Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức

Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức

Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức

Chào mừng các em học sinh đến với bài trắc nghiệm Toán 7 Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác. Bài trắc nghiệm này được thiết kế để giúp các em ôn tập và củng cố kiến thức về các loại hình lăng trụ đứng, cách tính diện tích xung quanh, diện tích toàn phần và thể tích của chúng.

Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, có đáp án chi tiết, giúp các em tự đánh giá năng lực và chuẩn bị tốt nhất cho các bài kiểm tra sắp tới.

Đề bài

    Câu 1 :

    Hình lăng trụ đứng tam giác có tất cả bao nhiêu cạnh?

    • A.

      9

    • B.

      6

    • C.

      12

    • D.

      8

    Câu 2 :

    Phát biểu nào sau đây là đúng?

    • A.

      Các mặt bên của hình lăng trụ đứng là các hình chữ nhật.

    • B.

      Các mặt bên của hình lăng trụ đứng là các hình thang cân.

    • C.

      Các mặt đáy của hình lăng trụ đứng là các hình chữ nhật.

    • D.

      Các mặt đáy của hình lăng trụ đứng là các hình tam giác.

    Câu 3 :

    Tính thể tích của hình lăng trụ đứng có chiều cao \(20cm\), đáy là một tam giác vuông có các cạnh góc vuông lần lượt là \(8cm\) và \(10cm\).

    • A.

      \(800c{m^3}\)

    • B.

      \(400c{m^3}\)

    • C.

      \(600c{m^3}\)

    • D.

      \(500c{m^3}\)

    Câu 4 :

    Tính thể tích phần không gian của một ngôi nhà dạng một lăng trụ đứng theo các kích thước đã cho trong hình.

    Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức 0 1

    • A.

      369 m3

    • B.

      315 m3

    • C.

      327 m3

    • D.

      423 m3

    Câu 5 :

    Một chiếc đèn lồng có dạng hình lăng trụ đứng, chiều cao \(40cm\) và đáy là lục giác đều cạnh \(18cm\). Nếu giữ nguyên chiều cao của đèn thì phải giảm độ dài cạnh đáy bao nhiêu lần để thể tích của đèn giảm đi hai lần.

    • A.

      \(\sqrt 2 \)lần

    • B.

      2 lần

    • C.

      4 lần

    • D.

      8 lần

    Câu 6 :

    Hình lăng trụ đứng tứ giác có đáy là hình thang cân có bao nhiêu mặt bên?

    • A.

      \(3\)

    • B.

      \(4\)

    • C.

      \(5\)

    • D.

      \(6\)

    Câu 7 :

    Một hình lăng trụ đứng có đáy là hình chữ nhật có các kích thước \(3cm,\,\,8cm\). Chiều cao của hình lăng trụ đứng là \(2cm\). Diện tích xung quanh của hình lăng trụ đứng là

    • A.

      \(44c{m^2}\)

    • B.

      \(24c{m^2}\)

    • C.

      \(48c{m^2}\)

    • D.

      \(22c{m^2}\)

    Câu 8 :

    Cho hình lăng trụ đứng có diện tích xung quanh bằng 336 cm2, chiều cao 14 cm. Khi đó, chu vi đáy của hình lăng trụ đứng là:

    • A.

      \(12cm\)

    • B.

      \(24cm\)

    • C.

      \(36cm\)

    • D.

      \(48cm\)

    Câu 9 :

    Một hình lăng trụ đều (tức là lăng trụ có đáy là đa giác đều) có tất cả \(18\) cạnh, mỗi cạnh dài \(6\sqrt 3 \) cm. Tính thể tích của hình lăng trụ đó.

    • A.

      864 cm3

    • B.

      1944 cm3

    • C.

      2916 cm3

    • D.

      1122 cm3

    Câu 10 :

    Một hình lăng trụ đứng có đáy là hình chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng \(6cm\). Một kích thước của đáy bằng \(10cm\), tính kích thước còn lại.

    • A.

      \(15cm\)

    • B.

      \(20cm\)

    • C.

      \(25cm\)

    • D.

      \(10cm\)

    Lời giải và đáp án

    Câu 1 :

    Hình lăng trụ đứng tam giác có tất cả bao nhiêu cạnh?

    • A.

      9

    • B.

      6

    • C.

      12

    • D.

      8

    Đáp án : A

    Phương pháp giải :

    Đặc điểm hình lăng trụ đứng tam giác

    Lời giải chi tiết :

    Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức 0 2

    Các cạnh của hình lăng trụ đứng tam giác là: \(AB,\,\,AC,\,\,BC,\,\,{A_1}{B_1},\)\({A_1}{C_1},\,\,{B_1}{C_1},\,\,A{A_1},\,\,\,B{B_1},\,C{C_1}\)

    Vậy hình lăng trụ đứng tam giác có tất cả \(9\) cạnh.

    Câu 2 :

    Phát biểu nào sau đây là đúng?

    • A.

      Các mặt bên của hình lăng trụ đứng là các hình chữ nhật.

    • B.

      Các mặt bên của hình lăng trụ đứng là các hình thang cân.

    • C.

      Các mặt đáy của hình lăng trụ đứng là các hình chữ nhật.

    • D.

      Các mặt đáy của hình lăng trụ đứng là các hình tam giác.

    Đáp án : A

    Phương pháp giải :

    Đặc điểm hình lăng trụ đứng tam giác

    Lời giải chi tiết :

    Hình lăng trụ đứng có hai đáy là những đa giác, các mặt bên là những hình chữ nhật.

    Câu 3 :

    Tính thể tích của hình lăng trụ đứng có chiều cao \(20cm\), đáy là một tam giác vuông có các cạnh góc vuông lần lượt là \(8cm\) và \(10cm\).

    • A.

      \(800c{m^3}\)

    • B.

      \(400c{m^3}\)

    • C.

      \(600c{m^3}\)

    • D.

      \(500c{m^3}\)

    Đáp án : A

    Phương pháp giải :

    + Tính diện tích đáy là tam giác vuông: Sđáy = \(\frac{1}{2}\). Cạnh góc vuông . cạnh góc vuông

    + Tính thể tích: V = Sđáy . h

    Lời giải chi tiết :

    Diện tích đáy của hình lăng trụ đứng là:\(\dfrac{1}{2}.8.10=40 cm^3\)

    Thể tích của hình lăng trụ đứng là: \( 40.20= 800\,\,\left( {c{m^3}} \right)\)

    Vậy thể tích của hình lăng trụ đứng là \(800\,\,\left( {c{m^3}} \right)\).

    Câu 4 :

    Tính thể tích phần không gian của một ngôi nhà dạng một lăng trụ đứng theo các kích thước đã cho trong hình.

    Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức 0 3

    • A.

      369 m3

    • B.

      315 m3

    • C.

      327 m3

    • D.

      423 m3

    Đáp án : A

    Phương pháp giải :

    Tính tổng của thể tích hình lăng trụ và thể tích hình hộp chữ nhật.

    Lời giải chi tiết :

    Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức 0 4

    Theọ hình vẽ, ngôi nhà gồm hai phần: một phần là lăng trụ đứng có đáy là tam giác cân cạnh đáy bằng \(6m\), chiều cao đáy \(1,2m\), chiều cao lăng trụ bằng \(15m\); phần còn lại là hình hộp chữ nhật có kích thước đáy là \(6m\) và \(15m\), chiều cao \(3,5m\).

    Thể tích hình lăng trụ tam giác là:

    \({V_1} = \frac{1}{2}.6.1,2.15 = 54{\rm{ }}\left( {{m^3}} \right)\)

    Thể tích hình hộp chữ nhật là:

    \({V_2} = 6.15.3,5 = 315{\rm{ }}\left( {{m^3}} \right)\)

    Thể tích phần không gian bên trong của cả ngôi nhà là:

    \(V = {V_1} + {V_2} = 54 + 315 = 369{\rm{ }}\left( {{m^3}} \right)\)

    Thể tích phần không gian của ngôi nhà là \(369{\rm{ }}\left( {{m^3}} \right)\)

    Câu 5 :

    Một chiếc đèn lồng có dạng hình lăng trụ đứng, chiều cao \(40cm\) và đáy là lục giác đều cạnh \(18cm\). Nếu giữ nguyên chiều cao của đèn thì phải giảm độ dài cạnh đáy bao nhiêu lần để thể tích của đèn giảm đi hai lần.

    • A.

      \(\sqrt 2 \)lần

    • B.

      2 lần

    • C.

      4 lần

    • D.

      8 lần

    Đáp án : A

    Phương pháp giải :

    Lập tỉ số thể tích trước và sau khi giảm độ dài cạnh đáy.

    Lời giải chi tiết :

    Diện tích đáy đèn là: \(S = \frac{{{a^2}\sqrt 3 }}{4}.6\)\( = \frac{{{{18}^2}\sqrt 3 }}{4}.6 = 486\sqrt 3 \,\,\left( {c{m^2}} \right)\)

    Gọi \(a\) và \(b\) lần lượt là độ dài cạnh đáy đèn lồng trước và sau khi giảm thể tích.

    Gọi \({S_1}\) và \({S_2}\) là các diện tích đáy tương ứng. Khi đó: \({V_1} = {S_1}.h;\,\,{V_2} = {S_2}.h\)

    Ta có: \(\frac{{{V_1}}}{{{V_2}}} = 2 \Leftrightarrow \frac{{{S_1}.h}}{{{S_2}.h}} = 2\)\( \Leftrightarrow \frac{{{S_1}}}{{{S_2}}} = 2\)

    \( \Leftrightarrow \frac{{{a^2}\sqrt 3 .6}}{4}:\frac{{{b^2}\sqrt 3 .6}}{4} = 2\)\( \Leftrightarrow {a^2}:{b^2} = 2\)\( \Leftrightarrow a:b = \sqrt 2 \)

    Vậy độ dài cạnh đáy phải giảm đi \(\sqrt 2 \) lần.

    Câu 6 :

    Hình lăng trụ đứng tứ giác có đáy là hình thang cân có bao nhiêu mặt bên?

    • A.

      \(3\)

    • B.

      \(4\)

    • C.

      \(5\)

    • D.

      \(6\)

    Đáp án : B

    Phương pháp giải :

    Đặc điểm lăng trụ đứng tứ giác

    Lời giải chi tiết :

    Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức 0 5

    Hình lăng trụ đứng \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có đáy \({A_1}{B_1}{C_1}{D_1}\) là hình thang cân, có các mặt bên là: \(AD{D_1}{A_1};\,\,AB{B_1}{A_1};\,\,DC{C_1}{D_1};\,\,BC{C_1}{B_1}\)

    Vậy hình lăng trụ đứng tứ giác đáy là hình thang cân có 4 mặt bên.

    Câu 7 :

    Một hình lăng trụ đứng có đáy là hình chữ nhật có các kích thước \(3cm,\,\,8cm\). Chiều cao của hình lăng trụ đứng là \(2cm\). Diện tích xung quanh của hình lăng trụ đứng là

    • A.

      \(44c{m^2}\)

    • B.

      \(24c{m^2}\)

    • C.

      \(48c{m^2}\)

    • D.

      \(22c{m^2}\)

    Đáp án : A

    Phương pháp giải :

    + Tính chu vi đáy là hình chữ nhật

    + Tính Sxq = chu vi đáy . chiều cao

    Lời giải chi tiết :

    Chu vi đáy của hình lăng trụ đứng là: \(\left( {8 + 3} \right).2 = 22\left( {cm} \right)\)

    Diện tích xung quanh của hình lăng trụ đứng là: \({S_{xq}} = C.h = 22.2 = 44\,\,\left( {c{m^2}} \right)\)

    Vậy diện tích xung quanh của hình lăng trụ đứng là \(44\,\,\left( {c{m^2}} \right)\)

    Câu 8 :

    Cho hình lăng trụ đứng có diện tích xung quanh bằng 336 cm2, chiều cao 14 cm. Khi đó, chu vi đáy của hình lăng trụ đứng là:

    • A.

      \(12cm\)

    • B.

      \(24cm\)

    • C.

      \(36cm\)

    • D.

      \(48cm\)

    Đáp án : B

    Phương pháp giải :

    Từ công thức Sxq = Chu vi đáy . chiều cao suy ra chu vi đáy

    Lời giải chi tiết :

    Chu vi đáy của hình lăng trụ đứng đó là:

    C = Sxq : h = 336 : 14 = 24 (cm)

    Câu 9 :

    Một hình lăng trụ đều (tức là lăng trụ có đáy là đa giác đều) có tất cả \(18\) cạnh, mỗi cạnh dài \(6\sqrt 3 \) cm. Tính thể tích của hình lăng trụ đó.

    • A.

      864 cm3

    • B.

      1944 cm3

    • C.

      2916 cm3

    • D.

      1122 cm3

    Đáp án : C

    Phương pháp giải :

    Để tìm được thể tích lăng trụ đứng khi đã biết chiều cao, ta cần tính diện tích đáy.

    Thể tích = diện tích đáy . chiều cao

    Lời giải chi tiết :

    Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức 0 6

    Gọi số cạnh của một đáy là \(n\). Khi đó số cạnh bên là \(n\).

    Suy ra, tổng số cạnh của hình lăng trụ đứng là \(n + n + n = 3n\).

    Theo đề bài, hình lăng trụ đều có tất cả 18 cạnh, ta có: \(3n = 18 \Rightarrow n = 6.\)

    Vậy hình lăng trụ đứng đã cho là hình lăng trụ lục giác đều.

    Có thể coi diện tích đáy là tổng diện tích của 6 tam giác đều, mỗi cạnh bằng \(6\sqrt 3 \) cm.

    Do đó diện tích đáy là: \(S = \frac{{{{\left( {6\sqrt 3 } \right)}^2}.\sqrt 3 }}{4}.6 = 162\sqrt 3 \) ( cm2)

    Thể tích hình lăng trụ là: \(V = S.h = 162\sqrt 3 .6\sqrt 3 \)= 2916 ( cm3)

    Thể tích hình lăng trụ là 2916 ( cm3).

    Câu 10 :

    Một hình lăng trụ đứng có đáy là hình chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng \(6cm\). Một kích thước của đáy bằng \(10cm\), tính kích thước còn lại.

    • A.

      \(15cm\)

    • B.

      \(20cm\)

    • C.

      \(25cm\)

    • D.

      \(10cm\)

    Đáp án : A

    Phương pháp giải :

    Sử dụng công thức diện tích xung quanh của hình lăng trụ đứng:

    \({S_{xq}} = C.h\)

    Trong đó, \(C\) là chu vi đáy; \(h\) là chiều cao

    Lời giải chi tiết :

    Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức 0 7

    Đặt \(AD = x\left( {cm} \right)\).

    Chu vi đáy của hình lăng trụ là: \(C = 2(AB + AD) = 2(10+x) (cm)\)

    Diện tích xung quanh của hình lăng trụ là: 

    \({S_{xq}} = C.h\)\( = 2.\left( {10 + {\rm{ }}x} \right).6\)\( = 12.\left( {10 + {\rm{ }}x} \right)\,\,\left( {c{m^2}} \right)\)

    Tổng diện tích hai đáy của hình lăng trụ là: \(2.10x = 20x\,\,(c{m^2})\)

    Theo đề bài, ta có diện tích xung quanh bằng tổng diện tích hai đáy nên \(12.\left( {10 + x} \right) = 20x\)

    Do đó \(120 + 12x = 20x\)

    Suy ra \(x = 15\,\left( {cm} \right)\)

    hay \(AD = 15\left( {cm} \right)\)

    Vậy kích thước còn lại của đáy bằng 15 cm.

    Lời giải và đáp án

      Câu 1 :

      Hình lăng trụ đứng tam giác có tất cả bao nhiêu cạnh?

      • A.

        9

      • B.

        6

      • C.

        12

      • D.

        8

      Câu 2 :

      Phát biểu nào sau đây là đúng?

      • A.

        Các mặt bên của hình lăng trụ đứng là các hình chữ nhật.

      • B.

        Các mặt bên của hình lăng trụ đứng là các hình thang cân.

      • C.

        Các mặt đáy của hình lăng trụ đứng là các hình chữ nhật.

      • D.

        Các mặt đáy của hình lăng trụ đứng là các hình tam giác.

      Câu 3 :

      Tính thể tích của hình lăng trụ đứng có chiều cao \(20cm\), đáy là một tam giác vuông có các cạnh góc vuông lần lượt là \(8cm\) và \(10cm\).

      • A.

        \(800c{m^3}\)

      • B.

        \(400c{m^3}\)

      • C.

        \(600c{m^3}\)

      • D.

        \(500c{m^3}\)

      Câu 4 :

      Tính thể tích phần không gian của một ngôi nhà dạng một lăng trụ đứng theo các kích thước đã cho trong hình.

      Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức 0 1

      • A.

        369 m3

      • B.

        315 m3

      • C.

        327 m3

      • D.

        423 m3

      Câu 5 :

      Một chiếc đèn lồng có dạng hình lăng trụ đứng, chiều cao \(40cm\) và đáy là lục giác đều cạnh \(18cm\). Nếu giữ nguyên chiều cao của đèn thì phải giảm độ dài cạnh đáy bao nhiêu lần để thể tích của đèn giảm đi hai lần.

      • A.

        \(\sqrt 2 \)lần

      • B.

        2 lần

      • C.

        4 lần

      • D.

        8 lần

      Câu 6 :

      Hình lăng trụ đứng tứ giác có đáy là hình thang cân có bao nhiêu mặt bên?

      • A.

        \(3\)

      • B.

        \(4\)

      • C.

        \(5\)

      • D.

        \(6\)

      Câu 7 :

      Một hình lăng trụ đứng có đáy là hình chữ nhật có các kích thước \(3cm,\,\,8cm\). Chiều cao của hình lăng trụ đứng là \(2cm\). Diện tích xung quanh của hình lăng trụ đứng là

      • A.

        \(44c{m^2}\)

      • B.

        \(24c{m^2}\)

      • C.

        \(48c{m^2}\)

      • D.

        \(22c{m^2}\)

      Câu 8 :

      Cho hình lăng trụ đứng có diện tích xung quanh bằng 336 cm2, chiều cao 14 cm. Khi đó, chu vi đáy của hình lăng trụ đứng là:

      • A.

        \(12cm\)

      • B.

        \(24cm\)

      • C.

        \(36cm\)

      • D.

        \(48cm\)

      Câu 9 :

      Một hình lăng trụ đều (tức là lăng trụ có đáy là đa giác đều) có tất cả \(18\) cạnh, mỗi cạnh dài \(6\sqrt 3 \) cm. Tính thể tích của hình lăng trụ đó.

      • A.

        864 cm3

      • B.

        1944 cm3

      • C.

        2916 cm3

      • D.

        1122 cm3

      Câu 10 :

      Một hình lăng trụ đứng có đáy là hình chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng \(6cm\). Một kích thước của đáy bằng \(10cm\), tính kích thước còn lại.

      • A.

        \(15cm\)

      • B.

        \(20cm\)

      • C.

        \(25cm\)

      • D.

        \(10cm\)

      Câu 1 :

      Hình lăng trụ đứng tam giác có tất cả bao nhiêu cạnh?

      • A.

        9

      • B.

        6

      • C.

        12

      • D.

        8

      Đáp án : A

      Phương pháp giải :

      Đặc điểm hình lăng trụ đứng tam giác

      Lời giải chi tiết :

      Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức 0 2

      Các cạnh của hình lăng trụ đứng tam giác là: \(AB,\,\,AC,\,\,BC,\,\,{A_1}{B_1},\)\({A_1}{C_1},\,\,{B_1}{C_1},\,\,A{A_1},\,\,\,B{B_1},\,C{C_1}\)

      Vậy hình lăng trụ đứng tam giác có tất cả \(9\) cạnh.

      Câu 2 :

      Phát biểu nào sau đây là đúng?

      • A.

        Các mặt bên của hình lăng trụ đứng là các hình chữ nhật.

      • B.

        Các mặt bên của hình lăng trụ đứng là các hình thang cân.

      • C.

        Các mặt đáy của hình lăng trụ đứng là các hình chữ nhật.

      • D.

        Các mặt đáy của hình lăng trụ đứng là các hình tam giác.

      Đáp án : A

      Phương pháp giải :

      Đặc điểm hình lăng trụ đứng tam giác

      Lời giải chi tiết :

      Hình lăng trụ đứng có hai đáy là những đa giác, các mặt bên là những hình chữ nhật.

      Câu 3 :

      Tính thể tích của hình lăng trụ đứng có chiều cao \(20cm\), đáy là một tam giác vuông có các cạnh góc vuông lần lượt là \(8cm\) và \(10cm\).

      • A.

        \(800c{m^3}\)

      • B.

        \(400c{m^3}\)

      • C.

        \(600c{m^3}\)

      • D.

        \(500c{m^3}\)

      Đáp án : A

      Phương pháp giải :

      + Tính diện tích đáy là tam giác vuông: Sđáy = \(\frac{1}{2}\). Cạnh góc vuông . cạnh góc vuông

      + Tính thể tích: V = Sđáy . h

      Lời giải chi tiết :

      Diện tích đáy của hình lăng trụ đứng là:\(\dfrac{1}{2}.8.10=40 cm^3\)

      Thể tích của hình lăng trụ đứng là: \( 40.20= 800\,\,\left( {c{m^3}} \right)\)

      Vậy thể tích của hình lăng trụ đứng là \(800\,\,\left( {c{m^3}} \right)\).

      Câu 4 :

      Tính thể tích phần không gian của một ngôi nhà dạng một lăng trụ đứng theo các kích thước đã cho trong hình.

      Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức 0 3

      • A.

        369 m3

      • B.

        315 m3

      • C.

        327 m3

      • D.

        423 m3

      Đáp án : A

      Phương pháp giải :

      Tính tổng của thể tích hình lăng trụ và thể tích hình hộp chữ nhật.

      Lời giải chi tiết :

      Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức 0 4

      Theọ hình vẽ, ngôi nhà gồm hai phần: một phần là lăng trụ đứng có đáy là tam giác cân cạnh đáy bằng \(6m\), chiều cao đáy \(1,2m\), chiều cao lăng trụ bằng \(15m\); phần còn lại là hình hộp chữ nhật có kích thước đáy là \(6m\) và \(15m\), chiều cao \(3,5m\).

      Thể tích hình lăng trụ tam giác là:

      \({V_1} = \frac{1}{2}.6.1,2.15 = 54{\rm{ }}\left( {{m^3}} \right)\)

      Thể tích hình hộp chữ nhật là:

      \({V_2} = 6.15.3,5 = 315{\rm{ }}\left( {{m^3}} \right)\)

      Thể tích phần không gian bên trong của cả ngôi nhà là:

      \(V = {V_1} + {V_2} = 54 + 315 = 369{\rm{ }}\left( {{m^3}} \right)\)

      Thể tích phần không gian của ngôi nhà là \(369{\rm{ }}\left( {{m^3}} \right)\)

      Câu 5 :

      Một chiếc đèn lồng có dạng hình lăng trụ đứng, chiều cao \(40cm\) và đáy là lục giác đều cạnh \(18cm\). Nếu giữ nguyên chiều cao của đèn thì phải giảm độ dài cạnh đáy bao nhiêu lần để thể tích của đèn giảm đi hai lần.

      • A.

        \(\sqrt 2 \)lần

      • B.

        2 lần

      • C.

        4 lần

      • D.

        8 lần

      Đáp án : A

      Phương pháp giải :

      Lập tỉ số thể tích trước và sau khi giảm độ dài cạnh đáy.

      Lời giải chi tiết :

      Diện tích đáy đèn là: \(S = \frac{{{a^2}\sqrt 3 }}{4}.6\)\( = \frac{{{{18}^2}\sqrt 3 }}{4}.6 = 486\sqrt 3 \,\,\left( {c{m^2}} \right)\)

      Gọi \(a\) và \(b\) lần lượt là độ dài cạnh đáy đèn lồng trước và sau khi giảm thể tích.

      Gọi \({S_1}\) và \({S_2}\) là các diện tích đáy tương ứng. Khi đó: \({V_1} = {S_1}.h;\,\,{V_2} = {S_2}.h\)

      Ta có: \(\frac{{{V_1}}}{{{V_2}}} = 2 \Leftrightarrow \frac{{{S_1}.h}}{{{S_2}.h}} = 2\)\( \Leftrightarrow \frac{{{S_1}}}{{{S_2}}} = 2\)

      \( \Leftrightarrow \frac{{{a^2}\sqrt 3 .6}}{4}:\frac{{{b^2}\sqrt 3 .6}}{4} = 2\)\( \Leftrightarrow {a^2}:{b^2} = 2\)\( \Leftrightarrow a:b = \sqrt 2 \)

      Vậy độ dài cạnh đáy phải giảm đi \(\sqrt 2 \) lần.

      Câu 6 :

      Hình lăng trụ đứng tứ giác có đáy là hình thang cân có bao nhiêu mặt bên?

      • A.

        \(3\)

      • B.

        \(4\)

      • C.

        \(5\)

      • D.

        \(6\)

      Đáp án : B

      Phương pháp giải :

      Đặc điểm lăng trụ đứng tứ giác

      Lời giải chi tiết :

      Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức 0 5

      Hình lăng trụ đứng \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có đáy \({A_1}{B_1}{C_1}{D_1}\) là hình thang cân, có các mặt bên là: \(AD{D_1}{A_1};\,\,AB{B_1}{A_1};\,\,DC{C_1}{D_1};\,\,BC{C_1}{B_1}\)

      Vậy hình lăng trụ đứng tứ giác đáy là hình thang cân có 4 mặt bên.

      Câu 7 :

      Một hình lăng trụ đứng có đáy là hình chữ nhật có các kích thước \(3cm,\,\,8cm\). Chiều cao của hình lăng trụ đứng là \(2cm\). Diện tích xung quanh của hình lăng trụ đứng là

      • A.

        \(44c{m^2}\)

      • B.

        \(24c{m^2}\)

      • C.

        \(48c{m^2}\)

      • D.

        \(22c{m^2}\)

      Đáp án : A

      Phương pháp giải :

      + Tính chu vi đáy là hình chữ nhật

      + Tính Sxq = chu vi đáy . chiều cao

      Lời giải chi tiết :

      Chu vi đáy của hình lăng trụ đứng là: \(\left( {8 + 3} \right).2 = 22\left( {cm} \right)\)

      Diện tích xung quanh của hình lăng trụ đứng là: \({S_{xq}} = C.h = 22.2 = 44\,\,\left( {c{m^2}} \right)\)

      Vậy diện tích xung quanh của hình lăng trụ đứng là \(44\,\,\left( {c{m^2}} \right)\)

      Câu 8 :

      Cho hình lăng trụ đứng có diện tích xung quanh bằng 336 cm2, chiều cao 14 cm. Khi đó, chu vi đáy của hình lăng trụ đứng là:

      • A.

        \(12cm\)

      • B.

        \(24cm\)

      • C.

        \(36cm\)

      • D.

        \(48cm\)

      Đáp án : B

      Phương pháp giải :

      Từ công thức Sxq = Chu vi đáy . chiều cao suy ra chu vi đáy

      Lời giải chi tiết :

      Chu vi đáy của hình lăng trụ đứng đó là:

      C = Sxq : h = 336 : 14 = 24 (cm)

      Câu 9 :

      Một hình lăng trụ đều (tức là lăng trụ có đáy là đa giác đều) có tất cả \(18\) cạnh, mỗi cạnh dài \(6\sqrt 3 \) cm. Tính thể tích của hình lăng trụ đó.

      • A.

        864 cm3

      • B.

        1944 cm3

      • C.

        2916 cm3

      • D.

        1122 cm3

      Đáp án : C

      Phương pháp giải :

      Để tìm được thể tích lăng trụ đứng khi đã biết chiều cao, ta cần tính diện tích đáy.

      Thể tích = diện tích đáy . chiều cao

      Lời giải chi tiết :

      Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức 0 6

      Gọi số cạnh của một đáy là \(n\). Khi đó số cạnh bên là \(n\).

      Suy ra, tổng số cạnh của hình lăng trụ đứng là \(n + n + n = 3n\).

      Theo đề bài, hình lăng trụ đều có tất cả 18 cạnh, ta có: \(3n = 18 \Rightarrow n = 6.\)

      Vậy hình lăng trụ đứng đã cho là hình lăng trụ lục giác đều.

      Có thể coi diện tích đáy là tổng diện tích của 6 tam giác đều, mỗi cạnh bằng \(6\sqrt 3 \) cm.

      Do đó diện tích đáy là: \(S = \frac{{{{\left( {6\sqrt 3 } \right)}^2}.\sqrt 3 }}{4}.6 = 162\sqrt 3 \) ( cm2)

      Thể tích hình lăng trụ là: \(V = S.h = 162\sqrt 3 .6\sqrt 3 \)= 2916 ( cm3)

      Thể tích hình lăng trụ là 2916 ( cm3).

      Câu 10 :

      Một hình lăng trụ đứng có đáy là hình chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng \(6cm\). Một kích thước của đáy bằng \(10cm\), tính kích thước còn lại.

      • A.

        \(15cm\)

      • B.

        \(20cm\)

      • C.

        \(25cm\)

      • D.

        \(10cm\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức diện tích xung quanh của hình lăng trụ đứng:

      \({S_{xq}} = C.h\)

      Trong đó, \(C\) là chu vi đáy; \(h\) là chiều cao

      Lời giải chi tiết :

      Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức 0 7

      Đặt \(AD = x\left( {cm} \right)\).

      Chu vi đáy của hình lăng trụ là: \(C = 2(AB + AD) = 2(10+x) (cm)\)

      Diện tích xung quanh của hình lăng trụ là: 

      \({S_{xq}} = C.h\)\( = 2.\left( {10 + {\rm{ }}x} \right).6\)\( = 12.\left( {10 + {\rm{ }}x} \right)\,\,\left( {c{m^2}} \right)\)

      Tổng diện tích hai đáy của hình lăng trụ là: \(2.10x = 20x\,\,(c{m^2})\)

      Theo đề bài, ta có diện tích xung quanh bằng tổng diện tích hai đáy nên \(12.\left( {10 + x} \right) = 20x\)

      Do đó \(120 + 12x = 20x\)

      Suy ra \(x = 15\,\left( {cm} \right)\)

      hay \(AD = 15\left( {cm} \right)\)

      Vậy kích thước còn lại của đáy bằng 15 cm.

      Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức tại chuyên mục giải bài tập toán 7 trên môn toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

      Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức

      Bài 37 trong chương trình Toán 7 Kết nối tri thức tập trung vào việc nghiên cứu về hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác. Đây là những hình khối quan trọng trong hình học không gian, và việc nắm vững kiến thức về chúng là nền tảng cho các bài học tiếp theo.

      I. Khái niệm cơ bản về hình lăng trụ đứng

      Hình lăng trụ đứng là hình đa diện có hai mặt đáy song song và bằng nhau, các mặt bên là các hình chữ nhật. Để hiểu rõ hơn, ta cần phân biệt:

      • Hình lăng trụ đứng tam giác: Hai mặt đáy là hai tam giác bằng nhau.
      • Hình lăng trụ đứng tứ giác: Hai mặt đáy là hai tứ giác bằng nhau.

      Các yếu tố quan trọng của hình lăng trụ đứng bao gồm:

      • Mặt đáy: Hai mặt song song và bằng nhau.
      • Mặt bên: Các hình chữ nhật nối các cạnh tương ứng của hai mặt đáy.
      • Chiều cao: Khoảng cách giữa hai mặt đáy.

      II. Công thức tính diện tích xung quanh, diện tích toàn phần và thể tích

      Để giải các bài toán liên quan đến hình lăng trụ đứng, chúng ta cần nắm vững các công thức sau:

      1. Diện tích xung quanh (Sxq): Sxq = (P đáy) * h, trong đó P đáy là chu vi của mặt đáy và h là chiều cao của hình lăng trụ.
      2. Diện tích toàn phần (Stp): Stp = Sxq + 2 * S đáy, trong đó Sxq là diện tích xung quanh và S đáy là diện tích của một mặt đáy.
      3. Thể tích (V): V = S đáy * h, trong đó S đáy là diện tích của một mặt đáy và h là chiều cao của hình lăng trụ.

      III. Các dạng bài tập thường gặp

      Trong chương trình Toán 7, các bài tập về hình lăng trụ đứng thường xoay quanh các chủ đề sau:

      • Tính diện tích xung quanh, diện tích toàn phần và thể tích của hình lăng trụ đứng.
      • Xác định các yếu tố của hình lăng trụ đứng (mặt đáy, mặt bên, chiều cao).
      • Giải các bài toán thực tế liên quan đến hình lăng trụ đứng.

      IV. Bài tập trắc nghiệm minh họa

      Dưới đây là một số bài tập trắc nghiệm minh họa để các em luyện tập:

      1. Một hình lăng trụ đứng tam giác có chiều cao 10cm và đáy là tam giác vuông có hai cạnh góc vuông lần lượt là 6cm và 8cm. Tính thể tích của hình lăng trụ.
      2. Một hình lăng trụ đứng tứ giác có chu vi đáy là 20cm và chiều cao là 15cm. Diện tích xung quanh của hình lăng trụ là bao nhiêu?
      3. Một hình lăng trụ đứng có diện tích đáy là 30cm2 và thể tích là 120cm3. Chiều cao của hình lăng trụ là bao nhiêu?

      V. Lời khuyên khi làm bài tập

      Để làm tốt các bài tập về hình lăng trụ đứng, các em nên:

      • Nắm vững các khái niệm cơ bản và công thức tính toán.
      • Vẽ hình minh họa để dễ dàng hình dung bài toán.
      • Kiểm tra lại kết quả sau khi tính toán.
      • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

      Hy vọng với những kiến thức và bài tập trên, các em sẽ tự tin hơn khi giải các bài toán về hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác trong chương trình Toán 7 Kết nối tri thức. Chúc các em học tốt!

      Tài liệu, đề thi và đáp án Toán 7