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = - 3\\x = - 2\end{array} \right.\end{array}\)

      Câu 17 :

      Chọn câu sai.

      • A.
        \({x^2} - 6x + 9 = {(x - 3)^2}\).
      • B.
        \(\frac{{{x^2}}}{4} + 2xy + 4{y^2} = {\left( {\frac{x}{4} + 2y} \right)^2}\).
      • C.
        \(\frac{{{x^2}}}{4} + 2xy + 4{y^2} = {\left( {\frac{x}{2} + 2y} \right)^2}\).
      • D.
        \(4{x^2} - 4xy + {y^2} = {(2x - y)^2}\).

      Đáp án : B

      Phương pháp giải :
      Áp dụng 7 hằng đẳng thức đáng nhớ
      Lời giải chi tiết :
      Ta có:

      +) \({x^2} - 6x + 9 = {x^2} - 2.3x + {3^2} = {(x - 3)^2}\) nên A đúng.

      +) \(\frac{{{x^2}}}{4} + 2xy + 4{y^2} = {\left( {\frac{x}{2}} \right)^2}.2.\frac{x}{2}.2y + {\left( {2y} \right)^2} = {\left( {\frac{x}{2} + 2y} \right)^2}\) nên B sai, C đúng.

      +) \(4{x^2} - 4xy + {y^2} = {\left( {2x} \right)^2} - 2.2x.y + {y^2} = {(2x - y)^2}\) nên D đúng.

      Câu 18 :

      Cho\({x_1}\) và\({x_2}\) là hai giá trị thỏa mãn \(4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - x} \right) = 0\). Khi đó \({x_1}\; + {x_2}\;\)bằng

      • A.
        5.
      • B.
        7.
      • C.
        3.
      • D.
        -2.

      Đáp án : C

      Phương pháp giải :
      Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung; sau đó giải phương trình để tìm x.
      Lời giải chi tiết :
      Ta có:

      \(\begin{array}{l}4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - x} \right) = 0\\ \Leftrightarrow 4\left( {x - {\rm{ 5}}} \right)\; + \;2x\left( {x - {\rm{ 5}}} \right) = 0\\ \Leftrightarrow \left( {x - {\rm{ 5}}} \right)\left( {{\rm{4}} + 2x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 5 = 0\\4 + 2x = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = - 2\end{array} \right.\\ \Rightarrow {x_1} + {x_2} = 5 - 2 = 3\end{array}\)

      Câu 19 :

      Thực hiện phép chia: \(\left( {{x^5} + {x^3} + {x^2} + 1} \right):\left( {{x^3} + 1} \right)\)

      • A.
        \({x^2} + 1\).
      • B.
        \({(x + 1)^2}\).
      • C.
        \({x^2} - 1\).
      • D.
        \({x^2} + x + 1\).

      Đáp án : A

      Phương pháp giải :
      Phân tích đa thức \({x^5} + {x^3} + {x^2} + 1\) thành nhân tử rồi sau đó thực hiện phép chia.
      Lời giải chi tiết :

      \(\begin{array}{*{20}{l}}{{x^5} + {x^3} + {x^2}\; + 1}\\{ = {x^3}\left( {{x^2}\; + 1} \right) + {x^2}\; + 1}\\{ = \left( {{x^2}\; + 1} \right)\left( {{x^3}\; + 1} \right)}\end{array}\)

      nên

      \(\begin{array}{*{20}{l}}{\left( {{x^5}\; + {x^3}\; + {x^2}\; + 1} \right):\left( {{x^3}\; + 1} \right)}\\{ = \left( {{x^2}\; + 1} \right)\left( {{x^3}\; + 1} \right):\left( {{x^3}\; + 1} \right)}\\{ = \left( {{x^2}\; + 1} \right)}\end{array}\)

      Câu 20 :

      Nhân tử chung của biểu thức \(30{\left( {4-2x} \right)^2}\; + 3x-6\) có thể là

      • A.
        \(x + 2\).
      • B.
        \(3(x - 2)\).
      • C.
        \({(x - 2)^2}\).
      • D.
        \({(x + 2)^2}\).

      Đáp án : B

      Phương pháp giải :
      Phân tích đa thức thành nhân tử để tìm nhân tử chung của biểu thức.
      Lời giải chi tiết :

      Ta có:

      \(\begin{array}{*{20}{l}}{30{{\left( {4-2x} \right)}^2}\; + 3x-6 = 30{{\left( {2x-4} \right)}^2}\; + 3\left( {x-2} \right)}\\{ = {{30.2}^2}\left( {x-2} \right) + 3\left( {x-2} \right)}\\{ = 120{{\left( {x-2} \right)}^2}\; + 3\left( {x-2} \right)}\\{ = 3\left( {x-2} \right)\left( {40\left( {x-2} \right) + 1} \right) = 3\left( {x-2} \right)\left( {40x-79} \right)}\end{array}\)

      Nhân tử chung có thể là \(3(x - 2)\).

      Câu 21 :

      Tính nhanh giá trị của biểu thức \({x^2} + 2x + 1 - {y^2}\) tại x = 94,5 và y = 4,5.

      • A.
        \(8900\).
      • B.
        \(9000\).
      • C.
        \(9050\).
      • D.
        \(9100\).

      Đáp án : D

      Phương pháp giải :
      Phân tích đa thức thành nhân tử rồi mới thay số vào tính.
      Lời giải chi tiết :

      \({x^2}{\rm{ }} + {\rm{ }}2x{\rm{ }} + {\rm{ }}1{\rm{ }} - {\rm{ }}{y^2}{\rm{ }} = {\rm{ }}\left( {{x^2}{\rm{ }} + {\rm{ }}2x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} - {\rm{ }}{y^2}\;\) (nhóm hạng tử)

      \( = {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}1} \right)^2}{\rm{ }} - {\rm{ }}{y^2}\) (áp dụng hằng đẳng thức)

      \( = {\rm{ }}\left( {x{\rm{ }} + {\rm{ }}1{\rm{ }} - {\rm{ }}y} \right)\left( {x{\rm{ }} + {\rm{ }}1{\rm{ }} + {\rm{ }}y} \right)\)

      Thay x = 94,5 và y = 4,5 vào biểu thức, ta được:

      \(\begin{array}{l}\left( {{\rm{94,5 }} + {\rm{ }}1{\rm{ }} - 4,5} \right)\left( {{\rm{94,5 }} + {\rm{ }}1{\rm{ }} + {\rm{ 4,5}}} \right)\\ = 91.100\\ = 9100\end{array}\)

      Câu 22 :

      Phân tích đa thức \({x^2} - 2xy + {y^2}{{ - }}81\) thành nhân tử:

      • A.
        \((x - y - 3)(x - y + 3)\).
      • B.

        \(\left( {x - y - 9} \right)\left( {x - y + 9} \right)\).

      • C.
        \((x + y - 3)(x + y + 3)\).
      • D.
        \((x + y - 9)(x + y - 9)\).

      Đáp án : B

      Phương pháp giải :
      Sử dụng kết hợp phương pháp nhóm hạng tử và dùng hằng đẳng thức đáng nhớ.
      Lời giải chi tiết :

      \({x^2} - 2xy + {y^2}{\rm{ - }}81\; = \;\left( {{x^2} - 2xy + {y^2}} \right) - 81\) (nhóm 3 hạng tử đầu để xuất hiện bình phương một hiệu)

      \( = {\rm{ }}{\left( {x{\rm{ }} - {\rm{ }}y} \right)^2}{\rm{ }} - {\rm{ }}{9^2}\) (áp dụng hằng đẳng thức \({A^2} - {\rm{ }}{B^2} = {\rm{ }}\left( {A{\rm{ }} - {\rm{ }}B} \right)\left( {A{\rm{ }} + {\rm{ }}B} \right)\))

      \( = {\rm{ }}\left( {x{\rm{ }} - {\rm{ }}y{\rm{ }} - {\rm{ }}9} \right)\left( {x{\rm{ }} - {\rm{ }}y{\rm{ }} + {\rm{ }}9} \right)\).

      Câu 23 :

      Tính nhanh biểu thức \({37^2} - {13^2}\)

      • A.
        \(1200\).
      • B.
        \(800\).
      • C.
        \(1500\).
      • D.
        \(1800\).

      Đáp án : A

      Phương pháp giải :

      Áp dụng hằng đẳng thức \({A^2} - {B^2} = ({A - B}) ({A + B}) \) để thực hiện phép tính.

      Lời giải chi tiết :

      \(\begin{array}{l}{37^2} - {13^2}\\ = ({37 - 13}) ({37 + 13}) \\ = 24.50\\ = 1200\end{array}\)

      Câu 24 :

      Chọn câu sai.

      • A.

        \({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = {({x-1}) ^2}({x + 1}) \).

      • B.

        \({({x-1}) ^3}\; + 2({x-1}) = ({x-1}) [{({x-1}) ^2}\; + 2]\).

      • C.

        \({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) [{({x-1}) ^2}\; + 2x-2]\).

      • D.

        \({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) ({x + 3}) \).

      Đáp án : D

      Phương pháp giải :
      Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.
      Lời giải chi tiết :

      Ta có

      +) \({\left( {x-1} \right)^3} + 2{\left( {x-1} \right)^2}\)

      \(= {\left( {x-1} \right)^2}\left( {x-1} \right) + 2{\left( {x-1} \right)^2}\\ = {\left( {x-1} \right)^2}(x-1 + 2\\ = {\left( {x-1} \right)^2}\left( {x + 1} \right)\)

      nên A đúng

      +) \( {{{\left( {x-1} \right)}^3} + 2\left( {x-1} \right)}\)

      \({ = \left( {x-1} \right).{{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)}\\ = \left( {x-1} \right)[{\left( {x-1} \right)^2} + 2]\)

       nên B đúng

      +) \({{{\left( {x-1} \right)}^3} + 2{{\left( {x-1} \right)}^2}}\)

      \({ = \left( {x-1} \right){{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)\left( {x-1} \right)}\\{ = \left( {x-1} \right)[{{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)]}\\ = \left( {x-1} \right)[{\left( {x-1} \right)^2} + 2x-2]\)

       nên C đúng

      +) \({{{\left( {x-1} \right)}^3} + 2{{\left( {x-1} \right)}^2}}\)

      \({ = {{\left( {x-1} \right)}^2}\left( {x + 1} \right)}\\ \ne \left( {x-1} \right)\left( {x + 3} \right)\)

      nên D sai

      Câu 25 :

      Tìm x, biết \(2 - 25{x^2} = 0\)

      • A.
        \(x = \frac{{\sqrt 2 }}{5}\).
      • B.
        \(x = \frac{{ - \sqrt 2 }}{5}\).
      • C.
        \(\frac{2}{{25}}\).
      • D.
        \(x = \frac{{\sqrt 2 }}{5}\) hoặc \(x = \frac{{ - \sqrt 2 }}{5}\).

      Đáp án : D

      Phương pháp giải :
      Phân tích đa thức thành nhân tử, dựa vào hằng đẳng thức \({A^2} - {B^2} = {A - B} {A + B} \); sau đó giải phương trình để tìm x.
      Lời giải chi tiết :

      \({2 - 25{x^2} = 0\;}\)\((\sqrt 2 - 5x)(\sqrt 2 + 5x) = 0\)\(\sqrt 2 - 5x = 0\) hoặc \(\sqrt 2 + 5x = 0\)\(x = \frac{{\sqrt 2 }}{5}\) hoặc \(x = \frac{{ - \sqrt 2 }}{5}\)

      Câu 26 :

      Phân tích đa thức thành nhân tử: \({x^2} + 6x + 9\;\)

      • A.
        \((x + 3)(x - 3)\).
      • B.
        \((x - 1)(x + 9)\).
      • C.
        \({(x + 3)^2}\).
      • D.
        \((x + 6)(x - 3)\).

      Đáp án : C

      Phương pháp giải :
      Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức.
      Lời giải chi tiết :

      Ta dễ dàng nhận thấy \({x^2} + 2x.3 + {3^2}\)

      \({x^2} + 6x + 9 = {({x + 3}) ^2}\)

      Câu 27 :

      Kết quả phân tích đa thức \({x^2}\;-xy + x-y\) thành nhân tử là:

      • A.

        \(({x + 1}) ({x - y}) \).

      • B.

        \(({x - y}) ({x - 1}) \).

      • C.

        \(({x - y}) ({x + y}) \).

      • D.

        \(x({x - y}) \).

      Đáp án : A

      Phương pháp giải :
      Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
      Lời giải chi tiết :

      Ta có:

      \(\begin{array}{l}{x^2}\;-xy + x-y\\ = x(x - y) + (x - y)\\ = (x + 1)(x - y)\end{array}\)

      Câu 28 :

      Phân tích đa thức \(15{x^3} - 5{x^2} + 10x\) thành nhân tử.

      • A.
        \(5({x^3} - {x^2} + 2x)\).
      • B.

        \(5x({{x^2} - x + 1}) \).

      • C.

        \(5x({3{x^2} - x + 1}) \).

      • D.

        \(5x({3{x^2} - x + 2}) \).

      Đáp án : D

      Phương pháp giải :
      Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.
      Lời giải chi tiết :

      Ta có:

      \(\begin{array}{l}15{x^3} - 5{x^2} + 10x\\ = \;5x.3{x^2} - \;5x.x + \;5x.2\\ = \;5x({3{x^2} - x + 2}) \end{array}\)

      Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Trắc nghiệm Bài 9: Phân tích đa thức thành nhân tử Toán 8 Kết nối tri thức đặc sắc thuộc chuyên mục sgk toán 8 trên môn toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

      Trắc nghiệm Bài 9: Phân tích đa thức thành nhân tử Toán 8 Kết nối tri thức - Tổng quan và Hướng dẫn

      Bài 9 trong chương trình Toán 8 Kết nối tri thức tập trung vào một trong những kỹ năng quan trọng nhất của đại số: phân tích đa thức thành nhân tử. Kỹ năng này không chỉ cần thiết để giải các bài toán đại số mà còn là nền tảng cho việc học các kiến thức toán học nâng cao hơn. Bài viết này sẽ cung cấp một cái nhìn tổng quan về các phương pháp phân tích đa thức thành nhân tử, cùng với các bài tập trắc nghiệm để bạn luyện tập và kiểm tra kiến thức.

      Các phương pháp phân tích đa thức thành nhân tử

      1. Đặt nhân tử chung: Đây là phương pháp cơ bản nhất, áp dụng khi tất cả các hạng tử của đa thức đều có chung một nhân tử. Ví dụ: 3x2 + 6x = 3x(x + 2).
      2. Sử dụng hằng đẳng thức: Các hằng đẳng thức đại số như (a + b)2 = a2 + 2ab + b2, (a - b)2 = a2 - 2ab + b2, a2 - b2 = (a + b)(a - b) thường được sử dụng để phân tích đa thức.
      3. Phương pháp nhóm hạng tử: Phương pháp này được sử dụng khi đa thức có từ bốn hạng tử trở lên. Ta cố gắng nhóm các hạng tử sao cho có thể đặt nhân tử chung hoặc sử dụng hằng đẳng thức.
      4. Tách hạng tử: Đôi khi, ta cần tách một hạng tử thành nhiều hạng tử để có thể áp dụng các phương pháp khác.
      5. Sử dụng định lý Bezout: Định lý Bezout cho phép ta tìm các nghiệm của đa thức, từ đó phân tích đa thức thành nhân tử.

      Bài tập trắc nghiệm minh họa

      Dưới đây là một số bài tập trắc nghiệm minh họa để bạn luyện tập:

      Câu 1: Phân tích đa thức 2x2 - 4x thành nhân tử, ta được:

      • A. 2x(x - 2)
      • B. 2x(x + 2)
      • C. x(2x - 4)
      • D. 4x(x - 1)

      Đáp án: A

      Câu 2: Chọn biểu thức tương đương với x2 - 9:

      • A. (x - 3)2
      • B. (x + 3)2
      • C. (x + 3)(x - 3)
      • D. (x - 9)(x + 1)

      Đáp án: C

      Câu 3: Phân tích đa thức x2 + 4x + 4 thành nhân tử, ta được:

      • A. (x + 2)2
      • B. (x - 2)2
      • C. (x + 4)(x + 1)
      • D. (x - 4)(x - 1)

      Đáp án: A

      Lời khuyên khi làm bài tập trắc nghiệm

      • Đọc kỹ đề bài và xác định yêu cầu của câu hỏi.
      • Sử dụng các phương pháp phân tích đa thức thành nhân tử một cách linh hoạt.
      • Kiểm tra lại kết quả sau khi giải xong.
      • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

      Ứng dụng của việc phân tích đa thức thành nhân tử

      Phân tích đa thức thành nhân tử có rất nhiều ứng dụng trong toán học và các lĩnh vực khác:

      • Giải phương trình: Phân tích đa thức thành nhân tử giúp ta tìm ra các nghiệm của phương trình.
      • Rút gọn biểu thức: Phân tích đa thức thành nhân tử giúp ta rút gọn các biểu thức đại số phức tạp.
      • Tính toán: Phân tích đa thức thành nhân tử giúp ta tính toán nhanh chóng và chính xác.
      • Ứng dụng trong thực tế: Phân tích đa thức thành nhân tử được sử dụng trong nhiều lĩnh vực như vật lý, kỹ thuật, kinh tế,...

      Kết luận

      Phân tích đa thức thành nhân tử là một kỹ năng quan trọng trong chương trình Toán 8 Kết nối tri thức. Hy vọng rằng, với những kiến thức và bài tập trắc nghiệm được cung cấp trong bài viết này, bạn sẽ nắm vững kỹ năng này và tự tin hơn trong quá trình học tập. Hãy luyện tập thường xuyên để đạt được kết quả tốt nhất!

      Tài liệu, đề thi và đáp án Toán 8