Chào mừng bạn đến với bài trắc nghiệm trực tuyến giúp bạn ôn luyện và kiểm tra kiến thức về phân tích đa thức thành nhân tử trong chương trình Toán 8 Kết nối tri thức. Bài trắc nghiệm này được thiết kế để giúp bạn nắm vững các phương pháp phân tích đa thức, rèn luyện kỹ năng giải toán và chuẩn bị tốt cho các bài kiểm tra sắp tới.
Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, kèm đáp án chi tiết và lời giải thích rõ ràng, giúp bạn hiểu sâu sắc kiến thức và tự tin hơn trong quá trình học tập.
Với a3 + b3 + c3 = 3abc thì
Gọi \({x_1};{x_2};{x_3}\) là các giá trị thỏa mãn \(4{\left( {2x-5} \right)^2}\;-9{(4{x^2}\;-25)^2}\; = 0\). Khi đó \({x_1}\; + {x_2}\; + {x_3}\) bằng
\(\frac{-5}{2}\).
Cho biểu thức \(A = {7^{19}} + {7^{20}} + {7^{21}}\). Khẳng định nào đúng cho biểu thức A.
Tính giá trị của biểu thức \(A = {x^6} - {x^4} - x({x^3} - x)\) biết \({x^3} - x = 9\)
Có bao nhiêu giá trị của x thỏa mãn\({\left( {2x-5} \right)^2}\;-4{\left( {x-2} \right)^2}\; = 0\)?
Tính giá trị của biểu thức \(A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\) tại \(x = 5\).
Cho \({x^2}\;-4{y^2}\;-2x-4y = \left( {x + my} \right)\left( {x-2y + n} \right)\) với \(m,n \in \mathbb{R}\). Tìm m và n.
Giá trị của x thỏa mãn \(5{x^2} - 10x + 5 = 0\) là
Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho
Cho \(x = 20-y\). Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức \(B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}\)
Cho \({(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2} = m(x + n)(x - 1)\). Khi đó \(\frac{m}{n}\) bằng:
Tính nhanh \(B = 5.101,5 - 50.0,15\)
Cho \(\left| x \right| < 3\). Khẳng định nào sau đây đúng khi nói về giá trị của biểu thức \(A = {x^4} + 3{x^3} - 27x - 81\)
Cho \({\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2} = mx(x + 1)\) với \(m \in \mathbb{R}\). Chọn câu đúng
Phân tích đa thức \(3{x^3} - 8{x^2} - 41x + 30\) thành nhân tử
Có bao nhiêu giá trị của x thỏa mãn \({x^3}\; + 2{x^2}\;-9x-18 = 0\)
Chọn câu sai.
Cho\({x_1}\) và\({x_2}\) là hai giá trị thỏa mãn \(4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - x} \right) = 0\). Khi đó \({x_1}\; + {x_2}\;\)bằng
Thực hiện phép chia: \(\left( {{x^5} + {x^3} + {x^2} + 1} \right):\left( {{x^3} + 1} \right)\)
Nhân tử chung của biểu thức \(30{\left( {4-2x} \right)^2}\; + 3x-6\) có thể là
Tính nhanh giá trị của biểu thức \({x^2} + 2x + 1 - {y^2}\) tại x = 94,5 và y = 4,5.
Phân tích đa thức \({x^2} - 2xy + {y^2}{{ - }}81\) thành nhân tử:
\(\left( {x - y - 9} \right)\left( {x - y + 9} \right)\).
Tính nhanh biểu thức \({37^2} - {13^2}\)
Chọn câu sai.
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = {({x-1}) ^2}({x + 1}) \).
\({({x-1}) ^3}\; + 2({x-1}) = ({x-1}) [{({x-1}) ^2}\; + 2]\).
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) [{({x-1}) ^2}\; + 2x-2]\).
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) ({x + 3}) \).
Tìm x, biết \(2 - 25{x^2} = 0\)
Phân tích đa thức thành nhân tử: \({x^2} + 6x + 9\;\)
Kết quả phân tích đa thức \({x^2}\;-xy + x-y\) thành nhân tử là:
\(({x + 1}) ({x - y}) \).
\(({x - y}) ({x - 1}) \).
\(({x - y}) ({x + y}) \).
\(x({x - y}) \).
Phân tích đa thức \(15{x^3} - 5{x^2} + 10x\) thành nhân tử.
\(5x({{x^2} - x + 1}) \).
\(5x({3{x^2} - x + 1}) \).
\(5x({3{x^2} - x + 2}) \).
Lời giải và đáp án
Với a3 + b3 + c3 = 3abc thì
Đáp án : C
Từ đẳng thức đã cho suy ra \({a^3}\; + {b^3}\; + {c^3}\; - 3abc = 0\)
\({b^3}\; + {c^3}\; = \left( {b + c} \right)\left( {{b^2}\; + {c^2}\; - bc} \right)\)\( = \left( {b + c} \right)\left[ {{{\left( {b + c} \right)}^2}\; - 3bc} \right]\)\( = {\left( {b + c} \right)^3}\; - 3bc\left( {b + c} \right)\)\( \Rightarrow {a^3}\; + {b^3}\; + {c^3}\; - 3abc = {a^3}\; + \left( {{b^3}\; + {c^3}} \right) - 3abc\)\( = {a^3}\; + {\left( {b + c} \right)^3} - 3bc\left( {b + c} \right) - 3abc\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}} \right) - \left[ {3bc\left( {b + c} \right) + 3abc} \right]\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}} \right) - 3bc\left( {a + b + c} \right)\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}\; - 3bc} \right)\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - ab\; - ac + {b^2}\; + 2bc + {c^2}\; - 3bc} \right)\)\( = \left( {a + b + c} \right)\left( {{a^2}\; + {b^2}\; + {c^2}\; - ab - ac - bc} \right)\)
Do đó nếu \({a^3}\; + \left( {{b^3}\; + {c^3}} \right) - 3abc = 0\) thì \(a + b + c\; = 0\) hoặc \({a^2}\; + {b^2}\; + {c^2}\; - ab - ac - bc = 0\)
Mà \({a^2}\; + {b^2}\; + {c^2}\; - ab - ac - bc = \left[ {{{\left( {a - b} \right)}^2}\; + {{\left( {a - c} \right)}^2}\; + {{\left( {b - c} \right)}^2}} \right]\)
Nếu \({\left( {a - b} \right)^2}\; + {\left( {a - c} \right)^2}\; + {\left( {b - c} \right)^2}\; = 0 \Leftrightarrow \;\left\{ {\begin{array}{*{20}{l}}{a - b = 0}\\{b - c = 0}\\{a - c = 0}\end{array}} \right. \Rightarrow a = b = c\)
Vậy \({a^3}\; + \left( {{b^3}\; + {c^3}} \right) = 3abc\) thì \(a = b = c\) hoặc \(a + b + c = 0\).
Gọi \({x_1};{x_2};{x_3}\) là các giá trị thỏa mãn \(4{\left( {2x-5} \right)^2}\;-9{(4{x^2}\;-25)^2}\; = 0\). Khi đó \({x_1}\; + {x_2}\; + {x_3}\) bằng
\(\frac{-5}{2}\).
Đáp án : D
Sử dụng hằng đẳng thức \(a^2 - b^2 = (a-b)(a+b)\) để phân tích đa thức thành nhân tử.
\(\left( {2x-5} \right)^2-9{(4{x^2}-25)^2}= 0\)\(4{{\left( {2x-5} \right)}^2}-9{{[{{\left( {2x} \right)}^2}-{5^2}]}^2}= 0\)\(4{{\left( {2x-5} \right)}^2}-9{{\left[ {\left( {2x-5} \right)\left( {2x + 5} \right)} \right]}^2}= 0\)\(4{{\left( {2x-5} \right)}^2}-9{{\left( {{{2x }}-5} \right)}^2}{{\left( {2x + 5} \right)}^2}= 0\)\(\left( {2x-5} \right)^2[4-9{{\left( {2x + 5} \right)}^2}] = 0\)\(\left( {2x-5} \right)^2[4-{{\left( {3\left( {2x + 5} \right)} \right)}^2}] = 0\)\(\left( {2x-5} \right)^2({2^2}-{{\left( {6x + 15} \right)}^2}) = 0\)\(\left( {2x-5} \right)^2({2^2}-{{\left( {6x + 15} \right)}^2}) = 0\)\(\left( {2x-5} \right)^2\left( {2 + {{ 6}}x + 15} \right)\left( {2-{{ 6}}x-15} \right) = 0\)\(\left( {2x-5} \right)^2\left( {6x + 17} \right)\left( { - 6x-13} \right) = 0\)Suy ra \(x = \frac{5}{2}\) hoặc \(x = \frac{{ - 17}}{6}\) hoặc \(x = \frac{{-13}}{6}\)Suy ra \({x_1} + {x_2} + {x_3} = \frac{5}{2} - \frac{{17}}{6} + \frac{{-13}}{6} = \frac{{15 - 17 - 13}}{6} = \frac{-5}{2}\)
Cho biểu thức \(A = {7^{19}} + {7^{20}} + {7^{21}}\). Khẳng định nào đúng cho biểu thức A.
Đáp án : C
\(\begin{array}{l}A = {7^{19}} + {7^{20}} + {7^{21}}\\ = {7^{19}} + {7^{19}}.7 + {7^{19}}{.7^2}\\ = {7^{19}}.(1 + 7 + {7^2})\\ = {7^{19}}.57\end{array}\)
Do \({7^{19}} \vdots 7 \Rightarrow {7^{19}}.57 \vdots 7\) (A sai)
Ta có \({7^{19}}\) là số lẻ, 57 là số lẻ nên tích \({7^{19}}.57\) là số lẻ \( \Rightarrow {7^{19}}.57\) không chia hết cho 2. (B sai)
A chia hết cho 57. (C đúng)
A chia hết cho 57 nhưng A không chia hết cho 2 nên A không chia hết cho 57.2 = 114 (D sai)
Tính giá trị của biểu thức \(A = {x^6} - {x^4} - x({x^3} - x)\) biết \({x^3} - x = 9\)
Đáp án : D
\(\begin{array}{l}A = {x^6} - {x^4} - x({x^3} - x)\\ = {x^3}.{x^3} - {x^3}.x - x\left( {{x^3} - x} \right)\\ = {x^3}({x^3} - x) - x({x^3} - x)\\ = \left( {{x^3} - x} \right)\left( {{x^3} - x} \right)\\ = {\left( {{x^3} - x} \right)^2}\end{array}\)
Với \({x^3} - x = 9\), giá trị của biểu thức \(A = {9^2} = 81\)
Có bao nhiêu giá trị của x thỏa mãn\({\left( {2x-5} \right)^2}\;-4{\left( {x-2} \right)^2}\; = 0\)?
Đáp án : B
\(\begin{array}{*{20}{l}}{{{\left( {2x-5} \right)}^2}\;-4{{\left( {x-2} \right)}^2}\; = 0}\\{ \Leftrightarrow {{\left( {2x-5} \right)}^2}\;-{{\left[ {2\left( {x-2} \right)} \right]}^2}\; = 0}\\{ \Leftrightarrow {{\left( {2x-5} \right)}^2}\;-{{\left( {2x-4} \right)}^2}\; = 0}\\{ \Leftrightarrow \left( {2x-5 + 2x-4} \right)\left( {2x-5-2x + 4} \right) = 0}\\{ \Leftrightarrow \left( {4x-9} \right).\left( { - 1} \right) = 0}\\{ \Leftrightarrow - 4x + 9 = 0}\\{ \Leftrightarrow 4x = 9}\\{ \Leftrightarrow x = \;\frac{9}{4}}\end{array}\)
Tính giá trị của biểu thức \(A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\) tại \(x = 5\).
Đáp án : B
\(\begin{array}{l}A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\\\begin{array}{*{20}{l}}{ \Leftrightarrow A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + \left( {x-1} \right)}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-3} \right) + \left( {x-2} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-3 + 1} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-2} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)[{{\left( {x-2} \right)}^2}\; + 1]}\end{array}\end{array}\)
Tại x = 5, ta có:
\(A = \left( {5-1} \right)[{\left( {5-2} \right)^2}\; + 1] = 4.({3^2}\; + 1) = 4.\left( {9 + 1} \right) = 4.10 = 40\)
Cho \({x^2}\;-4{y^2}\;-2x-4y = \left( {x + my} \right)\left( {x-2y + n} \right)\) với \(m,n \in \mathbb{R}\). Tìm m và n.
Đáp án : C
Ta có:
\(\begin{array}{*{20}{l}}{{x^2}\;-4{y^2}\;-2x-4y}\\{ = \left( {{x^2}\;-4{y^2}} \right)-\left( {2x + 4y} \right)}\\{ = \left( {x-2y} \right)\left( {x + 2y} \right)-2\left( {x + 2y} \right)}\\{ = \left( {x + 2y} \right)\left( {x-2y-2} \right)}\end{array}\)
Suy ra m = 2, n = -2
Giá trị của x thỏa mãn \(5{x^2} - 10x + 5 = 0\) là
Đáp án : A
\(\begin{array}{l}5{x^2} - 10x + 5 = 0\\ \Leftrightarrow 5({x^2} - 2x + 1) = 0\\ \Leftrightarrow {(x - 1)^2} = 0\\ \Leftrightarrow x - 1 = 0\\ \Leftrightarrow x = 1\end{array}\)
Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho
Đáp án : B
Gọi hai số lẻ liên tiếp là \(2k-1;2k + 1(k \in N*)\)
Theo bài ra ta có:
\({\left( {2k + 1} \right)^{2}}-{\left( {2k-1} \right)^{2}} = 4{k^2} + 4k + 1-4{k^2} + 4k-1 = 8k \vdots 8,\forall k \in \mathbb{N}*\)
Cho \(x = 20-y\). Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức \(B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}\)
Đáp án : D
Phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức.
\(\begin{array}{*{20}{l}}{B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}}\\{ = \left( {{x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}} \right) + \left( {{x^2}\; + 2xy + {y^2}} \right)}\\{ = {{\left( {x + y} \right)}^3}\; + {{\left( {x + y} \right)}^2}\; = {{\left( {x + y} \right)}^2}\left( {x + y + 1} \right)}\end{array}\)
Vì \(x = 20-y\) nên \(x + y = 20\). Thay \(x + y = 20\) vào \(B = {\left( {x + y} \right)^2}\left( {x + y + 1} \right)\) ta được:
\(B = {\left( {20} \right)^2}\left( {{\rm{20 }} + 1} \right) = 400.21 = 8400\).
Vậy \(B > 8300\) khi \(x = 20-y\).
Cho \({(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2} = m(x + n)(x - 1)\). Khi đó \(\frac{m}{n}\) bằng:
Đáp án : B
\(\begin{array}{l}{(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2}\\ = (3{x^2} + 6x - 18 - 3{x^2} - 6x)(3{x^2} + 6x - 18 + 3{x^2} + 6x)\\ = - 18(6{x^2} + 12x - 18)\\ = - 18.6({x^2} + 2x - 3)\\ = - 108({x^2} + 2x - 3)\\ = - 108({x^2} - x + 3x - 3)\\ = - 108\left[ {x(x - 1) + 3(x - 1)} \right]\\ = - 108(x + 3)(x - 1)\end{array}\)
Khi đó, m = -108; n = 3 \( \Rightarrow \frac{m}{n} = \frac{{ - 108}}{3} = - 36\)
Tính nhanh \(B = 5.101,5 - 50.0,15\)
Đáp án : C
\(\begin{array}{l}B = 5.101,5 - 50.0,15\\ = 5.101,5 - 5.1,5\\ = 5(101,5 - 1,5)\\ = 5.100\\ = 500\end{array}\)
Cho \(\left| x \right| < 3\). Khẳng định nào sau đây đúng khi nói về giá trị của biểu thức \(A = {x^4} + 3{x^3} - 27x - 81\)
Đáp án : C
\(\begin{array}{l}A = {x^4} + 3{x^3} - 27x - 81\\ = ({x^4} - 81) + (3{x^3} - 27x)\\ = ({x^2} - 9)({x^2} + 9) + 3x({x^2} - 9)\\ = ({x^2} - 9)({x^2} + 3x + 9)\end{array}\)
Ta có: \({x^2} + 3x + 9 = {x^2} + 2.\frac{3}{2}x + \frac{9}{4} + \frac{{27}}{4} \ge \frac{{27}}{4} > 0,\forall x\)
Mà \(\left| x \right| < 3 \Leftrightarrow {x^2} < 9 \Leftrightarrow {x^2} - 9 < 0\)
\( \Rightarrow A = ({x^2} - 9)({x^2} + 3x + 9) < 0\) khi \(\left| x \right| < 3\).
Cho \({\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2} = mx(x + 1)\) với \(m \in \mathbb{R}\). Chọn câu đúng
Đáp án : B
Ta có:
\(\begin{array}{l}{\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2}\\ = (3{x^2} + 3x - 5 - 3{x^2} - 3x - 5)(3{x^2} + 3x - 5 + 3{x^2} + 3x + 5)\\ = - 10(6{x^2} + 6x)\\ = - 10.6x(x + 1)\\ = - 60x(x + 1)\\ = mx(x + 1)\\ \Rightarrow m = - 60 < 0\end{array}\)
Phân tích đa thức \(3{x^3} - 8{x^2} - 41x + 30\) thành nhân tử
Đáp án : A
\(\begin{array}{l}3{x^3} - 8{x^2} - 41x + 30\\ = 3{x^3} - 2{x^2} - 6{x^2} + 4x - 45x + 30\\ = \left( {3{x^3} - 2{x^2}} \right) - \left( {6{x^2} - 4x} \right) - \left( {45x - 30} \right)\\ = {x^2}(3x - 2) - 2x(3x - 2) - 15(3x - 2)\\ = ({x^2} - 2x - 15)(3x - 2)\\ = ({x^2} + 3x - 5x - 15)(3x - 2)\\ = \left[ {\left( {{x^2} + 3x} \right) - \left( {5x + 15} \right)} \right](3x - 2)\\ = \left[ {x(x + 3) - 5(x + 3)} \right](3x - 2)\\ = (3x - 2)(x - 5)(x + 3)\end{array}\)
Có bao nhiêu giá trị của x thỏa mãn \({x^3}\; + 2{x^2}\;-9x-18 = 0\)
Đáp án : D
\(\begin{array}{l}{x^3} + 2{x^2} - 9x - 18 = 0\\ \Leftrightarrow ({x^3} + 2{x^2}) - (9x - 18) = 0\\ \Leftrightarrow {x^2}(x + 2) - 9(x - 2) = 0\\ \Leftrightarrow ({x^2} - 9)(x + 2) = 0\\ \Leftrightarrow (x - 3)(x + 3)(x + 2) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 3 = 0\\x + 3 = 0\\x - 2 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = - 3\\x = - 2\end{array} \right.\end{array}\)
Chọn câu sai.
Đáp án : B
+) \({x^2} - 6x + 9 = {x^2} - 2.3x + {3^2} = {(x - 3)^2}\) nên A đúng.
+) \(\frac{{{x^2}}}{4} + 2xy + 4{y^2} = {\left( {\frac{x}{2}} \right)^2}.2.\frac{x}{2}.2y + {\left( {2y} \right)^2} = {\left( {\frac{x}{2} + 2y} \right)^2}\) nên B sai, C đúng.
+) \(4{x^2} - 4xy + {y^2} = {\left( {2x} \right)^2} - 2.2x.y + {y^2} = {(2x - y)^2}\) nên D đúng.
Cho\({x_1}\) và\({x_2}\) là hai giá trị thỏa mãn \(4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - x} \right) = 0\). Khi đó \({x_1}\; + {x_2}\;\)bằng
Đáp án : C
\(\begin{array}{l}4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - x} \right) = 0\\ \Leftrightarrow 4\left( {x - {\rm{ 5}}} \right)\; + \;2x\left( {x - {\rm{ 5}}} \right) = 0\\ \Leftrightarrow \left( {x - {\rm{ 5}}} \right)\left( {{\rm{4}} + 2x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 5 = 0\\4 + 2x = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = - 2\end{array} \right.\\ \Rightarrow {x_1} + {x_2} = 5 - 2 = 3\end{array}\)
Thực hiện phép chia: \(\left( {{x^5} + {x^3} + {x^2} + 1} \right):\left( {{x^3} + 1} \right)\)
Đáp án : A
Vì
\(\begin{array}{*{20}{l}}{{x^5} + {x^3} + {x^2}\; + 1}\\{ = {x^3}\left( {{x^2}\; + 1} \right) + {x^2}\; + 1}\\{ = \left( {{x^2}\; + 1} \right)\left( {{x^3}\; + 1} \right)}\end{array}\)
nên
\(\begin{array}{*{20}{l}}{\left( {{x^5}\; + {x^3}\; + {x^2}\; + 1} \right):\left( {{x^3}\; + 1} \right)}\\{ = \left( {{x^2}\; + 1} \right)\left( {{x^3}\; + 1} \right):\left( {{x^3}\; + 1} \right)}\\{ = \left( {{x^2}\; + 1} \right)}\end{array}\)
Nhân tử chung của biểu thức \(30{\left( {4-2x} \right)^2}\; + 3x-6\) có thể là
Đáp án : B
Ta có:
\(\begin{array}{*{20}{l}}{30{{\left( {4-2x} \right)}^2}\; + 3x-6 = 30{{\left( {2x-4} \right)}^2}\; + 3\left( {x-2} \right)}\\{ = {{30.2}^2}\left( {x-2} \right) + 3\left( {x-2} \right)}\\{ = 120{{\left( {x-2} \right)}^2}\; + 3\left( {x-2} \right)}\\{ = 3\left( {x-2} \right)\left( {40\left( {x-2} \right) + 1} \right) = 3\left( {x-2} \right)\left( {40x-79} \right)}\end{array}\)
Nhân tử chung có thể là \(3(x - 2)\).
Tính nhanh giá trị của biểu thức \({x^2} + 2x + 1 - {y^2}\) tại x = 94,5 và y = 4,5.
Đáp án : D
\({x^2}{\rm{ }} + {\rm{ }}2x{\rm{ }} + {\rm{ }}1{\rm{ }} - {\rm{ }}{y^2}{\rm{ }} = {\rm{ }}\left( {{x^2}{\rm{ }} + {\rm{ }}2x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} - {\rm{ }}{y^2}\;\) (nhóm hạng tử)
\( = {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}1} \right)^2}{\rm{ }} - {\rm{ }}{y^2}\) (áp dụng hằng đẳng thức)
\( = {\rm{ }}\left( {x{\rm{ }} + {\rm{ }}1{\rm{ }} - {\rm{ }}y} \right)\left( {x{\rm{ }} + {\rm{ }}1{\rm{ }} + {\rm{ }}y} \right)\)
Thay x = 94,5 và y = 4,5 vào biểu thức, ta được:
\(\begin{array}{l}\left( {{\rm{94,5 }} + {\rm{ }}1{\rm{ }} - 4,5} \right)\left( {{\rm{94,5 }} + {\rm{ }}1{\rm{ }} + {\rm{ 4,5}}} \right)\\ = 91.100\\ = 9100\end{array}\)
Phân tích đa thức \({x^2} - 2xy + {y^2}{{ - }}81\) thành nhân tử:
\(\left( {x - y - 9} \right)\left( {x - y + 9} \right)\).
Đáp án : B
\({x^2} - 2xy + {y^2}{\rm{ - }}81\; = \;\left( {{x^2} - 2xy + {y^2}} \right) - 81\) (nhóm 3 hạng tử đầu để xuất hiện bình phương một hiệu)
\( = {\rm{ }}{\left( {x{\rm{ }} - {\rm{ }}y} \right)^2}{\rm{ }} - {\rm{ }}{9^2}\) (áp dụng hằng đẳng thức \({A^2} - {\rm{ }}{B^2} = {\rm{ }}\left( {A{\rm{ }} - {\rm{ }}B} \right)\left( {A{\rm{ }} + {\rm{ }}B} \right)\))
\( = {\rm{ }}\left( {x{\rm{ }} - {\rm{ }}y{\rm{ }} - {\rm{ }}9} \right)\left( {x{\rm{ }} - {\rm{ }}y{\rm{ }} + {\rm{ }}9} \right)\).
Tính nhanh biểu thức \({37^2} - {13^2}\)
Đáp án : A
Áp dụng hằng đẳng thức \({A^2} - {B^2} = ({A - B}) ({A + B}) \) để thực hiện phép tính.
\(\begin{array}{l}{37^2} - {13^2}\\ = ({37 - 13}) ({37 + 13}) \\ = 24.50\\ = 1200\end{array}\)
Chọn câu sai.
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = {({x-1}) ^2}({x + 1}) \).
\({({x-1}) ^3}\; + 2({x-1}) = ({x-1}) [{({x-1}) ^2}\; + 2]\).
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) [{({x-1}) ^2}\; + 2x-2]\).
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) ({x + 3}) \).
Đáp án : D
Ta có
+) \({\left( {x-1} \right)^3} + 2{\left( {x-1} \right)^2}\)
\(= {\left( {x-1} \right)^2}\left( {x-1} \right) + 2{\left( {x-1} \right)^2}\\ = {\left( {x-1} \right)^2}(x-1 + 2\\ = {\left( {x-1} \right)^2}\left( {x + 1} \right)\)
nên A đúng
+) \( {{{\left( {x-1} \right)}^3} + 2\left( {x-1} \right)}\)
\({ = \left( {x-1} \right).{{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)}\\ = \left( {x-1} \right)[{\left( {x-1} \right)^2} + 2]\)
nên B đúng
+) \({{{\left( {x-1} \right)}^3} + 2{{\left( {x-1} \right)}^2}}\)
\({ = \left( {x-1} \right){{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)\left( {x-1} \right)}\\{ = \left( {x-1} \right)[{{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)]}\\ = \left( {x-1} \right)[{\left( {x-1} \right)^2} + 2x-2]\)
nên C đúng
+) \({{{\left( {x-1} \right)}^3} + 2{{\left( {x-1} \right)}^2}}\)
\({ = {{\left( {x-1} \right)}^2}\left( {x + 1} \right)}\\ \ne \left( {x-1} \right)\left( {x + 3} \right)\)
nên D sai
Tìm x, biết \(2 - 25{x^2} = 0\)
Đáp án : D
\({2 - 25{x^2} = 0\;}\)\((\sqrt 2 - 5x)(\sqrt 2 + 5x) = 0\)\(\sqrt 2 - 5x = 0\) hoặc \(\sqrt 2 + 5x = 0\)\(x = \frac{{\sqrt 2 }}{5}\) hoặc \(x = \frac{{ - \sqrt 2 }}{5}\)
Phân tích đa thức thành nhân tử: \({x^2} + 6x + 9\;\)
Đáp án : C
Ta dễ dàng nhận thấy \({x^2} + 2x.3 + {3^2}\)
\({x^2} + 6x + 9 = {({x + 3}) ^2}\)
Kết quả phân tích đa thức \({x^2}\;-xy + x-y\) thành nhân tử là:
\(({x + 1}) ({x - y}) \).
\(({x - y}) ({x - 1}) \).
\(({x - y}) ({x + y}) \).
\(x({x - y}) \).
Đáp án : A
Ta có:
\(\begin{array}{l}{x^2}\;-xy + x-y\\ = x(x - y) + (x - y)\\ = (x + 1)(x - y)\end{array}\)
Phân tích đa thức \(15{x^3} - 5{x^2} + 10x\) thành nhân tử.
\(5x({{x^2} - x + 1}) \).
\(5x({3{x^2} - x + 1}) \).
\(5x({3{x^2} - x + 2}) \).
Đáp án : D
Ta có:
\(\begin{array}{l}15{x^3} - 5{x^2} + 10x\\ = \;5x.3{x^2} - \;5x.x + \;5x.2\\ = \;5x({3{x^2} - x + 2}) \end{array}\)
Với a3 + b3 + c3 = 3abc thì
Gọi \({x_1};{x_2};{x_3}\) là các giá trị thỏa mãn \(4{\left( {2x-5} \right)^2}\;-9{(4{x^2}\;-25)^2}\; = 0\). Khi đó \({x_1}\; + {x_2}\; + {x_3}\) bằng
\(\frac{-5}{2}\).
Cho biểu thức \(A = {7^{19}} + {7^{20}} + {7^{21}}\). Khẳng định nào đúng cho biểu thức A.
Tính giá trị của biểu thức \(A = {x^6} - {x^4} - x({x^3} - x)\) biết \({x^3} - x = 9\)
Có bao nhiêu giá trị của x thỏa mãn\({\left( {2x-5} \right)^2}\;-4{\left( {x-2} \right)^2}\; = 0\)?
Tính giá trị của biểu thức \(A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\) tại \(x = 5\).
Cho \({x^2}\;-4{y^2}\;-2x-4y = \left( {x + my} \right)\left( {x-2y + n} \right)\) với \(m,n \in \mathbb{R}\). Tìm m và n.
Giá trị của x thỏa mãn \(5{x^2} - 10x + 5 = 0\) là
Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho
Cho \(x = 20-y\). Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức \(B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}\)
Cho \({(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2} = m(x + n)(x - 1)\). Khi đó \(\frac{m}{n}\) bằng:
Tính nhanh \(B = 5.101,5 - 50.0,15\)
Cho \(\left| x \right| < 3\). Khẳng định nào sau đây đúng khi nói về giá trị của biểu thức \(A = {x^4} + 3{x^3} - 27x - 81\)
Cho \({\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2} = mx(x + 1)\) với \(m \in \mathbb{R}\). Chọn câu đúng
Phân tích đa thức \(3{x^3} - 8{x^2} - 41x + 30\) thành nhân tử
Có bao nhiêu giá trị của x thỏa mãn \({x^3}\; + 2{x^2}\;-9x-18 = 0\)
Chọn câu sai.
Cho\({x_1}\) và\({x_2}\) là hai giá trị thỏa mãn \(4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - x} \right) = 0\). Khi đó \({x_1}\; + {x_2}\;\)bằng
Thực hiện phép chia: \(\left( {{x^5} + {x^3} + {x^2} + 1} \right):\left( {{x^3} + 1} \right)\)
Nhân tử chung của biểu thức \(30{\left( {4-2x} \right)^2}\; + 3x-6\) có thể là
Tính nhanh giá trị của biểu thức \({x^2} + 2x + 1 - {y^2}\) tại x = 94,5 và y = 4,5.
Phân tích đa thức \({x^2} - 2xy + {y^2}{{ - }}81\) thành nhân tử:
\(\left( {x - y - 9} \right)\left( {x - y + 9} \right)\).
Tính nhanh biểu thức \({37^2} - {13^2}\)
Chọn câu sai.
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = {({x-1}) ^2}({x + 1}) \).
\({({x-1}) ^3}\; + 2({x-1}) = ({x-1}) [{({x-1}) ^2}\; + 2]\).
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) [{({x-1}) ^2}\; + 2x-2]\).
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) ({x + 3}) \).
Tìm x, biết \(2 - 25{x^2} = 0\)
Phân tích đa thức thành nhân tử: \({x^2} + 6x + 9\;\)
Kết quả phân tích đa thức \({x^2}\;-xy + x-y\) thành nhân tử là:
\(({x + 1}) ({x - y}) \).
\(({x - y}) ({x - 1}) \).
\(({x - y}) ({x + y}) \).
\(x({x - y}) \).
Phân tích đa thức \(15{x^3} - 5{x^2} + 10x\) thành nhân tử.
\(5x({{x^2} - x + 1}) \).
\(5x({3{x^2} - x + 1}) \).
\(5x({3{x^2} - x + 2}) \).
Với a3 + b3 + c3 = 3abc thì
Đáp án : C
Từ đẳng thức đã cho suy ra \({a^3}\; + {b^3}\; + {c^3}\; - 3abc = 0\)
\({b^3}\; + {c^3}\; = \left( {b + c} \right)\left( {{b^2}\; + {c^2}\; - bc} \right)\)\( = \left( {b + c} \right)\left[ {{{\left( {b + c} \right)}^2}\; - 3bc} \right]\)\( = {\left( {b + c} \right)^3}\; - 3bc\left( {b + c} \right)\)\( \Rightarrow {a^3}\; + {b^3}\; + {c^3}\; - 3abc = {a^3}\; + \left( {{b^3}\; + {c^3}} \right) - 3abc\)\( = {a^3}\; + {\left( {b + c} \right)^3} - 3bc\left( {b + c} \right) - 3abc\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}} \right) - \left[ {3bc\left( {b + c} \right) + 3abc} \right]\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}} \right) - 3bc\left( {a + b + c} \right)\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - a\left( {b + c} \right) + {{\left( {b + c} \right)}^2}\; - 3bc} \right)\)\( = \left( {a + b + c} \right)\left( {{a^2}\; - ab\; - ac + {b^2}\; + 2bc + {c^2}\; - 3bc} \right)\)\( = \left( {a + b + c} \right)\left( {{a^2}\; + {b^2}\; + {c^2}\; - ab - ac - bc} \right)\)
Do đó nếu \({a^3}\; + \left( {{b^3}\; + {c^3}} \right) - 3abc = 0\) thì \(a + b + c\; = 0\) hoặc \({a^2}\; + {b^2}\; + {c^2}\; - ab - ac - bc = 0\)
Mà \({a^2}\; + {b^2}\; + {c^2}\; - ab - ac - bc = \left[ {{{\left( {a - b} \right)}^2}\; + {{\left( {a - c} \right)}^2}\; + {{\left( {b - c} \right)}^2}} \right]\)
Nếu \({\left( {a - b} \right)^2}\; + {\left( {a - c} \right)^2}\; + {\left( {b - c} \right)^2}\; = 0 \Leftrightarrow \;\left\{ {\begin{array}{*{20}{l}}{a - b = 0}\\{b - c = 0}\\{a - c = 0}\end{array}} \right. \Rightarrow a = b = c\)
Vậy \({a^3}\; + \left( {{b^3}\; + {c^3}} \right) = 3abc\) thì \(a = b = c\) hoặc \(a + b + c = 0\).
Gọi \({x_1};{x_2};{x_3}\) là các giá trị thỏa mãn \(4{\left( {2x-5} \right)^2}\;-9{(4{x^2}\;-25)^2}\; = 0\). Khi đó \({x_1}\; + {x_2}\; + {x_3}\) bằng
\(\frac{-5}{2}\).
Đáp án : D
Sử dụng hằng đẳng thức \(a^2 - b^2 = (a-b)(a+b)\) để phân tích đa thức thành nhân tử.
\(\left( {2x-5} \right)^2-9{(4{x^2}-25)^2}= 0\)\(4{{\left( {2x-5} \right)}^2}-9{{[{{\left( {2x} \right)}^2}-{5^2}]}^2}= 0\)\(4{{\left( {2x-5} \right)}^2}-9{{\left[ {\left( {2x-5} \right)\left( {2x + 5} \right)} \right]}^2}= 0\)\(4{{\left( {2x-5} \right)}^2}-9{{\left( {{{2x }}-5} \right)}^2}{{\left( {2x + 5} \right)}^2}= 0\)\(\left( {2x-5} \right)^2[4-9{{\left( {2x + 5} \right)}^2}] = 0\)\(\left( {2x-5} \right)^2[4-{{\left( {3\left( {2x + 5} \right)} \right)}^2}] = 0\)\(\left( {2x-5} \right)^2({2^2}-{{\left( {6x + 15} \right)}^2}) = 0\)\(\left( {2x-5} \right)^2({2^2}-{{\left( {6x + 15} \right)}^2}) = 0\)\(\left( {2x-5} \right)^2\left( {2 + {{ 6}}x + 15} \right)\left( {2-{{ 6}}x-15} \right) = 0\)\(\left( {2x-5} \right)^2\left( {6x + 17} \right)\left( { - 6x-13} \right) = 0\)Suy ra \(x = \frac{5}{2}\) hoặc \(x = \frac{{ - 17}}{6}\) hoặc \(x = \frac{{-13}}{6}\)Suy ra \({x_1} + {x_2} + {x_3} = \frac{5}{2} - \frac{{17}}{6} + \frac{{-13}}{6} = \frac{{15 - 17 - 13}}{6} = \frac{-5}{2}\)
Cho biểu thức \(A = {7^{19}} + {7^{20}} + {7^{21}}\). Khẳng định nào đúng cho biểu thức A.
Đáp án : C
\(\begin{array}{l}A = {7^{19}} + {7^{20}} + {7^{21}}\\ = {7^{19}} + {7^{19}}.7 + {7^{19}}{.7^2}\\ = {7^{19}}.(1 + 7 + {7^2})\\ = {7^{19}}.57\end{array}\)
Do \({7^{19}} \vdots 7 \Rightarrow {7^{19}}.57 \vdots 7\) (A sai)
Ta có \({7^{19}}\) là số lẻ, 57 là số lẻ nên tích \({7^{19}}.57\) là số lẻ \( \Rightarrow {7^{19}}.57\) không chia hết cho 2. (B sai)
A chia hết cho 57. (C đúng)
A chia hết cho 57 nhưng A không chia hết cho 2 nên A không chia hết cho 57.2 = 114 (D sai)
Tính giá trị của biểu thức \(A = {x^6} - {x^4} - x({x^3} - x)\) biết \({x^3} - x = 9\)
Đáp án : D
\(\begin{array}{l}A = {x^6} - {x^4} - x({x^3} - x)\\ = {x^3}.{x^3} - {x^3}.x - x\left( {{x^3} - x} \right)\\ = {x^3}({x^3} - x) - x({x^3} - x)\\ = \left( {{x^3} - x} \right)\left( {{x^3} - x} \right)\\ = {\left( {{x^3} - x} \right)^2}\end{array}\)
Với \({x^3} - x = 9\), giá trị của biểu thức \(A = {9^2} = 81\)
Có bao nhiêu giá trị của x thỏa mãn\({\left( {2x-5} \right)^2}\;-4{\left( {x-2} \right)^2}\; = 0\)?
Đáp án : B
\(\begin{array}{*{20}{l}}{{{\left( {2x-5} \right)}^2}\;-4{{\left( {x-2} \right)}^2}\; = 0}\\{ \Leftrightarrow {{\left( {2x-5} \right)}^2}\;-{{\left[ {2\left( {x-2} \right)} \right]}^2}\; = 0}\\{ \Leftrightarrow {{\left( {2x-5} \right)}^2}\;-{{\left( {2x-4} \right)}^2}\; = 0}\\{ \Leftrightarrow \left( {2x-5 + 2x-4} \right)\left( {2x-5-2x + 4} \right) = 0}\\{ \Leftrightarrow \left( {4x-9} \right).\left( { - 1} \right) = 0}\\{ \Leftrightarrow - 4x + 9 = 0}\\{ \Leftrightarrow 4x = 9}\\{ \Leftrightarrow x = \;\frac{9}{4}}\end{array}\)
Tính giá trị của biểu thức \(A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\) tại \(x = 5\).
Đáp án : B
\(\begin{array}{l}A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\\\begin{array}{*{20}{l}}{ \Leftrightarrow A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + \left( {x-1} \right)}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-3} \right) + \left( {x-2} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-3 + 1} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-2} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)[{{\left( {x-2} \right)}^2}\; + 1]}\end{array}\end{array}\)
Tại x = 5, ta có:
\(A = \left( {5-1} \right)[{\left( {5-2} \right)^2}\; + 1] = 4.({3^2}\; + 1) = 4.\left( {9 + 1} \right) = 4.10 = 40\)
Cho \({x^2}\;-4{y^2}\;-2x-4y = \left( {x + my} \right)\left( {x-2y + n} \right)\) với \(m,n \in \mathbb{R}\). Tìm m và n.
Đáp án : C
Ta có:
\(\begin{array}{*{20}{l}}{{x^2}\;-4{y^2}\;-2x-4y}\\{ = \left( {{x^2}\;-4{y^2}} \right)-\left( {2x + 4y} \right)}\\{ = \left( {x-2y} \right)\left( {x + 2y} \right)-2\left( {x + 2y} \right)}\\{ = \left( {x + 2y} \right)\left( {x-2y-2} \right)}\end{array}\)
Suy ra m = 2, n = -2
Giá trị của x thỏa mãn \(5{x^2} - 10x + 5 = 0\) là
Đáp án : A
\(\begin{array}{l}5{x^2} - 10x + 5 = 0\\ \Leftrightarrow 5({x^2} - 2x + 1) = 0\\ \Leftrightarrow {(x - 1)^2} = 0\\ \Leftrightarrow x - 1 = 0\\ \Leftrightarrow x = 1\end{array}\)
Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho
Đáp án : B
Gọi hai số lẻ liên tiếp là \(2k-1;2k + 1(k \in N*)\)
Theo bài ra ta có:
\({\left( {2k + 1} \right)^{2}}-{\left( {2k-1} \right)^{2}} = 4{k^2} + 4k + 1-4{k^2} + 4k-1 = 8k \vdots 8,\forall k \in \mathbb{N}*\)
Cho \(x = 20-y\). Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức \(B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}\)
Đáp án : D
Phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức.
\(\begin{array}{*{20}{l}}{B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}}\\{ = \left( {{x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}} \right) + \left( {{x^2}\; + 2xy + {y^2}} \right)}\\{ = {{\left( {x + y} \right)}^3}\; + {{\left( {x + y} \right)}^2}\; = {{\left( {x + y} \right)}^2}\left( {x + y + 1} \right)}\end{array}\)
Vì \(x = 20-y\) nên \(x + y = 20\). Thay \(x + y = 20\) vào \(B = {\left( {x + y} \right)^2}\left( {x + y + 1} \right)\) ta được:
\(B = {\left( {20} \right)^2}\left( {{\rm{20 }} + 1} \right) = 400.21 = 8400\).
Vậy \(B > 8300\) khi \(x = 20-y\).
Cho \({(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2} = m(x + n)(x - 1)\). Khi đó \(\frac{m}{n}\) bằng:
Đáp án : B
\(\begin{array}{l}{(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2}\\ = (3{x^2} + 6x - 18 - 3{x^2} - 6x)(3{x^2} + 6x - 18 + 3{x^2} + 6x)\\ = - 18(6{x^2} + 12x - 18)\\ = - 18.6({x^2} + 2x - 3)\\ = - 108({x^2} + 2x - 3)\\ = - 108({x^2} - x + 3x - 3)\\ = - 108\left[ {x(x - 1) + 3(x - 1)} \right]\\ = - 108(x + 3)(x - 1)\end{array}\)
Khi đó, m = -108; n = 3 \( \Rightarrow \frac{m}{n} = \frac{{ - 108}}{3} = - 36\)
Tính nhanh \(B = 5.101,5 - 50.0,15\)
Đáp án : C
\(\begin{array}{l}B = 5.101,5 - 50.0,15\\ = 5.101,5 - 5.1,5\\ = 5(101,5 - 1,5)\\ = 5.100\\ = 500\end{array}\)
Cho \(\left| x \right| < 3\). Khẳng định nào sau đây đúng khi nói về giá trị của biểu thức \(A = {x^4} + 3{x^3} - 27x - 81\)
Đáp án : C
\(\begin{array}{l}A = {x^4} + 3{x^3} - 27x - 81\\ = ({x^4} - 81) + (3{x^3} - 27x)\\ = ({x^2} - 9)({x^2} + 9) + 3x({x^2} - 9)\\ = ({x^2} - 9)({x^2} + 3x + 9)\end{array}\)
Ta có: \({x^2} + 3x + 9 = {x^2} + 2.\frac{3}{2}x + \frac{9}{4} + \frac{{27}}{4} \ge \frac{{27}}{4} > 0,\forall x\)
Mà \(\left| x \right| < 3 \Leftrightarrow {x^2} < 9 \Leftrightarrow {x^2} - 9 < 0\)
\( \Rightarrow A = ({x^2} - 9)({x^2} + 3x + 9) < 0\) khi \(\left| x \right| < 3\).
Cho \({\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2} = mx(x + 1)\) với \(m \in \mathbb{R}\). Chọn câu đúng
Đáp án : B
Ta có:
\(\begin{array}{l}{\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2}\\ = (3{x^2} + 3x - 5 - 3{x^2} - 3x - 5)(3{x^2} + 3x - 5 + 3{x^2} + 3x + 5)\\ = - 10(6{x^2} + 6x)\\ = - 10.6x(x + 1)\\ = - 60x(x + 1)\\ = mx(x + 1)\\ \Rightarrow m = - 60 < 0\end{array}\)
Phân tích đa thức \(3{x^3} - 8{x^2} - 41x + 30\) thành nhân tử
Đáp án : A
\(\begin{array}{l}3{x^3} - 8{x^2} - 41x + 30\\ = 3{x^3} - 2{x^2} - 6{x^2} + 4x - 45x + 30\\ = \left( {3{x^3} - 2{x^2}} \right) - \left( {6{x^2} - 4x} \right) - \left( {45x - 30} \right)\\ = {x^2}(3x - 2) - 2x(3x - 2) - 15(3x - 2)\\ = ({x^2} - 2x - 15)(3x - 2)\\ = ({x^2} + 3x - 5x - 15)(3x - 2)\\ = \left[ {\left( {{x^2} + 3x} \right) - \left( {5x + 15} \right)} \right](3x - 2)\\ = \left[ {x(x + 3) - 5(x + 3)} \right](3x - 2)\\ = (3x - 2)(x - 5)(x + 3)\end{array}\)
Có bao nhiêu giá trị của x thỏa mãn \({x^3}\; + 2{x^2}\;-9x-18 = 0\)
Đáp án : D
\(\begin{array}{l}{x^3} + 2{x^2} - 9x - 18 = 0\\ \Leftrightarrow ({x^3} + 2{x^2}) - (9x - 18) = 0\\ \Leftrightarrow {x^2}(x + 2) - 9(x - 2) = 0\\ \Leftrightarrow ({x^2} - 9)(x + 2) = 0\\ \Leftrightarrow (x - 3)(x + 3)(x + 2) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 3 = 0\\x + 3 = 0\\x - 2 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = - 3\\x = - 2\end{array} \right.\end{array}\)
Chọn câu sai.
Đáp án : B
+) \({x^2} - 6x + 9 = {x^2} - 2.3x + {3^2} = {(x - 3)^2}\) nên A đúng.
+) \(\frac{{{x^2}}}{4} + 2xy + 4{y^2} = {\left( {\frac{x}{2}} \right)^2}.2.\frac{x}{2}.2y + {\left( {2y} \right)^2} = {\left( {\frac{x}{2} + 2y} \right)^2}\) nên B sai, C đúng.
+) \(4{x^2} - 4xy + {y^2} = {\left( {2x} \right)^2} - 2.2x.y + {y^2} = {(2x - y)^2}\) nên D đúng.
Cho\({x_1}\) và\({x_2}\) là hai giá trị thỏa mãn \(4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - x} \right) = 0\). Khi đó \({x_1}\; + {x_2}\;\)bằng
Đáp án : C
\(\begin{array}{l}4\left( {x - 5} \right) - {\rm{ 2}}x\left( {{\rm{5 }} - x} \right) = 0\\ \Leftrightarrow 4\left( {x - {\rm{ 5}}} \right)\; + \;2x\left( {x - {\rm{ 5}}} \right) = 0\\ \Leftrightarrow \left( {x - {\rm{ 5}}} \right)\left( {{\rm{4}} + 2x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 5 = 0\\4 + 2x = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = - 2\end{array} \right.\\ \Rightarrow {x_1} + {x_2} = 5 - 2 = 3\end{array}\)
Thực hiện phép chia: \(\left( {{x^5} + {x^3} + {x^2} + 1} \right):\left( {{x^3} + 1} \right)\)
Đáp án : A
Vì
\(\begin{array}{*{20}{l}}{{x^5} + {x^3} + {x^2}\; + 1}\\{ = {x^3}\left( {{x^2}\; + 1} \right) + {x^2}\; + 1}\\{ = \left( {{x^2}\; + 1} \right)\left( {{x^3}\; + 1} \right)}\end{array}\)
nên
\(\begin{array}{*{20}{l}}{\left( {{x^5}\; + {x^3}\; + {x^2}\; + 1} \right):\left( {{x^3}\; + 1} \right)}\\{ = \left( {{x^2}\; + 1} \right)\left( {{x^3}\; + 1} \right):\left( {{x^3}\; + 1} \right)}\\{ = \left( {{x^2}\; + 1} \right)}\end{array}\)
Nhân tử chung của biểu thức \(30{\left( {4-2x} \right)^2}\; + 3x-6\) có thể là
Đáp án : B
Ta có:
\(\begin{array}{*{20}{l}}{30{{\left( {4-2x} \right)}^2}\; + 3x-6 = 30{{\left( {2x-4} \right)}^2}\; + 3\left( {x-2} \right)}\\{ = {{30.2}^2}\left( {x-2} \right) + 3\left( {x-2} \right)}\\{ = 120{{\left( {x-2} \right)}^2}\; + 3\left( {x-2} \right)}\\{ = 3\left( {x-2} \right)\left( {40\left( {x-2} \right) + 1} \right) = 3\left( {x-2} \right)\left( {40x-79} \right)}\end{array}\)
Nhân tử chung có thể là \(3(x - 2)\).
Tính nhanh giá trị của biểu thức \({x^2} + 2x + 1 - {y^2}\) tại x = 94,5 và y = 4,5.
Đáp án : D
\({x^2}{\rm{ }} + {\rm{ }}2x{\rm{ }} + {\rm{ }}1{\rm{ }} - {\rm{ }}{y^2}{\rm{ }} = {\rm{ }}\left( {{x^2}{\rm{ }} + {\rm{ }}2x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} - {\rm{ }}{y^2}\;\) (nhóm hạng tử)
\( = {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}1} \right)^2}{\rm{ }} - {\rm{ }}{y^2}\) (áp dụng hằng đẳng thức)
\( = {\rm{ }}\left( {x{\rm{ }} + {\rm{ }}1{\rm{ }} - {\rm{ }}y} \right)\left( {x{\rm{ }} + {\rm{ }}1{\rm{ }} + {\rm{ }}y} \right)\)
Thay x = 94,5 và y = 4,5 vào biểu thức, ta được:
\(\begin{array}{l}\left( {{\rm{94,5 }} + {\rm{ }}1{\rm{ }} - 4,5} \right)\left( {{\rm{94,5 }} + {\rm{ }}1{\rm{ }} + {\rm{ 4,5}}} \right)\\ = 91.100\\ = 9100\end{array}\)
Phân tích đa thức \({x^2} - 2xy + {y^2}{{ - }}81\) thành nhân tử:
\(\left( {x - y - 9} \right)\left( {x - y + 9} \right)\).
Đáp án : B
\({x^2} - 2xy + {y^2}{\rm{ - }}81\; = \;\left( {{x^2} - 2xy + {y^2}} \right) - 81\) (nhóm 3 hạng tử đầu để xuất hiện bình phương một hiệu)
\( = {\rm{ }}{\left( {x{\rm{ }} - {\rm{ }}y} \right)^2}{\rm{ }} - {\rm{ }}{9^2}\) (áp dụng hằng đẳng thức \({A^2} - {\rm{ }}{B^2} = {\rm{ }}\left( {A{\rm{ }} - {\rm{ }}B} \right)\left( {A{\rm{ }} + {\rm{ }}B} \right)\))
\( = {\rm{ }}\left( {x{\rm{ }} - {\rm{ }}y{\rm{ }} - {\rm{ }}9} \right)\left( {x{\rm{ }} - {\rm{ }}y{\rm{ }} + {\rm{ }}9} \right)\).
Tính nhanh biểu thức \({37^2} - {13^2}\)
Đáp án : A
Áp dụng hằng đẳng thức \({A^2} - {B^2} = ({A - B}) ({A + B}) \) để thực hiện phép tính.
\(\begin{array}{l}{37^2} - {13^2}\\ = ({37 - 13}) ({37 + 13}) \\ = 24.50\\ = 1200\end{array}\)
Chọn câu sai.
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = {({x-1}) ^2}({x + 1}) \).
\({({x-1}) ^3}\; + 2({x-1}) = ({x-1}) [{({x-1}) ^2}\; + 2]\).
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) [{({x-1}) ^2}\; + 2x-2]\).
\({({x-1}) ^3}\; + 2{({x-1}) ^2}\; = ({x-1}) ({x + 3}) \).
Đáp án : D
Ta có
+) \({\left( {x-1} \right)^3} + 2{\left( {x-1} \right)^2}\)
\(= {\left( {x-1} \right)^2}\left( {x-1} \right) + 2{\left( {x-1} \right)^2}\\ = {\left( {x-1} \right)^2}(x-1 + 2\\ = {\left( {x-1} \right)^2}\left( {x + 1} \right)\)
nên A đúng
+) \( {{{\left( {x-1} \right)}^3} + 2\left( {x-1} \right)}\)
\({ = \left( {x-1} \right).{{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)}\\ = \left( {x-1} \right)[{\left( {x-1} \right)^2} + 2]\)
nên B đúng
+) \({{{\left( {x-1} \right)}^3} + 2{{\left( {x-1} \right)}^2}}\)
\({ = \left( {x-1} \right){{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)\left( {x-1} \right)}\\{ = \left( {x-1} \right)[{{\left( {x-1} \right)}^2} + 2\left( {x-1} \right)]}\\ = \left( {x-1} \right)[{\left( {x-1} \right)^2} + 2x-2]\)
nên C đúng
+) \({{{\left( {x-1} \right)}^3} + 2{{\left( {x-1} \right)}^2}}\)
\({ = {{\left( {x-1} \right)}^2}\left( {x + 1} \right)}\\ \ne \left( {x-1} \right)\left( {x + 3} \right)\)
nên D sai
Tìm x, biết \(2 - 25{x^2} = 0\)
Đáp án : D
\({2 - 25{x^2} = 0\;}\)\((\sqrt 2 - 5x)(\sqrt 2 + 5x) = 0\)\(\sqrt 2 - 5x = 0\) hoặc \(\sqrt 2 + 5x = 0\)\(x = \frac{{\sqrt 2 }}{5}\) hoặc \(x = \frac{{ - \sqrt 2 }}{5}\)
Phân tích đa thức thành nhân tử: \({x^2} + 6x + 9\;\)
Đáp án : C
Ta dễ dàng nhận thấy \({x^2} + 2x.3 + {3^2}\)
\({x^2} + 6x + 9 = {({x + 3}) ^2}\)
Kết quả phân tích đa thức \({x^2}\;-xy + x-y\) thành nhân tử là:
\(({x + 1}) ({x - y}) \).
\(({x - y}) ({x - 1}) \).
\(({x - y}) ({x + y}) \).
\(x({x - y}) \).
Đáp án : A
Ta có:
\(\begin{array}{l}{x^2}\;-xy + x-y\\ = x(x - y) + (x - y)\\ = (x + 1)(x - y)\end{array}\)
Phân tích đa thức \(15{x^3} - 5{x^2} + 10x\) thành nhân tử.
\(5x({{x^2} - x + 1}) \).
\(5x({3{x^2} - x + 1}) \).
\(5x({3{x^2} - x + 2}) \).
Đáp án : D
Ta có:
\(\begin{array}{l}15{x^3} - 5{x^2} + 10x\\ = \;5x.3{x^2} - \;5x.x + \;5x.2\\ = \;5x({3{x^2} - x + 2}) \end{array}\)
Bài 9 trong chương trình Toán 8 Kết nối tri thức tập trung vào một trong những kỹ năng quan trọng nhất của đại số: phân tích đa thức thành nhân tử. Kỹ năng này không chỉ cần thiết để giải các bài toán đại số mà còn là nền tảng cho việc học các kiến thức toán học nâng cao hơn. Bài viết này sẽ cung cấp một cái nhìn tổng quan về các phương pháp phân tích đa thức thành nhân tử, cùng với các bài tập trắc nghiệm để bạn luyện tập và kiểm tra kiến thức.
Dưới đây là một số bài tập trắc nghiệm minh họa để bạn luyện tập:
Đáp án: A
Đáp án: C
Đáp án: A
Phân tích đa thức thành nhân tử có rất nhiều ứng dụng trong toán học và các lĩnh vực khác:
Phân tích đa thức thành nhân tử là một kỹ năng quan trọng trong chương trình Toán 8 Kết nối tri thức. Hy vọng rằng, với những kiến thức và bài tập trắc nghiệm được cung cấp trong bài viết này, bạn sẽ nắm vững kỹ năng này và tự tin hơn trong quá trình học tập. Hãy luyện tập thường xuyên để đạt được kết quả tốt nhất!