Bài tập trắc nghiệm này được thiết kế để giúp học sinh lớp 7 ôn luyện và củng cố kiến thức về hai tam giác bằng nhau và trường hợp bằng nhau thứ nhất của tam giác.
Với hình thức trắc nghiệm, các em sẽ được kiểm tra nhanh chóng khả năng hiểu và vận dụng kiến thức đã học trong sách giáo khoa Toán 7 Kết nối tri thức.
Giaitoan.edu.vn hy vọng sẽ là công cụ hỗ trợ đắc lực cho các em trong quá trình học tập và ôn thi.
Cho \(\Delta\)ABC có AB = AC và MB = MC (\(M \in BC\)).Chọn câu sai.
\(\Delta AMC = \Delta BCM\)
\(AM \bot BC\)
\(\widehat {BAM} = \widehat {CAM}\)
\(\Delta AMB = \Delta AMC\)
Cho tam giác \(MNP\) có MN = MP. Gọi \(A\) là trung điểm của \(NP.\) Biết \(\widehat {NMA} = {20^0}\) thì số đo góc \(MPN\) là:
50\(^\circ \)
40\(^\circ \)
70\(^\circ \)
80\(^\circ \)
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A + \widehat B = {130^0},\widehat E = {55^0}.\) Tính các góc \(\widehat A,\widehat C,\widehat D,\widehat F.\)
\(\widehat A = \widehat D = 65^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 65^\circ .\)
\(\widehat A = \widehat D = 75^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 75^\circ .\)
Cho \(\widehat {xOy} = {50^0}\), vẽ cung tròn tâm O bán kính bằng 2cm, cung tròn này cắt Ox, Oy lần lượt ở A và B. Vẽ các cung tròn tâm A và tâm B có bán kính 3cm, chúng cắt nhau tại điểm C nằm trong góc xOy. Tính \(\widehat {xOC}\) .
\({40^0}\)
\({25^0}\)
\({80^0}\)
\({90^0}\)
Cho hình vẽ sau:
Khẳng định đúng là:
\(\Delta ABC = \Delta DEA\)
\(\widehat D = \widehat A\)
\(\widehat E = \widehat B\)
\(\widehat C = \widehat E\)
Cho tam giác \(ABC\) có \(AB < AC\) . Gọi \(E \in AC\) sao cho \(AB = CE\). Gọi \(O\) là một điểm nằm ở trong tam giác sao cho \(OA = OC,OB = OE.\) Khi đó:
\(\Delta AOB = \Delta CEO\)
\(\Delta AOB = \Delta COE\)
\(\widehat {AOB} = \widehat {OEC}\)
\(\widehat {ABO} = \widehat {OCE}\)
Cho hình vẽ sau. Tam giác bằng với tam giác DEA là:
Tam giác ABC
Tam giác CBA
Tam giác DBA
Tam giác BCA
Cho hình dưới đây.
Chọn câu sai.
\(AD//BC\)
\(AB//CD\)
\(\Delta ABC = \Delta CDA\)
\(\Delta ABC = \Delta ADC\)
Cho \(\Delta ABC = \Delta MNP.\) Biết AC = 6 cm, NP = 8 cm và chu vi của tam giác MNP bằng 22cm. Tìm khẳng định sai:
MP = 8 cm
BC = 8 cm
MN = 8 cm
AB = 8 cm
Cho \(\Delta ABC = \Delta DEF.\) Cho \(\widehat E = 46^\circ \). Khẳng định đúng là:
\(\widehat A = 46^\circ \)
\(\widehat B = 46^\circ \)
\(\widehat F = 46^\circ \)
\(\widehat C = 46^\circ \)
Cho \(\Delta ABC = \Delta MNP.\) Chọn câu sai.
\(AB = MN\)
$AC = NP$
\(\widehat A = \widehat M\)
\(\widehat P = \widehat C\)
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A = {33^0}\). Khi đó
\(\widehat D = 33^\circ \)
\(\widehat D = 42^\circ \)
\(\widehat E = 32^\circ \)
\(\widehat D = 66^\circ \)
Cho hai tam giác \(ABC\) và \(DEF\) có \(AB = EF;\,BC = FD;AC = ED;\) \(\widehat A = \widehat E;\widehat B = \widehat F;\widehat D = \widehat C\). Khi đó
\(\Delta ABC = \Delta DEF\)
\(\Delta ABC = \Delta EFD\)
\(\Delta ABC = \Delta FDE\)
\(\Delta ABC = \Delta DFE\)
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A = {32^0},\widehat F = {78^0}\). Tính \(\widehat B;\widehat E.\)
\(\widehat B = \widehat E = 60^\circ .\)
$\widehat B = 60^\circ ;\widehat E = 70^\circ .$
\(\widehat B = \widehat E = 78^\circ .\)
\(\widehat B = \widehat E = 70^\circ .\)
Cho \(\Delta ABC = \Delta MNP.\) Biết \(AB = 5cm,\) \(MP = 7cm\) và chu vi của tam giác $ABC$ bằng $22cm.$ Tính các cạnh còn lại của mỗi tam giác.
\(NP = BC = 9\,cm.\)
\(NP = BC = 11\,cm.\)
\(NP = BC = 10\,cm.\)
\(NP = 9cm;\,BC = 10\,cm.\)
Cho \(\Delta ABC = \Delta DEF.\) Biết rằng \(AB = 6cm,\) \(AC = 8cm\) và \(EF = 10cm.\) Chu vi tam giác \(DEF\) là
\(24\,cm\)
\(20\,cm\)
\(18\,cm\)
\(30\,cm\)
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A + \widehat B = {130^0},\widehat E = {55^0}.\) Tính các góc \(\widehat A,\widehat C,\widehat D,\widehat F.\)
\(\widehat A = \widehat D = 65^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 65^\circ .\)
\(\widehat A = \widehat D = 75^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 75^\circ .\)
Cho \(\Delta DEF = \Delta MNP.\) Biết \(EF + FD = 10cm,\) \(NP - MP = 2cm,\) \(DE = 3cm.\) Tính độ dài cạnh \(FD.\)
\(4\,cm\)
\(6\,cm\)
\(8\,cm\)
\(10\,cm\)
Cho tam giác $ABC$ (không có hai góc nào bằng nhau, không có hai cạnh nào bằng nhau) bằng một tam giác có ba đỉnh là $O,H,K.$ Viết kí hiệu về sự bằng nhau của hai tam giác, biết rằng: \(\widehat A = \widehat O,\widehat B = \widehat K.\)
\(\Delta ABC = \Delta KOH\)
\(\Delta ABC = \Delta HOK\)
\(\Delta ABC = \Delta OHK\)
\(\Delta ABC = \Delta OKH\)
Cho \(\Delta ABC = \Delta MNP\) trong đó \(\widehat A = 30^\circ ;\widehat P = 60^\circ .\) So sánh các góc \(N;\,M;\,P.\)
\(\widehat N = \widehat P > \widehat M\)
\(\widehat N > \widehat P = \widehat M\)
\(\widehat N > \widehat P > \widehat M\)
\(\widehat N < \widehat P < \widehat M\)
Cho hai tam giác $ABD$ và $CDB$ có cạnh chung $BD.$ Biết $AB = DC$ và $AD = CB.$ Phát biểu nào sau đây là sai:
\(\Delta ABC = \Delta CDA\)
\(\widehat {ABC} = \widehat {CDA}\)
\(\widehat {BAC} = \widehat {DAC}\)
\(\widehat {BCA} = \widehat {DAC}\)
Cho tam giác $ABD$ và tam giác $IKH$ có $AB = KI,AD = KH,DB = IH.$
Phát biểu nào trong các phát biểu sau đây là đúng:
\(\Delta BAD = \Delta HIK\)
\(\Delta ABD = \Delta KHI\)
\(\Delta DAB = \Delta HIK\)
\(\Delta ABD = \Delta KIH\)
Nếu \(\widehat A = {60^ \circ }\), thì số đo góc $K$ là:
\({60^ \circ }\)
\({70^ \circ }\)
\({90^ \circ }\)
\({120^ \circ }\)
Cho đoạn thẳng \(AB = 6cm.\) Trên một nửa mặt hẳng bờ $AB$ vẽ tam giác $ABC$ sao cho \(AC = 4cm,\) \(BC = 5cm,\) trên nửa mặt phẳng còn lại vẽ tam giác $ABD$ sao cho \(BD = 4cm,\) \(AD = 5cm.\) Chọn câu đúng.
\(\Delta CAB = \Delta DAB\)
\(\Delta ABC = \Delta BDA\)
\(\Delta CAB = \Delta DBA\)
\({\rm{\Delta CAB = \Delta {\rm A}{\rm B}D}}\)
Trên đường thẳng \(xy\) lấy hai điểm \(A,B\). Trên cùng nửa mặt phẳng bờ \(xy\) lấy hai điểm \(C\) và \(C'\) sao cho \(AC = BC';BC = AC'.\)
Chọn câu đúng.
\(\widehat {BCA} = \widehat {BAC'}\)
\(\Delta ACB = \Delta BAC'\)
\(\widehat {BCA} = \widehat {ABC'}\)
\(\Delta ACB = \Delta BC'A\)
So sánh hai góc \(\widehat {CAC'};\,\widehat {CBC'}\)?
\(\widehat {CAC'} > \widehat {CBC'}\)
\(\widehat {CAC'} < \widehat {CBC'}\)
\(\widehat {CAC'} = \widehat {CBC'}\)
\(\widehat {CAC'} = 2.\widehat {CBC'}\)
Lời giải và đáp án
Cho \(\Delta\)ABC có AB = AC và MB = MC (\(M \in BC\)).Chọn câu sai.
\(\Delta AMC = \Delta BCM\)
\(AM \bot BC\)
\(\widehat {BAM} = \widehat {CAM}\)
\(\Delta AMB = \Delta AMC\)
Đáp án : A
2 tam giác có 3 cặp cạnh tương ứng bằng nhau thì 2 tam giác đó bằng nhau. ( c.c.c)
Xét \(\Delta AMB\) và \(\Delta AMC\) có
\(AB = AC\,\left( {gt} \right)\)
\(MB = MC\left( {gt} \right)\)
Cạnh \(AM\) chung
Nên \(\Delta AMB = \Delta AMC\,\left( {c - c - c} \right)\)
Suy ra \(\widehat {BAM} = \widehat {CAM}\) và \(\widehat {AMB} = \widehat {AMC}\) (hai góc tương ứng bằng nhau)
Mà \(\widehat {AMB} + \widehat {AMC} = 180^\circ \) (hai góc kề bù)
Nên \(\widehat {AMB} = \widehat {AMC} = \frac{{180^\circ }}{2} = 90^\circ .\) Hay \(AM \bot BC.\)
Vậy B, C, D đúng, A sai.
Cho tam giác \(MNP\) có MN = MP. Gọi \(A\) là trung điểm của \(NP.\) Biết \(\widehat {NMA} = {20^0}\) thì số đo góc \(MPN\) là:
50\(^\circ \)
40\(^\circ \)
70\(^\circ \)
80\(^\circ \)
Đáp án : C
+ Áp dụng tính chất hai tam giác bằng nhau suy ra các cặp góc tương ứng bằng nhau.
+ Áp dụng định lý tổng ba góc trong tam giác, tìm góc chưa biết số đo trong tam giác.
Xét tam giác \(NAM\) và tam giác \(PAM\) có:
\(MN = MP,\) \(NA = PA,\) \(MA\) là cạnh chung.
Do đó \(\Delta NAM = \Delta PAM\,\left( {c - c - c} \right).\)
Nên \(\widehat {ANM} = \widehat {APM}\) ; \(\widehat {NMA} = \widehat {PMA}\) (hai góc tương ứng)
Do đó \(\widehat {NMP} = \widehat {NMA} + \widehat {PMA} = 20^\circ + 20^\circ = 40^\circ \)
Áp dụng định lý tổng 3 góc trong tam giác \(MNP\) có:
\(\widehat {NMP} + \widehat {MPN} + \widehat {PNM} = {180^0} \\ 2\widehat {MPN} + \widehat {NMP} = {180^0}\)
Suy ra \(\widehat {MPN} = \left( {{{180}^0} - \widehat {NMP}} \right):2 = \left( {{{180}^0} - {{40}^0}} \right):2 = {70^0}.\)
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A + \widehat B = {130^0},\widehat E = {55^0}.\) Tính các góc \(\widehat A,\widehat C,\widehat D,\widehat F.\)
\(\widehat A = \widehat D = 65^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 65^\circ .\)
\(\widehat A = \widehat D = 75^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 75^\circ .\)
Đáp án : C
+ Áp dụng tính chất hai tam giác bằng nhau suy ra các cặp góc tương ứng bằng nhau.
+ Áp dụng định lý tổng ba góc trong tam giác, tìm góc chưa biết số đo trong tam giác.
Vì \(\Delta ABC = \Delta DEF\) nên \(\widehat A = \widehat D;\,\widehat B = \widehat E = 55^\circ ;\widehat C\, = \widehat F.\) ( các góc tương ứng)
Xét tam giác \(ABC\) có \(\widehat A + \widehat B = 130^\circ \Rightarrow \widehat A = 130^\circ - \widehat B\) \( = 130^\circ - 55^\circ = 75^\circ \)
Lại có \(\widehat A + \widehat B + \widehat C = 180^\circ \Rightarrow \widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right)\) \( = 180^\circ - 130^\circ = 50^\circ .\)
Vậy \(\widehat A = \widehat D = 75^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
Cho \(\widehat {xOy} = {50^0}\), vẽ cung tròn tâm O bán kính bằng 2cm, cung tròn này cắt Ox, Oy lần lượt ở A và B. Vẽ các cung tròn tâm A và tâm B có bán kính 3cm, chúng cắt nhau tại điểm C nằm trong góc xOy. Tính \(\widehat {xOC}\) .
\({40^0}\)
\({25^0}\)
\({80^0}\)
\({90^0}\)
Đáp án : B
Ta chứng minh hai tam giác bằng nhau để suy ra hai góc tương ứng bằng nhau
Xét hai tam giác OAC và OBC có:
OA = OB (= 2cm)
OC chung
AC = BC (= 3cm)
Nên \(\Delta OAC = \Delta OBC(c.c.c)\)
Do đó \(\widehat {AOC} = \widehat {COB}\) (hai góc tương ứng).
Mà \(\widehat {AOC} + \widehat {COB} = {50^0}\) nên \(\widehat {AOC} = \widehat {COB} = \frac{{{{50}^0}}}{2} = {25^0}\)
Vậy \(\widehat {xOC} = {25^0}\).
Cho hình vẽ sau:
Khẳng định đúng là:
\(\Delta ABC = \Delta DEA\)
\(\widehat D = \widehat A\)
\(\widehat E = \widehat B\)
\(\widehat C = \widehat E\)
Đáp án : D
2 tam giác có 3 cặp cạnh tương ứng bằng nhau thì 2 tam giác đó bằng nhau. ( c.c.c)
Áp dụng tính chất hai tam giác bằng nhau suy ra các cặp góc tương ứng bằng nhau.
Xét \(\Delta \)ABC và \(\Delta \)ADE, ta có:
AB = AD
BC = DE
AC = AE
\( \Rightarrow \Delta ABC = \Delta ADE\) ( c.c.c)
\( \Rightarrow \widehat {BAC} = \widehat {DAE};\widehat B = \widehat D;\widehat C = \widehat E\) ( các góc tương ứng)
Cho tam giác \(ABC\) có \(AB < AC\) . Gọi \(E \in AC\) sao cho \(AB = CE\). Gọi \(O\) là một điểm nằm ở trong tam giác sao cho \(OA = OC,OB = OE.\) Khi đó:
\(\Delta AOB = \Delta CEO\)
\(\Delta AOB = \Delta COE\)
\(\widehat {AOB} = \widehat {OEC}\)
\(\widehat {ABO} = \widehat {OCE}\)
Đáp án : B
2 tam giác có 3 cặp cạnh tương ứng bằng nhau thì 2 tam giác đó bằng nhau. ( c.c.c)
Áp dụng tính chất hai tam giác bằng nhau suy ra các cặp góc tương ứng bằng nhau.
Xét tam giác \(AOB\) và tam giác \(COE\) có:
\(AB = CE\left( {gt} \right);AO = CO;OB = OE\)
Do đó: \(\Delta AOB = \Delta COE(c.c.c)\) suy ra \(\widehat {AOB} = \widehat {COE};\,\widehat {ABO} = \widehat {OEC}\) (hai góc tương ứng bằng nhau)
Nên A, C, D sai, B đúng.
Cho hình vẽ sau. Tam giác bằng với tam giác DEA là:
Tam giác ABC
Tam giác CBA
Tam giác DBA
Tam giác BCA
Đáp án : B
2 tam giác có 3 cặp cạnh tương ứng bằng nhau thì 2 tam giác đó bằng nhau. ( c.c.c)
Xét tam giác DEA và tam giác CBA, ta có:
DE = CB
EA = BA
DA = CA
\( \Rightarrow \Delta DEA = \Delta CBA\) ( c.c.c)
Cho hình dưới đây.
Chọn câu sai.
\(AD//BC\)
\(AB//CD\)
\(\Delta ABC = \Delta CDA\)
\(\Delta ABC = \Delta ADC\)
Đáp án : D
2 tam giác có 3 cặp cạnh tương ứng bằng nhau thì 2 tam giác đó bằng nhau. ( c.c.c)
Sử dụng dấu hiệu nhận biết hai đường thẳng song song.
Xét tam giác \(ADC\) và \(CBA\) có
\(AB = CD\)
\(AD = BC\)
\(DB\) chung
\( \Rightarrow \Delta ADC = CBA\left( {c.c.c} \right)\)
Do đó \(\widehat {DAC} = \widehat {BCA}\) (hai góc tương ứng)
Mà hai góc ở vị trí so le trong nên \(AD//BC.\)
Tương tự ta có \(AB//DC.\)
Vậy A, B, C đúng, D sai.
Cho \(\Delta ABC = \Delta MNP.\) Biết AC = 6 cm, NP = 8 cm và chu vi của tam giác MNP bằng 22cm. Tìm khẳng định sai:
MP = 8 cm
BC = 8 cm
MN = 8 cm
AB = 8 cm
Đáp án : A
Khi 2 tam giác bằng nhau thì các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau
Chu vi tam giác bằng tổng độ dài 3 cạnh
Vì \(\Delta ABC = \Delta MNP.\)
\( \Rightarrow \) AB = MN, BC = NP; AC = MP
Mà AC = 6 cm, NP = 8 cm
Nên MP = 6 cm, BC = 8 cm
Chu vi của tam giác MNP bằng 22cm nên MN + NP + MP = 22 cm hay MN + 8 + 6 = 22 cm nên MN = 8 cm
Do đó, AB = MN = 8 cm
Vậy các khẳng định B,C,D là đúng; khẳng định A sai.
Cho \(\Delta ABC = \Delta DEF.\) Cho \(\widehat E = 46^\circ \). Khẳng định đúng là:
\(\widehat A = 46^\circ \)
\(\widehat B = 46^\circ \)
\(\widehat F = 46^\circ \)
\(\widehat C = 46^\circ \)
Đáp án : B
Khi 2 tam giác bằng nhau thì các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau.
Vì \(\Delta ABC = \Delta DEF.\)
\( \Rightarrow \) ( 2 góc tương ứng)
\( \Rightarrow \widehat B = 46^\circ \)
Cho \(\Delta ABC = \Delta MNP.\) Chọn câu sai.
\(AB = MN\)
$AC = NP$
\(\widehat A = \widehat M\)
\(\widehat P = \widehat C\)
Đáp án : B
Ta có \(\Delta ABC = \Delta MNP\)\( \Leftrightarrow \left\{ \begin{array}{l}\widehat A = \widehat M\\\widehat C = \widehat P\\\widehat B = \widehat N\\AB = MN\\AC = MP\\BC = NP\end{array} \right.\)
Nên A, C, D đúng, B sai.
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A = {33^0}\). Khi đó
\(\widehat D = 33^\circ \)
\(\widehat D = 42^\circ \)
\(\widehat E = 32^\circ \)
\(\widehat D = 66^\circ \)
Đáp án : A
\(\Delta ABC = \Delta DEF\)\( \Rightarrow \widehat D = \widehat A\) (hai góc tương ứng).
Nên \(\widehat D = 33^\circ .\)
Cho hai tam giác \(ABC\) và \(DEF\) có \(AB = EF;\,BC = FD;AC = ED;\) \(\widehat A = \widehat E;\widehat B = \widehat F;\widehat D = \widehat C\). Khi đó
\(\Delta ABC = \Delta DEF\)
\(\Delta ABC = \Delta EFD\)
\(\Delta ABC = \Delta FDE\)
\(\Delta ABC = \Delta DFE\)
Đáp án : B
Xét tam giác \(ABC\) và \(DEF\) có \(AB = EF;\,BC = FD;AC = ED;\)\(\widehat A = \widehat E;\widehat B = \widehat F;\widehat D = \widehat C\) nên \(\Delta ABC = \Delta EFD\)
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A = {32^0},\widehat F = {78^0}\). Tính \(\widehat B;\widehat E.\)
\(\widehat B = \widehat E = 60^\circ .\)
$\widehat B = 60^\circ ;\widehat E = 70^\circ .$
\(\widehat B = \widehat E = 78^\circ .\)
\(\widehat B = \widehat E = 70^\circ .\)
Đáp án : D
Áp dụng định nghĩa hai tam giác bằng nhau và định lý tổng ba góc của một tam giác.
Vì \(\Delta ABC = \Delta DEF\) nên \(\widehat D = \widehat A = 32^\circ ;\,\widehat B = \widehat E;\,\widehat C = \widehat F = 78^\circ \) (các góc tương ứng bằng nhau)
Xét tam giác \(ABC\) có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lý tổng ba góc trong tam giác)
Suy ra \(\widehat B = 180^\circ - \widehat A - \widehat C = 180^\circ - 32^\circ - 78^\circ \)\( = 70^\circ .\)
Vậy \(\widehat B = \widehat E = 70^\circ .\)
Cho \(\Delta ABC = \Delta MNP.\) Biết \(AB = 5cm,\) \(MP = 7cm\) và chu vi của tam giác $ABC$ bằng $22cm.$ Tính các cạnh còn lại của mỗi tam giác.
\(NP = BC = 9\,cm.\)
\(NP = BC = 11\,cm.\)
\(NP = BC = 10\,cm.\)
\(NP = 9cm;\,BC = 10\,cm.\)
Đáp án : C
Áp dụng định nghĩa hai tam giác bằng nhau và công thức tính chu vi tam giác.
Vì \(\Delta ABC = \Delta MNP\) nên \(AB = MN = 5\,cm;\,AC = MP = 7\,cm;\,BC = NP\) (các cạnh tương ứng bằng nhau)
Chu vi tam giác \(ABC\) là \(AB + BC + AC = 22\,cm \Rightarrow BC = 22 - AB - AC\)\( = 22 - 5 - 7 = 10\,cm.\)
Vậy \(NP = BC = 10\,cm.\)
Cho \(\Delta ABC = \Delta DEF.\) Biết rằng \(AB = 6cm,\) \(AC = 8cm\) và \(EF = 10cm.\) Chu vi tam giác \(DEF\) là
\(24\,cm\)
\(20\,cm\)
\(18\,cm\)
\(30\,cm\)
Đáp án : A
Áp dụng định nghĩa hai tam giác bằng nhau và công thức tính chu vi tam giác.
Vì \(\Delta ABC = \Delta DEF\) nên \(AB = DE = 6cm;\,AC = DF = 8cm;\,BC = EF = 10\,cm\) (các cạnh tương ứng bằng nhau).
Chu vi tam giác \(ABC\) là \(AB + BC + AC = 6 + 10 + 8 = 24\,cm.\)
Chu vi tam giác \(DEF\) là \(DE + DF + EF = 6 + 8 + 10 = 24\,cm.\)
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A + \widehat B = {130^0},\widehat E = {55^0}.\) Tính các góc \(\widehat A,\widehat C,\widehat D,\widehat F.\)
\(\widehat A = \widehat D = 65^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 65^\circ .\)
\(\widehat A = \widehat D = 75^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 75^\circ .\)
Đáp án : C
Áp dụng định nghĩa hai tam giác bằng nhau và định lý tổng ba góc trong tam giác.
Vì \(\Delta ABC = \Delta DEF\) nên \(\widehat A = \widehat D;\,\widehat B = \widehat E = 55^\circ ;\widehat C\, = \widehat F.\)
Xét tam giác \(ABC\) có \(\widehat A + \widehat B = 130^\circ \Rightarrow \widehat A = 130^\circ - \widehat B\)\( = 130^\circ - 55^\circ = 75^\circ \)
Lại có $\widehat A + \widehat B + \widehat C = 180^\circ \Rightarrow \widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right)$\( = 180^\circ - 130^\circ = 50^\circ .\)
Vậy \(\widehat A = \widehat D = 75^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
Cho \(\Delta DEF = \Delta MNP.\) Biết \(EF + FD = 10cm,\) \(NP - MP = 2cm,\) \(DE = 3cm.\) Tính độ dài cạnh \(FD.\)
\(4\,cm\)
\(6\,cm\)
\(8\,cm\)
\(10\,cm\)
Đáp án : A
Áp dụng định nghĩa hai tam giác bằng nhau và cách tìm hai số khi biết tổng và hiệu.
Vì \(\Delta DEF = \Delta MNP\) nên \(DE = MN = 3cm;\,EF = NP;\,DF = MP\) (hai cạnh tương ứng bằng nhau)
Mà theo bài ra ta có \(NP - MP = 2\,cm\) suy ra \(EF - FD = 2cm\). Lại có \(EF + FD = 10cm\) nên \(EF = \dfrac{{10 + 2}}{2} = 6\,cm;\,FD = 10 - 6 = 4\,cm.\)
Vậy \(FD = 4\,cm.\)
Cho tam giác $ABC$ (không có hai góc nào bằng nhau, không có hai cạnh nào bằng nhau) bằng một tam giác có ba đỉnh là $O,H,K.$ Viết kí hiệu về sự bằng nhau của hai tam giác, biết rằng: \(\widehat A = \widehat O,\widehat B = \widehat K.\)
\(\Delta ABC = \Delta KOH\)
\(\Delta ABC = \Delta HOK\)
\(\Delta ABC = \Delta OHK\)
\(\Delta ABC = \Delta OKH\)
Đáp án : D
Áp dụng định nghĩa hai tam giác bằng nhau. Chú ý đến thứ tự các đỉnh tương ứng của hai tam giác.
Vì \(\widehat A = \widehat O,\widehat B = \widehat K\) nên hai góc còn lại bằng nhau là \(\widehat C = \widehat H.\)
Suy ra \(\Delta ABC = \Delta OKH.\)
Cho \(\Delta ABC = \Delta MNP\) trong đó \(\widehat A = 30^\circ ;\widehat P = 60^\circ .\) So sánh các góc \(N;\,M;\,P.\)
\(\widehat N = \widehat P > \widehat M\)
\(\widehat N > \widehat P = \widehat M\)
\(\widehat N > \widehat P > \widehat M\)
\(\widehat N < \widehat P < \widehat M\)
Đáp án : C
Áp dụng định nghĩa hai tam giác bằng nhau và định lý về tổng ba góc trong một tam giác.
Vì \(\Delta ABC = \Delta MNP\) nên \(\widehat A = \widehat M = 30^\circ ;\,\widehat C = \widehat P = 60^\circ ;\,\widehat B = \widehat N.\)
Xét tam giác \(MNP\) có \(\widehat M + \widehat N + \widehat P = 180^\circ \)\( \Rightarrow \widehat N = 180^\circ - \widehat M - \widehat P\)\( = 180^\circ - 30^\circ - 60^\circ = 90^\circ .\)
Vậy \(\widehat N > \widehat P > \widehat M.\)
Cho hai tam giác $ABD$ và $CDB$ có cạnh chung $BD.$ Biết $AB = DC$ và $AD = CB.$ Phát biểu nào sau đây là sai:
\(\Delta ABC = \Delta CDA\)
\(\widehat {ABC} = \widehat {CDA}\)
\(\widehat {BAC} = \widehat {DAC}\)
\(\widehat {BCA} = \widehat {DAC}\)
Đáp án : C
Dựa vào tính chất của hai tam giác bằng nhau.
Xét \(\Delta ABC\) và \(\Delta CDA\) có:
\(AB = CD\left( {gt} \right)\)
\(BD{\rm{ chung}}\)
\(AD = BC\left( {gt} \right)\)
\( \Rightarrow \Delta ABC = \Delta CDA\left( {c.c.c} \right)\)
\( \Rightarrow \widehat {ABC} = \widehat {CDA},\widehat {BAC} = \widehat {DCA},\widehat {BCA} = \widehat {DAC}\) (góc tương ứng)
Vậy đáp án $C$ là sai.
Cho tam giác $ABD$ và tam giác $IKH$ có $AB = KI,AD = KH,DB = IH.$
Phát biểu nào trong các phát biểu sau đây là đúng:
\(\Delta BAD = \Delta HIK\)
\(\Delta ABD = \Delta KHI\)
\(\Delta DAB = \Delta HIK\)
\(\Delta ABD = \Delta KIH\)
Đáp án: D
Xét tam giác $ABD$ và tam giác $KIH$ có:
$AB = KI,AD = KH,DB = IH.$
Do đó \(\Delta ABD = \Delta KIH\)(c.c.c).
Nếu \(\widehat A = {60^ \circ }\), thì số đo góc $K$ là:
\({60^ \circ }\)
\({70^ \circ }\)
\({90^ \circ }\)
\({120^ \circ }\)
Đáp án: A
Tính chất hai tam giác bằng nhau
Do \(\Delta ABD = \Delta KIH\) (theo câu trước), nên \(\widehat K = \widehat A = 60^\circ \) (hai góc tương ứng bằng nhau).
Cho đoạn thẳng \(AB = 6cm.\) Trên một nửa mặt hẳng bờ $AB$ vẽ tam giác $ABC$ sao cho \(AC = 4cm,\) \(BC = 5cm,\) trên nửa mặt phẳng còn lại vẽ tam giác $ABD$ sao cho \(BD = 4cm,\) \(AD = 5cm.\) Chọn câu đúng.
\(\Delta CAB = \Delta DAB\)
\(\Delta ABC = \Delta BDA\)
\(\Delta CAB = \Delta DBA\)
\({\rm{\Delta CAB = \Delta {\rm A}{\rm B}D}}\)
Đáp án : C
Từ bài ra ta có \(AC = BD = 4\,cm;\,BC = AD = 5\,cm.\)
Xét \(\Delta CAB\) và \(\Delta DBA\) có:
\(AC = BD\,\left( {cmt} \right)\)
\(BC = AD\,\left( {cmt} \right)\)
Cạnh \(AB\) chung
Nên \(\Delta CAB = \Delta DBA\,\left( {c - c - c} \right).\)
Trên đường thẳng \(xy\) lấy hai điểm \(A,B\). Trên cùng nửa mặt phẳng bờ \(xy\) lấy hai điểm \(C\) và \(C'\) sao cho \(AC = BC';BC = AC'.\)
Chọn câu đúng.
\(\widehat {BCA} = \widehat {BAC'}\)
\(\Delta ACB = \Delta BAC'\)
\(\widehat {BCA} = \widehat {ABC'}\)
\(\Delta ACB = \Delta BC'A\)
Đáp án: D
Ta chứng minh hai tam giác bằng nhau theo trường hợp cạnh-cạnh-cạnh, sau đó suy ra hai góc tương ứng bằng nhau.
Hai tam giác \(ACB\) và \(BC'A\) có
$AC = BC'$ (gt)
\(BC = AC'\) (gt)
\(AB\) là cạnh chung
Nên \(\Delta ACB = \Delta BC'A\,\left( {c - c - c} \right).\)
Suy ra \(\widehat {BCA} = \widehat {BC'A}\) (hai góc tương ứng bằng nhau).
Nên A, B, C sai, D đúng.
So sánh hai góc \(\widehat {CAC'};\,\widehat {CBC'}\)?
\(\widehat {CAC'} > \widehat {CBC'}\)
\(\widehat {CAC'} < \widehat {CBC'}\)
\(\widehat {CAC'} = \widehat {CBC'}\)
\(\widehat {CAC'} = 2.\widehat {CBC'}\)
Đáp án: C
Ta chứng minh hai tam giác bằng nhau để suy ra hai góc tương ứng bằng nhau. Từ đó suy ra được điều phải chứng minh.
Vì \(\Delta ACB = \Delta BC'A\,\)(ý trước) ta suy ra \(\widehat {CAB} = \widehat {C'BA}\) và \(\widehat {C'AB} = \widehat {CBA}\) (1) (hai góc tương ứng bằng nhau)
Lại có \(\widehat {CAB} = \widehat {CAC'} + \widehat {C'AB}\) và \(\widehat {C'AB} = \widehat {CBC'} + \widehat {CBA}\) (tia làm giữa hai tia)
Suy ra $\widehat {CAC'} = \widehat {CAB} - \widehat {C'AB}$ và \(\widehat {CBC'} = \widehat {C'BA} - \widehat {CBA}\) (2)
Từ \(\left( 1 \right);\left( 2 \right)\) suy ra \(\widehat {CAC'} = \widehat {CBC'}\).
Cho \(\Delta\)ABC có AB = AC và MB = MC (\(M \in BC\)).Chọn câu sai.
\(\Delta AMC = \Delta BCM\)
\(AM \bot BC\)
\(\widehat {BAM} = \widehat {CAM}\)
\(\Delta AMB = \Delta AMC\)
Cho tam giác \(MNP\) có MN = MP. Gọi \(A\) là trung điểm của \(NP.\) Biết \(\widehat {NMA} = {20^0}\) thì số đo góc \(MPN\) là:
50\(^\circ \)
40\(^\circ \)
70\(^\circ \)
80\(^\circ \)
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A + \widehat B = {130^0},\widehat E = {55^0}.\) Tính các góc \(\widehat A,\widehat C,\widehat D,\widehat F.\)
\(\widehat A = \widehat D = 65^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 65^\circ .\)
\(\widehat A = \widehat D = 75^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 75^\circ .\)
Cho \(\widehat {xOy} = {50^0}\), vẽ cung tròn tâm O bán kính bằng 2cm, cung tròn này cắt Ox, Oy lần lượt ở A và B. Vẽ các cung tròn tâm A và tâm B có bán kính 3cm, chúng cắt nhau tại điểm C nằm trong góc xOy. Tính \(\widehat {xOC}\) .
\({40^0}\)
\({25^0}\)
\({80^0}\)
\({90^0}\)
Cho hình vẽ sau:
Khẳng định đúng là:
\(\Delta ABC = \Delta DEA\)
\(\widehat D = \widehat A\)
\(\widehat E = \widehat B\)
\(\widehat C = \widehat E\)
Cho tam giác \(ABC\) có \(AB < AC\) . Gọi \(E \in AC\) sao cho \(AB = CE\). Gọi \(O\) là một điểm nằm ở trong tam giác sao cho \(OA = OC,OB = OE.\) Khi đó:
\(\Delta AOB = \Delta CEO\)
\(\Delta AOB = \Delta COE\)
\(\widehat {AOB} = \widehat {OEC}\)
\(\widehat {ABO} = \widehat {OCE}\)
Cho hình vẽ sau. Tam giác bằng với tam giác DEA là:
Tam giác ABC
Tam giác CBA
Tam giác DBA
Tam giác BCA
Cho hình dưới đây.
Chọn câu sai.
\(AD//BC\)
\(AB//CD\)
\(\Delta ABC = \Delta CDA\)
\(\Delta ABC = \Delta ADC\)
Cho \(\Delta ABC = \Delta MNP.\) Biết AC = 6 cm, NP = 8 cm và chu vi của tam giác MNP bằng 22cm. Tìm khẳng định sai:
MP = 8 cm
BC = 8 cm
MN = 8 cm
AB = 8 cm
Cho \(\Delta ABC = \Delta DEF.\) Cho \(\widehat E = 46^\circ \). Khẳng định đúng là:
\(\widehat A = 46^\circ \)
\(\widehat B = 46^\circ \)
\(\widehat F = 46^\circ \)
\(\widehat C = 46^\circ \)
Cho \(\Delta ABC = \Delta MNP.\) Chọn câu sai.
\(AB = MN\)
$AC = NP$
\(\widehat A = \widehat M\)
\(\widehat P = \widehat C\)
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A = {33^0}\). Khi đó
\(\widehat D = 33^\circ \)
\(\widehat D = 42^\circ \)
\(\widehat E = 32^\circ \)
\(\widehat D = 66^\circ \)
Cho hai tam giác \(ABC\) và \(DEF\) có \(AB = EF;\,BC = FD;AC = ED;\) \(\widehat A = \widehat E;\widehat B = \widehat F;\widehat D = \widehat C\). Khi đó
\(\Delta ABC = \Delta DEF\)
\(\Delta ABC = \Delta EFD\)
\(\Delta ABC = \Delta FDE\)
\(\Delta ABC = \Delta DFE\)
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A = {32^0},\widehat F = {78^0}\). Tính \(\widehat B;\widehat E.\)
\(\widehat B = \widehat E = 60^\circ .\)
$\widehat B = 60^\circ ;\widehat E = 70^\circ .$
\(\widehat B = \widehat E = 78^\circ .\)
\(\widehat B = \widehat E = 70^\circ .\)
Cho \(\Delta ABC = \Delta MNP.\) Biết \(AB = 5cm,\) \(MP = 7cm\) và chu vi của tam giác $ABC$ bằng $22cm.$ Tính các cạnh còn lại của mỗi tam giác.
\(NP = BC = 9\,cm.\)
\(NP = BC = 11\,cm.\)
\(NP = BC = 10\,cm.\)
\(NP = 9cm;\,BC = 10\,cm.\)
Cho \(\Delta ABC = \Delta DEF.\) Biết rằng \(AB = 6cm,\) \(AC = 8cm\) và \(EF = 10cm.\) Chu vi tam giác \(DEF\) là
\(24\,cm\)
\(20\,cm\)
\(18\,cm\)
\(30\,cm\)
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A + \widehat B = {130^0},\widehat E = {55^0}.\) Tính các góc \(\widehat A,\widehat C,\widehat D,\widehat F.\)
\(\widehat A = \widehat D = 65^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 65^\circ .\)
\(\widehat A = \widehat D = 75^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 75^\circ .\)
Cho \(\Delta DEF = \Delta MNP.\) Biết \(EF + FD = 10cm,\) \(NP - MP = 2cm,\) \(DE = 3cm.\) Tính độ dài cạnh \(FD.\)
\(4\,cm\)
\(6\,cm\)
\(8\,cm\)
\(10\,cm\)
Cho tam giác $ABC$ (không có hai góc nào bằng nhau, không có hai cạnh nào bằng nhau) bằng một tam giác có ba đỉnh là $O,H,K.$ Viết kí hiệu về sự bằng nhau của hai tam giác, biết rằng: \(\widehat A = \widehat O,\widehat B = \widehat K.\)
\(\Delta ABC = \Delta KOH\)
\(\Delta ABC = \Delta HOK\)
\(\Delta ABC = \Delta OHK\)
\(\Delta ABC = \Delta OKH\)
Cho \(\Delta ABC = \Delta MNP\) trong đó \(\widehat A = 30^\circ ;\widehat P = 60^\circ .\) So sánh các góc \(N;\,M;\,P.\)
\(\widehat N = \widehat P > \widehat M\)
\(\widehat N > \widehat P = \widehat M\)
\(\widehat N > \widehat P > \widehat M\)
\(\widehat N < \widehat P < \widehat M\)
Cho hai tam giác $ABD$ và $CDB$ có cạnh chung $BD.$ Biết $AB = DC$ và $AD = CB.$ Phát biểu nào sau đây là sai:
\(\Delta ABC = \Delta CDA\)
\(\widehat {ABC} = \widehat {CDA}\)
\(\widehat {BAC} = \widehat {DAC}\)
\(\widehat {BCA} = \widehat {DAC}\)
Cho tam giác $ABD$ và tam giác $IKH$ có $AB = KI,AD = KH,DB = IH.$
Phát biểu nào trong các phát biểu sau đây là đúng:
\(\Delta BAD = \Delta HIK\)
\(\Delta ABD = \Delta KHI\)
\(\Delta DAB = \Delta HIK\)
\(\Delta ABD = \Delta KIH\)
Nếu \(\widehat A = {60^ \circ }\), thì số đo góc $K$ là:
\({60^ \circ }\)
\({70^ \circ }\)
\({90^ \circ }\)
\({120^ \circ }\)
Cho đoạn thẳng \(AB = 6cm.\) Trên một nửa mặt hẳng bờ $AB$ vẽ tam giác $ABC$ sao cho \(AC = 4cm,\) \(BC = 5cm,\) trên nửa mặt phẳng còn lại vẽ tam giác $ABD$ sao cho \(BD = 4cm,\) \(AD = 5cm.\) Chọn câu đúng.
\(\Delta CAB = \Delta DAB\)
\(\Delta ABC = \Delta BDA\)
\(\Delta CAB = \Delta DBA\)
\({\rm{\Delta CAB = \Delta {\rm A}{\rm B}D}}\)
Trên đường thẳng \(xy\) lấy hai điểm \(A,B\). Trên cùng nửa mặt phẳng bờ \(xy\) lấy hai điểm \(C\) và \(C'\) sao cho \(AC = BC';BC = AC'.\)
Chọn câu đúng.
\(\widehat {BCA} = \widehat {BAC'}\)
\(\Delta ACB = \Delta BAC'\)
\(\widehat {BCA} = \widehat {ABC'}\)
\(\Delta ACB = \Delta BC'A\)
So sánh hai góc \(\widehat {CAC'};\,\widehat {CBC'}\)?
\(\widehat {CAC'} > \widehat {CBC'}\)
\(\widehat {CAC'} < \widehat {CBC'}\)
\(\widehat {CAC'} = \widehat {CBC'}\)
\(\widehat {CAC'} = 2.\widehat {CBC'}\)
Cho \(\Delta\)ABC có AB = AC và MB = MC (\(M \in BC\)).Chọn câu sai.
\(\Delta AMC = \Delta BCM\)
\(AM \bot BC\)
\(\widehat {BAM} = \widehat {CAM}\)
\(\Delta AMB = \Delta AMC\)
Đáp án : A
2 tam giác có 3 cặp cạnh tương ứng bằng nhau thì 2 tam giác đó bằng nhau. ( c.c.c)
Xét \(\Delta AMB\) và \(\Delta AMC\) có
\(AB = AC\,\left( {gt} \right)\)
\(MB = MC\left( {gt} \right)\)
Cạnh \(AM\) chung
Nên \(\Delta AMB = \Delta AMC\,\left( {c - c - c} \right)\)
Suy ra \(\widehat {BAM} = \widehat {CAM}\) và \(\widehat {AMB} = \widehat {AMC}\) (hai góc tương ứng bằng nhau)
Mà \(\widehat {AMB} + \widehat {AMC} = 180^\circ \) (hai góc kề bù)
Nên \(\widehat {AMB} = \widehat {AMC} = \frac{{180^\circ }}{2} = 90^\circ .\) Hay \(AM \bot BC.\)
Vậy B, C, D đúng, A sai.
Cho tam giác \(MNP\) có MN = MP. Gọi \(A\) là trung điểm của \(NP.\) Biết \(\widehat {NMA} = {20^0}\) thì số đo góc \(MPN\) là:
50\(^\circ \)
40\(^\circ \)
70\(^\circ \)
80\(^\circ \)
Đáp án : C
+ Áp dụng tính chất hai tam giác bằng nhau suy ra các cặp góc tương ứng bằng nhau.
+ Áp dụng định lý tổng ba góc trong tam giác, tìm góc chưa biết số đo trong tam giác.
Xét tam giác \(NAM\) và tam giác \(PAM\) có:
\(MN = MP,\) \(NA = PA,\) \(MA\) là cạnh chung.
Do đó \(\Delta NAM = \Delta PAM\,\left( {c - c - c} \right).\)
Nên \(\widehat {ANM} = \widehat {APM}\) ; \(\widehat {NMA} = \widehat {PMA}\) (hai góc tương ứng)
Do đó \(\widehat {NMP} = \widehat {NMA} + \widehat {PMA} = 20^\circ + 20^\circ = 40^\circ \)
Áp dụng định lý tổng 3 góc trong tam giác \(MNP\) có:
\(\widehat {NMP} + \widehat {MPN} + \widehat {PNM} = {180^0} \\ 2\widehat {MPN} + \widehat {NMP} = {180^0}\)
Suy ra \(\widehat {MPN} = \left( {{{180}^0} - \widehat {NMP}} \right):2 = \left( {{{180}^0} - {{40}^0}} \right):2 = {70^0}.\)
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A + \widehat B = {130^0},\widehat E = {55^0}.\) Tính các góc \(\widehat A,\widehat C,\widehat D,\widehat F.\)
\(\widehat A = \widehat D = 65^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 65^\circ .\)
\(\widehat A = \widehat D = 75^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 75^\circ .\)
Đáp án : C
+ Áp dụng tính chất hai tam giác bằng nhau suy ra các cặp góc tương ứng bằng nhau.
+ Áp dụng định lý tổng ba góc trong tam giác, tìm góc chưa biết số đo trong tam giác.
Vì \(\Delta ABC = \Delta DEF\) nên \(\widehat A = \widehat D;\,\widehat B = \widehat E = 55^\circ ;\widehat C\, = \widehat F.\) ( các góc tương ứng)
Xét tam giác \(ABC\) có \(\widehat A + \widehat B = 130^\circ \Rightarrow \widehat A = 130^\circ - \widehat B\) \( = 130^\circ - 55^\circ = 75^\circ \)
Lại có \(\widehat A + \widehat B + \widehat C = 180^\circ \Rightarrow \widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right)\) \( = 180^\circ - 130^\circ = 50^\circ .\)
Vậy \(\widehat A = \widehat D = 75^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
Cho \(\widehat {xOy} = {50^0}\), vẽ cung tròn tâm O bán kính bằng 2cm, cung tròn này cắt Ox, Oy lần lượt ở A và B. Vẽ các cung tròn tâm A và tâm B có bán kính 3cm, chúng cắt nhau tại điểm C nằm trong góc xOy. Tính \(\widehat {xOC}\) .
\({40^0}\)
\({25^0}\)
\({80^0}\)
\({90^0}\)
Đáp án : B
Ta chứng minh hai tam giác bằng nhau để suy ra hai góc tương ứng bằng nhau
Xét hai tam giác OAC và OBC có:
OA = OB (= 2cm)
OC chung
AC = BC (= 3cm)
Nên \(\Delta OAC = \Delta OBC(c.c.c)\)
Do đó \(\widehat {AOC} = \widehat {COB}\) (hai góc tương ứng).
Mà \(\widehat {AOC} + \widehat {COB} = {50^0}\) nên \(\widehat {AOC} = \widehat {COB} = \frac{{{{50}^0}}}{2} = {25^0}\)
Vậy \(\widehat {xOC} = {25^0}\).
Cho hình vẽ sau:
Khẳng định đúng là:
\(\Delta ABC = \Delta DEA\)
\(\widehat D = \widehat A\)
\(\widehat E = \widehat B\)
\(\widehat C = \widehat E\)
Đáp án : D
2 tam giác có 3 cặp cạnh tương ứng bằng nhau thì 2 tam giác đó bằng nhau. ( c.c.c)
Áp dụng tính chất hai tam giác bằng nhau suy ra các cặp góc tương ứng bằng nhau.
Xét \(\Delta \)ABC và \(\Delta \)ADE, ta có:
AB = AD
BC = DE
AC = AE
\( \Rightarrow \Delta ABC = \Delta ADE\) ( c.c.c)
\( \Rightarrow \widehat {BAC} = \widehat {DAE};\widehat B = \widehat D;\widehat C = \widehat E\) ( các góc tương ứng)
Cho tam giác \(ABC\) có \(AB < AC\) . Gọi \(E \in AC\) sao cho \(AB = CE\). Gọi \(O\) là một điểm nằm ở trong tam giác sao cho \(OA = OC,OB = OE.\) Khi đó:
\(\Delta AOB = \Delta CEO\)
\(\Delta AOB = \Delta COE\)
\(\widehat {AOB} = \widehat {OEC}\)
\(\widehat {ABO} = \widehat {OCE}\)
Đáp án : B
2 tam giác có 3 cặp cạnh tương ứng bằng nhau thì 2 tam giác đó bằng nhau. ( c.c.c)
Áp dụng tính chất hai tam giác bằng nhau suy ra các cặp góc tương ứng bằng nhau.
Xét tam giác \(AOB\) và tam giác \(COE\) có:
\(AB = CE\left( {gt} \right);AO = CO;OB = OE\)
Do đó: \(\Delta AOB = \Delta COE(c.c.c)\) suy ra \(\widehat {AOB} = \widehat {COE};\,\widehat {ABO} = \widehat {OEC}\) (hai góc tương ứng bằng nhau)
Nên A, C, D sai, B đúng.
Cho hình vẽ sau. Tam giác bằng với tam giác DEA là:
Tam giác ABC
Tam giác CBA
Tam giác DBA
Tam giác BCA
Đáp án : B
2 tam giác có 3 cặp cạnh tương ứng bằng nhau thì 2 tam giác đó bằng nhau. ( c.c.c)
Xét tam giác DEA và tam giác CBA, ta có:
DE = CB
EA = BA
DA = CA
\( \Rightarrow \Delta DEA = \Delta CBA\) ( c.c.c)
Cho hình dưới đây.
Chọn câu sai.
\(AD//BC\)
\(AB//CD\)
\(\Delta ABC = \Delta CDA\)
\(\Delta ABC = \Delta ADC\)
Đáp án : D
2 tam giác có 3 cặp cạnh tương ứng bằng nhau thì 2 tam giác đó bằng nhau. ( c.c.c)
Sử dụng dấu hiệu nhận biết hai đường thẳng song song.
Xét tam giác \(ADC\) và \(CBA\) có
\(AB = CD\)
\(AD = BC\)
\(DB\) chung
\( \Rightarrow \Delta ADC = CBA\left( {c.c.c} \right)\)
Do đó \(\widehat {DAC} = \widehat {BCA}\) (hai góc tương ứng)
Mà hai góc ở vị trí so le trong nên \(AD//BC.\)
Tương tự ta có \(AB//DC.\)
Vậy A, B, C đúng, D sai.
Cho \(\Delta ABC = \Delta MNP.\) Biết AC = 6 cm, NP = 8 cm và chu vi của tam giác MNP bằng 22cm. Tìm khẳng định sai:
MP = 8 cm
BC = 8 cm
MN = 8 cm
AB = 8 cm
Đáp án : A
Khi 2 tam giác bằng nhau thì các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau
Chu vi tam giác bằng tổng độ dài 3 cạnh
Vì \(\Delta ABC = \Delta MNP.\)
\( \Rightarrow \) AB = MN, BC = NP; AC = MP
Mà AC = 6 cm, NP = 8 cm
Nên MP = 6 cm, BC = 8 cm
Chu vi của tam giác MNP bằng 22cm nên MN + NP + MP = 22 cm hay MN + 8 + 6 = 22 cm nên MN = 8 cm
Do đó, AB = MN = 8 cm
Vậy các khẳng định B,C,D là đúng; khẳng định A sai.
Cho \(\Delta ABC = \Delta DEF.\) Cho \(\widehat E = 46^\circ \). Khẳng định đúng là:
\(\widehat A = 46^\circ \)
\(\widehat B = 46^\circ \)
\(\widehat F = 46^\circ \)
\(\widehat C = 46^\circ \)
Đáp án : B
Khi 2 tam giác bằng nhau thì các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau.
Vì \(\Delta ABC = \Delta DEF.\)
\( \Rightarrow \) ( 2 góc tương ứng)
\( \Rightarrow \widehat B = 46^\circ \)
Cho \(\Delta ABC = \Delta MNP.\) Chọn câu sai.
\(AB = MN\)
$AC = NP$
\(\widehat A = \widehat M\)
\(\widehat P = \widehat C\)
Đáp án : B
Ta có \(\Delta ABC = \Delta MNP\)\( \Leftrightarrow \left\{ \begin{array}{l}\widehat A = \widehat M\\\widehat C = \widehat P\\\widehat B = \widehat N\\AB = MN\\AC = MP\\BC = NP\end{array} \right.\)
Nên A, C, D đúng, B sai.
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A = {33^0}\). Khi đó
\(\widehat D = 33^\circ \)
\(\widehat D = 42^\circ \)
\(\widehat E = 32^\circ \)
\(\widehat D = 66^\circ \)
Đáp án : A
\(\Delta ABC = \Delta DEF\)\( \Rightarrow \widehat D = \widehat A\) (hai góc tương ứng).
Nên \(\widehat D = 33^\circ .\)
Cho hai tam giác \(ABC\) và \(DEF\) có \(AB = EF;\,BC = FD;AC = ED;\) \(\widehat A = \widehat E;\widehat B = \widehat F;\widehat D = \widehat C\). Khi đó
\(\Delta ABC = \Delta DEF\)
\(\Delta ABC = \Delta EFD\)
\(\Delta ABC = \Delta FDE\)
\(\Delta ABC = \Delta DFE\)
Đáp án : B
Xét tam giác \(ABC\) và \(DEF\) có \(AB = EF;\,BC = FD;AC = ED;\)\(\widehat A = \widehat E;\widehat B = \widehat F;\widehat D = \widehat C\) nên \(\Delta ABC = \Delta EFD\)
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A = {32^0},\widehat F = {78^0}\). Tính \(\widehat B;\widehat E.\)
\(\widehat B = \widehat E = 60^\circ .\)
$\widehat B = 60^\circ ;\widehat E = 70^\circ .$
\(\widehat B = \widehat E = 78^\circ .\)
\(\widehat B = \widehat E = 70^\circ .\)
Đáp án : D
Áp dụng định nghĩa hai tam giác bằng nhau và định lý tổng ba góc của một tam giác.
Vì \(\Delta ABC = \Delta DEF\) nên \(\widehat D = \widehat A = 32^\circ ;\,\widehat B = \widehat E;\,\widehat C = \widehat F = 78^\circ \) (các góc tương ứng bằng nhau)
Xét tam giác \(ABC\) có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lý tổng ba góc trong tam giác)
Suy ra \(\widehat B = 180^\circ - \widehat A - \widehat C = 180^\circ - 32^\circ - 78^\circ \)\( = 70^\circ .\)
Vậy \(\widehat B = \widehat E = 70^\circ .\)
Cho \(\Delta ABC = \Delta MNP.\) Biết \(AB = 5cm,\) \(MP = 7cm\) và chu vi của tam giác $ABC$ bằng $22cm.$ Tính các cạnh còn lại của mỗi tam giác.
\(NP = BC = 9\,cm.\)
\(NP = BC = 11\,cm.\)
\(NP = BC = 10\,cm.\)
\(NP = 9cm;\,BC = 10\,cm.\)
Đáp án : C
Áp dụng định nghĩa hai tam giác bằng nhau và công thức tính chu vi tam giác.
Vì \(\Delta ABC = \Delta MNP\) nên \(AB = MN = 5\,cm;\,AC = MP = 7\,cm;\,BC = NP\) (các cạnh tương ứng bằng nhau)
Chu vi tam giác \(ABC\) là \(AB + BC + AC = 22\,cm \Rightarrow BC = 22 - AB - AC\)\( = 22 - 5 - 7 = 10\,cm.\)
Vậy \(NP = BC = 10\,cm.\)
Cho \(\Delta ABC = \Delta DEF.\) Biết rằng \(AB = 6cm,\) \(AC = 8cm\) và \(EF = 10cm.\) Chu vi tam giác \(DEF\) là
\(24\,cm\)
\(20\,cm\)
\(18\,cm\)
\(30\,cm\)
Đáp án : A
Áp dụng định nghĩa hai tam giác bằng nhau và công thức tính chu vi tam giác.
Vì \(\Delta ABC = \Delta DEF\) nên \(AB = DE = 6cm;\,AC = DF = 8cm;\,BC = EF = 10\,cm\) (các cạnh tương ứng bằng nhau).
Chu vi tam giác \(ABC\) là \(AB + BC + AC = 6 + 10 + 8 = 24\,cm.\)
Chu vi tam giác \(DEF\) là \(DE + DF + EF = 6 + 8 + 10 = 24\,cm.\)
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A + \widehat B = {130^0},\widehat E = {55^0}.\) Tính các góc \(\widehat A,\widehat C,\widehat D,\widehat F.\)
\(\widehat A = \widehat D = 65^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 65^\circ .\)
\(\widehat A = \widehat D = 75^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
\(\widehat A = \widehat D = 50^\circ ;\,\widehat C\, = \widehat F = 75^\circ .\)
Đáp án : C
Áp dụng định nghĩa hai tam giác bằng nhau và định lý tổng ba góc trong tam giác.
Vì \(\Delta ABC = \Delta DEF\) nên \(\widehat A = \widehat D;\,\widehat B = \widehat E = 55^\circ ;\widehat C\, = \widehat F.\)
Xét tam giác \(ABC\) có \(\widehat A + \widehat B = 130^\circ \Rightarrow \widehat A = 130^\circ - \widehat B\)\( = 130^\circ - 55^\circ = 75^\circ \)
Lại có $\widehat A + \widehat B + \widehat C = 180^\circ \Rightarrow \widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right)$\( = 180^\circ - 130^\circ = 50^\circ .\)
Vậy \(\widehat A = \widehat D = 75^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
Cho \(\Delta DEF = \Delta MNP.\) Biết \(EF + FD = 10cm,\) \(NP - MP = 2cm,\) \(DE = 3cm.\) Tính độ dài cạnh \(FD.\)
\(4\,cm\)
\(6\,cm\)
\(8\,cm\)
\(10\,cm\)
Đáp án : A
Áp dụng định nghĩa hai tam giác bằng nhau và cách tìm hai số khi biết tổng và hiệu.
Vì \(\Delta DEF = \Delta MNP\) nên \(DE = MN = 3cm;\,EF = NP;\,DF = MP\) (hai cạnh tương ứng bằng nhau)
Mà theo bài ra ta có \(NP - MP = 2\,cm\) suy ra \(EF - FD = 2cm\). Lại có \(EF + FD = 10cm\) nên \(EF = \dfrac{{10 + 2}}{2} = 6\,cm;\,FD = 10 - 6 = 4\,cm.\)
Vậy \(FD = 4\,cm.\)
Cho tam giác $ABC$ (không có hai góc nào bằng nhau, không có hai cạnh nào bằng nhau) bằng một tam giác có ba đỉnh là $O,H,K.$ Viết kí hiệu về sự bằng nhau của hai tam giác, biết rằng: \(\widehat A = \widehat O,\widehat B = \widehat K.\)
\(\Delta ABC = \Delta KOH\)
\(\Delta ABC = \Delta HOK\)
\(\Delta ABC = \Delta OHK\)
\(\Delta ABC = \Delta OKH\)
Đáp án : D
Áp dụng định nghĩa hai tam giác bằng nhau. Chú ý đến thứ tự các đỉnh tương ứng của hai tam giác.
Vì \(\widehat A = \widehat O,\widehat B = \widehat K\) nên hai góc còn lại bằng nhau là \(\widehat C = \widehat H.\)
Suy ra \(\Delta ABC = \Delta OKH.\)
Cho \(\Delta ABC = \Delta MNP\) trong đó \(\widehat A = 30^\circ ;\widehat P = 60^\circ .\) So sánh các góc \(N;\,M;\,P.\)
\(\widehat N = \widehat P > \widehat M\)
\(\widehat N > \widehat P = \widehat M\)
\(\widehat N > \widehat P > \widehat M\)
\(\widehat N < \widehat P < \widehat M\)
Đáp án : C
Áp dụng định nghĩa hai tam giác bằng nhau và định lý về tổng ba góc trong một tam giác.
Vì \(\Delta ABC = \Delta MNP\) nên \(\widehat A = \widehat M = 30^\circ ;\,\widehat C = \widehat P = 60^\circ ;\,\widehat B = \widehat N.\)
Xét tam giác \(MNP\) có \(\widehat M + \widehat N + \widehat P = 180^\circ \)\( \Rightarrow \widehat N = 180^\circ - \widehat M - \widehat P\)\( = 180^\circ - 30^\circ - 60^\circ = 90^\circ .\)
Vậy \(\widehat N > \widehat P > \widehat M.\)
Cho hai tam giác $ABD$ và $CDB$ có cạnh chung $BD.$ Biết $AB = DC$ và $AD = CB.$ Phát biểu nào sau đây là sai:
\(\Delta ABC = \Delta CDA\)
\(\widehat {ABC} = \widehat {CDA}\)
\(\widehat {BAC} = \widehat {DAC}\)
\(\widehat {BCA} = \widehat {DAC}\)
Đáp án : C
Dựa vào tính chất của hai tam giác bằng nhau.
Xét \(\Delta ABC\) và \(\Delta CDA\) có:
\(AB = CD\left( {gt} \right)\)
\(BD{\rm{ chung}}\)
\(AD = BC\left( {gt} \right)\)
\( \Rightarrow \Delta ABC = \Delta CDA\left( {c.c.c} \right)\)
\( \Rightarrow \widehat {ABC} = \widehat {CDA},\widehat {BAC} = \widehat {DCA},\widehat {BCA} = \widehat {DAC}\) (góc tương ứng)
Vậy đáp án $C$ là sai.
Cho tam giác $ABD$ và tam giác $IKH$ có $AB = KI,AD = KH,DB = IH.$
Phát biểu nào trong các phát biểu sau đây là đúng:
\(\Delta BAD = \Delta HIK\)
\(\Delta ABD = \Delta KHI\)
\(\Delta DAB = \Delta HIK\)
\(\Delta ABD = \Delta KIH\)
Đáp án: D
Xét tam giác $ABD$ và tam giác $KIH$ có:
$AB = KI,AD = KH,DB = IH.$
Do đó \(\Delta ABD = \Delta KIH\)(c.c.c).
Nếu \(\widehat A = {60^ \circ }\), thì số đo góc $K$ là:
\({60^ \circ }\)
\({70^ \circ }\)
\({90^ \circ }\)
\({120^ \circ }\)
Đáp án: A
Tính chất hai tam giác bằng nhau
Do \(\Delta ABD = \Delta KIH\) (theo câu trước), nên \(\widehat K = \widehat A = 60^\circ \) (hai góc tương ứng bằng nhau).
Cho đoạn thẳng \(AB = 6cm.\) Trên một nửa mặt hẳng bờ $AB$ vẽ tam giác $ABC$ sao cho \(AC = 4cm,\) \(BC = 5cm,\) trên nửa mặt phẳng còn lại vẽ tam giác $ABD$ sao cho \(BD = 4cm,\) \(AD = 5cm.\) Chọn câu đúng.
\(\Delta CAB = \Delta DAB\)
\(\Delta ABC = \Delta BDA\)
\(\Delta CAB = \Delta DBA\)
\({\rm{\Delta CAB = \Delta {\rm A}{\rm B}D}}\)
Đáp án : C
Từ bài ra ta có \(AC = BD = 4\,cm;\,BC = AD = 5\,cm.\)
Xét \(\Delta CAB\) và \(\Delta DBA\) có:
\(AC = BD\,\left( {cmt} \right)\)
\(BC = AD\,\left( {cmt} \right)\)
Cạnh \(AB\) chung
Nên \(\Delta CAB = \Delta DBA\,\left( {c - c - c} \right).\)
Trên đường thẳng \(xy\) lấy hai điểm \(A,B\). Trên cùng nửa mặt phẳng bờ \(xy\) lấy hai điểm \(C\) và \(C'\) sao cho \(AC = BC';BC = AC'.\)
Chọn câu đúng.
\(\widehat {BCA} = \widehat {BAC'}\)
\(\Delta ACB = \Delta BAC'\)
\(\widehat {BCA} = \widehat {ABC'}\)
\(\Delta ACB = \Delta BC'A\)
Đáp án: D
Ta chứng minh hai tam giác bằng nhau theo trường hợp cạnh-cạnh-cạnh, sau đó suy ra hai góc tương ứng bằng nhau.
Hai tam giác \(ACB\) và \(BC'A\) có
$AC = BC'$ (gt)
\(BC = AC'\) (gt)
\(AB\) là cạnh chung
Nên \(\Delta ACB = \Delta BC'A\,\left( {c - c - c} \right).\)
Suy ra \(\widehat {BCA} = \widehat {BC'A}\) (hai góc tương ứng bằng nhau).
Nên A, B, C sai, D đúng.
So sánh hai góc \(\widehat {CAC'};\,\widehat {CBC'}\)?
\(\widehat {CAC'} > \widehat {CBC'}\)
\(\widehat {CAC'} < \widehat {CBC'}\)
\(\widehat {CAC'} = \widehat {CBC'}\)
\(\widehat {CAC'} = 2.\widehat {CBC'}\)
Đáp án: C
Ta chứng minh hai tam giác bằng nhau để suy ra hai góc tương ứng bằng nhau. Từ đó suy ra được điều phải chứng minh.
Vì \(\Delta ACB = \Delta BC'A\,\)(ý trước) ta suy ra \(\widehat {CAB} = \widehat {C'BA}\) và \(\widehat {C'AB} = \widehat {CBA}\) (1) (hai góc tương ứng bằng nhau)
Lại có \(\widehat {CAB} = \widehat {CAC'} + \widehat {C'AB}\) và \(\widehat {C'AB} = \widehat {CBC'} + \widehat {CBA}\) (tia làm giữa hai tia)
Suy ra $\widehat {CAC'} = \widehat {CAB} - \widehat {C'AB}$ và \(\widehat {CBC'} = \widehat {C'BA} - \widehat {CBA}\) (2)
Từ \(\left( 1 \right);\left( 2 \right)\) suy ra \(\widehat {CAC'} = \widehat {CBC'}\).
Bài 13 trong chương trình Toán 7 Kết nối tri thức tập trung vào một trong những kiến thức nền tảng quan trọng nhất của hình học: hai tam giác bằng nhau. Việc nắm vững các trường hợp bằng nhau của tam giác là chìa khóa để giải quyết nhiều bài toán phức tạp hơn trong tương lai. Bài viết này sẽ cung cấp một bộ trắc nghiệm chi tiết, bao gồm các dạng bài tập khác nhau, giúp học sinh hiểu sâu sắc và vận dụng thành thạo kiến thức về trường hợp bằng nhau thứ nhất của tam giác.
Trước khi đi vào phần trắc nghiệm, chúng ta cùng ôn lại một số kiến thức cơ bản:
Việc hiểu rõ định nghĩa và điều kiện để hai tam giác bằng nhau là vô cùng quan trọng. Hãy nhớ rằng, chỉ cần chứng minh được một trong các trường hợp bằng nhau, ta có thể kết luận hai tam giác đó bằng nhau.
Các bài tập trắc nghiệm về hai tam giác bằng nhau thường xoay quanh các dạng sau:
Dưới đây là một số câu hỏi trắc nghiệm minh họa:
Câu 1: Cho tam giác ABC và tam giác DEF có AB = DE, góc B = góc E, BC = EF. Kết luận nào sau đây là đúng?
Câu 2: Cho tam giác MNP và tam giác RST có MN = RS, góc N = góc S, NP = ST. Khi đó:
Câu 3: (Đề bài và các đáp án tương tự, khoảng 20-30 câu, bao gồm các mức độ khó khác nhau)
(Cung cấp đáp án chi tiết và lời giải cho từng câu hỏi trắc nghiệm)
Hy vọng với bộ trắc nghiệm này, các em học sinh lớp 7 sẽ có thêm công cụ để học tập và ôn luyện môn Toán hiệu quả. Chúc các em học tốt!