Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài 7: Tập hợp các số thực Toán 7 Kết nối tri thức

Trắc nghiệm Bài 7: Tập hợp các số thực Toán 7 Kết nối tri thức

Trắc nghiệm Bài 7: Tập hợp các số thực Toán 7 Kết nối tri thức

Chào mừng các em học sinh đến với bài trắc nghiệm Bài 7: Tập hợp các số thực môn Toán lớp 7 chương trình Kết nối tri thức trên giaitoan.edu.vn. Bài trắc nghiệm này được thiết kế để giúp các em ôn tập và củng cố kiến thức về tập hợp các số thực, bao gồm số hữu tỉ, số vô tỉ và cách biểu diễn chúng trên trục số.

Với hình thức trắc nghiệm khách quan, các em sẽ được kiểm tra nhanh chóng và hiệu quả khả năng hiểu bài và vận dụng kiến thức đã học.

Đề bài

    Câu 1 :

    Tập hợp các số thực được kí hiệu là:

    • A.

      \(\mathbb{Z}\)

    • B.

      \(\mathbb{F}\)

    • C.

      \(\mathbb{Q}\)

    • D.

      \(\mathbb{R}\)

    Câu 2 :

    So sánh: \(\sqrt {17} \) và 4,(12)

    • A.

      \(\sqrt {17} \) > 4,(12)

    • B.

      \(\sqrt {17} \) = 4,(12)

    • C.

      \(\sqrt {17} \)\( \le \)4,(12)

    • D.

      \(\sqrt {17} \) < 4,(12)

    Câu 3 :

    So sánh \(\sqrt {{{( - 4)}^2}} \)\(\sqrt {17} \)

    • A.

      \(\sqrt {{{( - 4)}^2}} \) > \(\sqrt {17} \)

    • B.

      \(\sqrt {{{( - 4)}^2}} \) = \(\sqrt {17} \)

    • C.

      \(\sqrt {{{( - 4)}^2}} \) < \(\sqrt {17} \)

    • D.

      Không so sánh được

    Câu 4 :

    Tính: \(\left| { - \sqrt {11} } \right|\)

    • A.

      \(\sqrt {11} \)

    • B.

      -\(\sqrt {11} \)

    • C.

      11

    • D.

      1

    Câu 5 :

    Cho x là 1 số thực bất kì, |x| là:

    • A.

      Một số âm

    • B.

      Một số dương

    • C.

      Một số không âm

    • D.

      Một sô không dương

    Câu 6 :

    Tìm x sao cho: |2x + 5| = |-1,5|

    • A.

      x = -1,75

    • B.

      x = 1,75

    • C.

      x = -1,75; x = 1,75

    • D.

      x = -1,75 ; x = -3,25.

    Câu 7 :

    Tính giá trị biểu thức: \(K = \left| { - 1,3} \right| + {\left( {\frac{{ - 3}}{5}} \right)^2} - |2,3| - {\left( {\frac{4}{5}} \right)^2} - {2022^0}\)

    • A.

      -3

    • B.

      -2,28

    • C.

      -5,6

    • D.

      -1

    Câu 8 :

    Tính giá trị nhỏ nhất của biểu thức: \(A = \left| { - x - 3} \right| + {\left( {y - 1} \right)^2} + {\left( {x + 3} \right)^4} + 2\)

    • A.

      0

    • B.

      -2

    • C.

      2

    • D.

      3

    Câu 9 :

    Chọn chữ số thích hợp điền vào dấu “…”

    -2,3….4 > - 2, (31)

    • A.

      0

    • B.

      1

    • C.

      {1;2;3;4;5;6;7;8;9}

    • D.

      2

    Câu 10 :

    Phát biểu nào sau đây sai?

    • A.

      Mọi số vô tỉ đều là số thực

    • B.

      Mọi số thực đều là số vô tỉ.

    • C.

      Mọi số nguyên đều là số hữu tỉ

    • D.

      Số 0 là số hữu tỉ cũng là số thực.

    Câu 11 :

    Tìm số tự nhiên $x$ để \(D = \dfrac{{\sqrt x - 3}}{{\sqrt x + 2}}\) có giá trị là một số nguyên.

    • A.

      \(x = 4\)

    • B.

      \(x = 16\)

    • C.

      \(x = 9\)

    • D.

      \(x = 10\)

    Câu 12 :

    Giá trị nào dưới đây của \(x\) thỏa mãn \(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 - 12,3 = 77,7.\)

    • A.

      \(x = 49842\)

    • B.

      \(x = 498\)

    • C.

      \(x = 498420\)

    • D.

      \(x = 498425\)

    Câu 13 :

    Có bao nhiêu giá trị của \(x\) thỏa mãn \(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| - \dfrac{3}{4} = \dfrac{1}{5}\).

    • A.

      \(1\)

    • B.

      \(2\)

    • C.

      \(3\)

    • D.

      \(0\)

    Câu 14 :

    Gọi \(x\) là giá trị thỏa mãn \(\sqrt {1,69} .\left( {2\sqrt x + \sqrt {\dfrac{{81}}{{121}}} } \right) = \dfrac{{13}}{{10}}\). Chọn câu đúng.

    • A.

      \(x > 2\)

    • B.

      \(x < 0\)

    • C.

      \(0 < x < 1\)

    • D.

      \(x > 3\)

    Câu 15 :

    Tìm \(x\) biết \(\dfrac{2}{3} + \dfrac{5}{3}x = \dfrac{5}{7}\)

    • A.

      \(\dfrac{1}{7}\)

    • B.

      \(\dfrac{{ - 3}}{{35}}\)

    • C.

      \(\dfrac{{ - 1}}{{35}}\)

    • D.

      \(\dfrac{1}{{35}}\)

    Câu 16 :

    Giá trị nào sau đây là kết quả của phép tính \(\left( { - 45,7} \right) + \left[ {\left( { + 5,7} \right) + \left( { + 5,75} \right) + \left( { - 0,75} \right)} \right].\)

    • A.

      \(\dfrac{{87}}{5}\)

    • B.

      \(-35\)

    • C.

      \(35\)

    • D.

      \(\dfrac{5}{{87}}\)

    Câu 17 :

    Cho \(A = \) \(\left[ { - \sqrt {2,25} + 4\sqrt {{{\left( { - 2,15} \right)}^2}} - {{\left( {3\sqrt {\dfrac{7}{6}} } \right)}^2}} \right] .\sqrt {1\dfrac{9}{{16}}}\) và $B = 1,68 + \left[ {\dfrac{4}{5} - 1,2\left( {\dfrac{5}{2} - 1\dfrac{3}{4}} \right)} \right]:\left[ {{{\left( {\dfrac{2}{3}} \right)}^2} + \dfrac{1}{9}} \right].$ So sánh \(A\) và \(B\).

    • A.

      \(A > B\)

    • B.

      \(A < B\)

    • C.

      \(A = B\)

    • D.

      \(A \ge B\)

    Câu 18 :

    Kết quả của phép tính \(\left( {\sqrt {\dfrac{9}{{25}}} - 2.9} \right):\left( {\dfrac{4}{5} + 0,2} \right)\) là:

    • A.

      \(\dfrac{{87}}{5}\)

    • B.

      \(\dfrac{{ - 87}}{5}\)

    • C.

      \(\dfrac{{ - 5}}{{87}}\)

    • D.

      \(\dfrac{5}{{87}}\)

    Câu 19 :

    Nếu ${x^2} = 7$ thì $x$ bằng:

    • A.

      $49$ hoặc $ - 49$

    • B.

      \(\sqrt 7 \) hoặc \( - \sqrt 7 \)

    • C.

      \(\dfrac{7}{2}\)

    • D.

      \( \pm 14\)

    Câu 20 :

    Sắp xếp các số sau theo thứ tự tăng dần: \( - \dfrac{1}{2};0,5; - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4};\dfrac{4}{5}\)

    • A.

      \( - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4}; - \dfrac{1}{2};\dfrac{4}{5};0,5\)

    • B.

      \( - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4}; - \dfrac{1}{2};0,5;\dfrac{4}{5}\)

    • C.

      \( - \dfrac{3}{4}; - \dfrac{1}{2}; - \sqrt 2 - \dfrac{3}{4};0,5;\dfrac{4}{5}\)

    • D.

      \( - \sqrt 2 - \dfrac{3}{4}; - \dfrac{3}{4}; - \dfrac{1}{2};0,5;\dfrac{4}{5}\)

    Câu 21 :

    Chọn chữ số thích hợp điền vào chỗ trống $ - 5,07 < - 5,...4$

    • A.

      $1;2;...9$

    • B.

      $0;1;2;...9$

    • C.

      $0$

    • D.

      $0;1$

    Lời giải và đáp án

    Câu 1 :

    Tập hợp các số thực được kí hiệu là:

    • A.

      \(\mathbb{Z}\)

    • B.

      \(\mathbb{F}\)

    • C.

      \(\mathbb{Q}\)

    • D.

      \(\mathbb{R}\)

    Đáp án : D

    Phương pháp giải :

    Kí hiệu tập hợp các số thực

    Lời giải chi tiết :

    Tập hợp các số thực được kí hiệu là \(\mathbb{R}\)

    Câu 2 :

    So sánh: \(\sqrt {17} \) và 4,(12)

    • A.

      \(\sqrt {17} \) > 4,(12)

    • B.

      \(\sqrt {17} \) = 4,(12)

    • C.

      \(\sqrt {17} \)\( \le \)4,(12)

    • D.

      \(\sqrt {17} \) < 4,(12)

    Đáp án : A

    Phương pháp giải :

    Đưa các số thực về dạng số thập phân rồi so sánh 2 số thập phân.

    Lời giải chi tiết :

    Ta có: \(\sqrt {17} \) = 4,1231056…..

    4,(12) = 4,1212…..

    Đi từ trái sang phải của 2 số thập phân, ta thấy các chữ số ở cùng hàng tương ứng bằng nhau, cho đến chữ số thập phân thức 3 thì 3 > 1 nên 4,1231056….. > 4,1212…..

    Vậy \(\sqrt {17} \) > 4,(12)

    Câu 3 :

    So sánh \(\sqrt {{{( - 4)}^2}} \)\(\sqrt {17} \)

    • A.

      \(\sqrt {{{( - 4)}^2}} \) > \(\sqrt {17} \)

    • B.

      \(\sqrt {{{( - 4)}^2}} \) = \(\sqrt {17} \)

    • C.

      \(\sqrt {{{( - 4)}^2}} \) < \(\sqrt {17} \)

    • D.

      Không so sánh được

    Đáp án : C

    Phương pháp giải :

    So sánh 2 căn thức: Nếu \(0 < a < b \Rightarrow \sqrt a < \sqrt b \)

    Lời giải chi tiết :

    Ta có: \(\sqrt {{{( - 4)}^2}} = \sqrt {16} \)

    Vì 16 < 17 nên \(\sqrt {16} < \sqrt {17} \Rightarrow \sqrt {{{( - 4)}^2}} < \sqrt {17} \)

    Câu 4 :

    Tính: \(\left| { - \sqrt {11} } \right|\)

    • A.

      \(\sqrt {11} \)

    • B.

      -\(\sqrt {11} \)

    • C.

      11

    • D.

      1

    Đáp án : A

    Phương pháp giải :

    Giá trị tuyệt đối của số - a là số a.

    Lời giải chi tiết :

    \(\left| { - \sqrt {11} } \right|\) = \(\sqrt {11} \)

    Câu 5 :

    Cho x là 1 số thực bất kì, |x| là:

    • A.

      Một số âm

    • B.

      Một số dương

    • C.

      Một số không âm

    • D.

      Một sô không dương

    Đáp án : C

    Phương pháp giải :

    Giá trị tuyệt đối của 1 số thực a là khoảng cách tử điểm biểu diễn a đến gốc O trên trục số.

    Lời giải chi tiết :

    Giá trị tuyệt đối của 1 số thực khác 0 luôn là 1 số dương. Giá trị tuyệt đối của số 0 là số 0

    Giá trị tuyệt đối của 1 số thực bất kì là 1 số không âm.

    Câu 6 :

    Tìm x sao cho: |2x + 5| = |-1,5|

    • A.

      x = -1,75

    • B.

      x = 1,75

    • C.

      x = -1,75; x = 1,75

    • D.

      x = -1,75 ; x = -3,25.

    Đáp án : D

    Phương pháp giải :

    Bước 1: Tính |-1,5|

    Bước 2: |A| = k > 0 thì xảy ra 2 trường hợp:

    A = k hoặc A = - k

    Lời giải chi tiết :

    Ta có: |2x + 5| = |-1,5|

    \( \Leftrightarrow \) |2x + 5| = 1,5

    \( \Leftrightarrow \left[ {_{2x + 5 = - 1,5}^{2x + 5 = 1,5}} \right. \Leftrightarrow \left[ {_{2x = - 6,5}^{2x = - 3,5}} \right. \Leftrightarrow \left[ {_{x = - 3,25}^{x = - 1,75}} \right.\)

    Vậy \(x \in \left\{ { - 1,75; - 3,25} \right\}\)

    Câu 7 :

    Tính giá trị biểu thức: \(K = \left| { - 1,3} \right| + {\left( {\frac{{ - 3}}{5}} \right)^2} - |2,3| - {\left( {\frac{4}{5}} \right)^2} - {2022^0}\)

    • A.

      -3

    • B.

      -2,28

    • C.

      -5,6

    • D.

      -1

    Đáp án : B

    Phương pháp giải :

    + Tính các giá trị tuyệt đối và lũy thừa

    + Nhóm các số hạng thích hợp với nhau.

    Lời giải chi tiết :

    \(\begin{array}{l}K = \left| { - 1,3} \right| + {\left( {\frac{{ - 3}}{5}} \right)^2} - |2,3| - {\left( {\frac{4}{5}} \right)^2} - {2022^0}\\ = 1,3 + \frac{9}{{25}} - 2,3 - \frac{{16}}{{25}} - 1\\ = \left( {1,3 - 2,3} \right) + \left( {\frac{9}{{25}} - \frac{{16}}{{25}}} \right) - 1\\ = ( - 1) + \frac{{ - 7}}{{25}} - 1\\ = \frac{{ - 25}}{{25}} + \frac{{ - 7}}{{25}} - \frac{{25}}{{25}}\\ = \frac{{ - 57}}{{25}}\\ = - 2,28\end{array}\)

    Câu 8 :

    Tính giá trị nhỏ nhất của biểu thức: \(A = \left| { - x - 3} \right| + {\left( {y - 1} \right)^2} + {\left( {x + 3} \right)^4} + 2\)

    • A.

      0

    • B.

      -2

    • C.

      2

    • D.

      3

    Đáp án : C

    Phương pháp giải :

    Đánh giá:

    \(\begin{array}{l}|a| \ge 0,\forall a \in \mathbb{R}\\{b^2} \ge 0,{b^4} \ge 0,\forall b \in \mathbb{R}\end{array}\)

    Lời giải chi tiết :

    Vì \[\left| { - x - 3} \right| \ge 0;{\left( {y - 1} \right)^2} \ge 0;{\left( {x + 3} \right)^4} \ge 0,\forall x,y \in \mathbb{R}\]

    \( \Rightarrow \)\(A = \left| { - x - 3} \right| + {\left( {y - 1} \right)^2} + {\left( {x + 3} \right)^4} + 2 \ge 0 + 0 + 0 + 2 = 2\)

    Dấu “ = “ xảy ra khi –x – 3 = 0 ; y – 1 = 0 ; x + 3 = 0 \( \Leftrightarrow x = - 3;y = 1\)

    Vậy min A = 2 khi x = -3; y = 1

    Câu 9 :

    Chọn chữ số thích hợp điền vào dấu “…”

    -2,3….4 > - 2, (31)

    • A.

      0

    • B.

      1

    • C.

      {1;2;3;4;5;6;7;8;9}

    • D.

      2

    Đáp án : A

    Phương pháp giải :

    Dựa vào cách so sánh 2 số thập phân

    Chú ý: Nếu a > b thì –a < - b

    Lời giải chi tiết :

    -2,3….4 > - 2, (31)

    2,3…4 < 2,(31) = 2,3131

    Ta thấy, chỉ có chữ số 0 thỏa mãn do 2,304 < 2,3131

    Câu 10 :

    Phát biểu nào sau đây sai?

    • A.

      Mọi số vô tỉ đều là số thực

    • B.

      Mọi số thực đều là số vô tỉ.

    • C.

      Mọi số nguyên đều là số hữu tỉ

    • D.

      Số 0 là số hữu tỉ cũng là số thực.

    Đáp án : B

    Phương pháp giải :

    Số thực gồm số hữu tỉ và số vô tỉ

    Mọi số nguyên đều là số hữu tỉ. Mọi số hữu tỉ đều là số thực.

    Lời giải chi tiết :

    Số thực gồm số hữu tỉ và số vô tỉ nên B sai

    Câu 11 :

    Tìm số tự nhiên $x$ để \(D = \dfrac{{\sqrt x - 3}}{{\sqrt x + 2}}\) có giá trị là một số nguyên.

    • A.

      \(x = 4\)

    • B.

      \(x = 16\)

    • C.

      \(x = 9\)

    • D.

      \(x = 10\)

    Đáp án : C

    Phương pháp giải :

    - Đầu tiên ta tách biểu thức đã cho về dạng một số nguyên cộng với một phân thức có tử là một số nguyên.

    - Để $D $ là một số nguyên thì phân thức được tách phải là số nguyên hay tử phải chia hết cho mẫu, hay mẫu là ước của tử.

    - Từ đó tìm ra $x$.

    Lời giải chi tiết :

    Ta có: \(D = \dfrac{{\sqrt x - 3}}{{\sqrt x + 2}} \) \(= \dfrac{{\sqrt x + 2 - 5}}{{\sqrt x + 2}} \) \(= 1 - \dfrac{5}{{\sqrt x + 2}}\)

    Để \(D \in Z\) thì \(\left( {\sqrt x + 2} \right)\) phải thuộc $Z$ và là ước của $5.$

    Vì \(\left( {\sqrt x + 2} \right) > 0\) nên chỉ có hai trường hợp:

    Trường hợp 1: \(\sqrt x + 2 = 1\) suy ra \(\sqrt x = - 1\) (vô lý)

    Trường hợp 2: \(\sqrt x + 2 = 5 \) suy ra \(\sqrt x = 3 \) do đó \(x = 9\)(thỏa mãn).

    Vậy để \(D \in Z\) thì $x = 9$ (khi đó $D = 0$).

    Câu 12 :

    Giá trị nào dưới đây của \(x\) thỏa mãn \(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 - 12,3 = 77,7.\)

    • A.

      \(x = 49842\)

    • B.

      \(x = 498\)

    • C.

      \(x = 498420\)

    • D.

      \(x = 498425\)

    Đáp án : D

    Phương pháp giải :

    + Sử dụng qui tắc chuyển vế và mối quan hệ giữa các số hạng, mối quan hệ giữa số bị chia, số chia và thương để tìm \(x\).

    Lời giải chi tiết :

    Ta có

    \(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 - 12,3 = 77,7\)

    \(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 = 77,7 + 12,3\)

    \(\left[ {\left( {7 + 0,004x} \right):0,9} \right]:24,7 = 90\)

    \(\left( {7 + 0,004x} \right):0,9 = 90.24,7\)

    \(\left( {7 + 0,004x} \right):0,9 = 2223\)

    \(7 + 0,004x = 2223.0,9\)

    \(7 + 0,004x = 2000,7\)

    \(0,004x = 1993,7\)

    \(x = 498425\)

    Vậy \(x = 498425\).

    Câu 13 :

    Có bao nhiêu giá trị của \(x\) thỏa mãn \(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| - \dfrac{3}{4} = \dfrac{1}{5}\).

    • A.

      \(1\)

    • B.

      \(2\)

    • C.

      \(3\)

    • D.

      \(0\)

    Đáp án : A

    Phương pháp giải :

    Ta áp dụng thứ tự thực hiện phép tính để tìm $x$.

     Đối với bài toán tìm $x$ có chứa dấu giá trị tuyệt đối ta áp dụng quy tắc phá dấu giá trị tuyệt đối: \(\left| x \right| = \left\{ \begin{array}{l}x\,\,\,\,\,\,khi\,\,x \ge 0\\ - x\,\,\,\,khi\,\,\,x < 0\end{array} \right.\) sau đó tìm $x$.

    Lời giải chi tiết :

    Ta có \(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| - \dfrac{3}{4} = \dfrac{1}{5}\)

    \(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| = \dfrac{1}{5} + \dfrac{3}{4}\)

    \(\left| {\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}}} \right| = \dfrac{{19}}{{20}}\)

    Trường hợp 1: \(\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}} = \dfrac{{19}}{{20}}\)

    $\dfrac{3}{5}\sqrt x = \dfrac{{19}}{{20}} + \dfrac{1}{{20}} = 1$

    $\sqrt x = 1:\dfrac{3}{5} = \dfrac{5}{3}$

    $x = \dfrac{{25}}{9}$

    Trường hợp 2: \(\dfrac{3}{5}\sqrt x - \dfrac{1}{{20}} = \dfrac{{ - 19}}{{20}}\)

    $\dfrac{3}{5}\sqrt x = \dfrac{{ - 19}}{{20}} + \dfrac{1}{{20}}$

    $\dfrac{3}{5} \sqrt x = - \dfrac{9}{{10}}$

    $\sqrt x = \dfrac{{ - 9}}{{10}}:\dfrac{3}{5}$

    \(\sqrt x = - \dfrac{3}{2} < 0\) (vô lý)

    Vậy có một giá trị của \(x\) thỏa mãn là \(x = \dfrac{{25}}{9}\)

    Câu 14 :

    Gọi \(x\) là giá trị thỏa mãn \(\sqrt {1,69} .\left( {2\sqrt x + \sqrt {\dfrac{{81}}{{121}}} } \right) = \dfrac{{13}}{{10}}\). Chọn câu đúng.

    • A.

      \(x > 2\)

    • B.

      \(x < 0\)

    • C.

      \(0 < x < 1\)

    • D.

      \(x > 3\)

    Đáp án : C

    Phương pháp giải :

    Ta áp dụng thứ tự thực hiện phép tính để tìm $x$.

    Sử dụng \(\sqrt x = a\,\left( {a \ge 0;x \ge 0} \right)\) thì \(x = {a^2}\) .

    Lời giải chi tiết :

    Ta có

    \(\sqrt {1,69} .\left( {2\sqrt x + \sqrt {\dfrac{{81}}{{121}}} } \right) = \dfrac{{13}}{{10}}\)

    \(1,3.\left( {2\sqrt x + \dfrac{9}{{11}}} \right) = 1,3\)

    \(2\sqrt x + \dfrac{9}{{11}} = 1,3:1,3\)

    \(2\sqrt x + \dfrac{9}{{11}} = 1\)

    \(2\sqrt x = 1 - \dfrac{9}{{11}}\)

    \(2\sqrt x = \dfrac{2}{{11}}\)

    \(\sqrt x = \dfrac{2}{{11}}:2\)

    \(\sqrt x = \dfrac{1}{{11}}\)

    \(x = \dfrac{1}{{121}}\)

     Vậy \(x = \dfrac{1}{{121}}\) nên \(0 < x < 1\).

    Câu 15 :

    Tìm \(x\) biết \(\dfrac{2}{3} + \dfrac{5}{3}x = \dfrac{5}{7}\)

    • A.

      \(\dfrac{1}{7}\)

    • B.

      \(\dfrac{{ - 3}}{{35}}\)

    • C.

      \(\dfrac{{ - 1}}{{35}}\)

    • D.

      \(\dfrac{1}{{35}}\)

    Đáp án : D

    Phương pháp giải :

    Ta áp dụng thứ tự thực hiện phép tính để tìm $x$.

    Lời giải chi tiết :

    \(\dfrac{2}{3} + \dfrac{5}{3}x = \dfrac{5}{7}\)

    \(\begin{array}{l}\dfrac{5}{3}x = \dfrac{5}{7} - \dfrac{2}{3}\\\dfrac{5}{3}x = \dfrac{1}{{21}}\\x = \dfrac{1}{{21}}:\dfrac{5}{3}\\x = \dfrac{1}{{35}}\end{array}\)

    Vậy \(x = \dfrac{1}{{35}}.\)

    Câu 16 :

    Giá trị nào sau đây là kết quả của phép tính \(\left( { - 45,7} \right) + \left[ {\left( { + 5,7} \right) + \left( { + 5,75} \right) + \left( { - 0,75} \right)} \right].\)

    • A.

      \(\dfrac{{87}}{5}\)

    • B.

      \(-35\)

    • C.

      \(35\)

    • D.

      \(\dfrac{5}{{87}}\)

    Đáp án : B

    Phương pháp giải :

    Phá ngoặc rồi cộng trừ các số hạng thích hợp

    Lời giải chi tiết :

    \(\left( { - 45,7} \right) + \left[ {\left( { + 5,7} \right) + \left( { + 5,75} \right) + \left( { - 0,75} \right)} \right].\)

    $=(-45,7)+(5,7+5,75-0,75)$$=-45,7+5,7+5$$=-40+5$$=-35$

    Câu 17 :

    Cho \(A = \) \(\left[ { - \sqrt {2,25} + 4\sqrt {{{\left( { - 2,15} \right)}^2}} - {{\left( {3\sqrt {\dfrac{7}{6}} } \right)}^2}} \right] .\sqrt {1\dfrac{9}{{16}}}\) và $B = 1,68 + \left[ {\dfrac{4}{5} - 1,2\left( {\dfrac{5}{2} - 1\dfrac{3}{4}} \right)} \right]:\left[ {{{\left( {\dfrac{2}{3}} \right)}^2} + \dfrac{1}{9}} \right].$ So sánh \(A\) và \(B\).

    • A.

      \(A > B\)

    • B.

      \(A < B\)

    • C.

      \(A = B\)

    • D.

      \(A \ge B\)

    Đáp án : B

    Phương pháp giải :

    +) Ta tính giá trị của biểu thức dưới dấu căn

    +) Sau đó thực hiện phép tính theo thứ tự thực hiện: nhân chia trước, cộng trừ sau; trong ngoặc trước và ngoài ngoặc sau.

    Lời giải chi tiết :

    Ta có

    \(A = \left[ { - \sqrt {2,25} + 4\sqrt {{{\left( { - 2,15} \right)}^2}} - {{\left( {3\sqrt {\dfrac{7}{6}} } \right)}^2}} \right].\sqrt {1\dfrac{9}{{16}}} \)

    \(A = \left[ { - 1,5 + 4.2,15 - 9.\dfrac{7}{6}} \right].\sqrt {\dfrac{{25}}{{16}}} \)

    \(A = \left[ { - 1,5 + 8,6 - \dfrac{{21}}{2}} \right].\dfrac{5}{4}\)

    \(A = \left[ {7,1 - 10,5} \right].1,25\)

    \(A = - 3,4.1,25\)

    \(A = - 4,25\)

    $B = 1,68 + \left[ {\dfrac{4}{5} - 1,2\left( {\dfrac{5}{2} - 1\dfrac{3}{4}} \right)} \right]:\left[ {{{\left( {\dfrac{2}{3}} \right)}^2} + \dfrac{1}{9}} \right]$

    $B = \dfrac{{42}}{{25}} + \left[ {\dfrac{4}{5} - \dfrac{6}{5}\left( {\dfrac{5}{2} - \dfrac{7}{4}} \right)} \right]:\left[ {\dfrac{4}{9} + \dfrac{1}{9}} \right]$

    $B = \dfrac{{42}}{{25}} + \left[ {\dfrac{4}{5} - \dfrac{6}{5}.\dfrac{3}{4}} \right]:\dfrac{5}{9}$

    $B = \dfrac{{42}}{{25}} + \left[ {\dfrac{4}{5} - \dfrac{9}{{10}}} \right]:\dfrac{5}{9}$

    $B = \dfrac{{42}}{{25}} + \dfrac{{ - 1}}{{10}}:\dfrac{5}{9} = \dfrac{{42}}{{25}} + \dfrac{{ - 9}}{{50}}$

    $B = \dfrac{{84}}{{50}} + \dfrac{{ - 9}}{{50}} = \dfrac{{75}}{{50}} = \dfrac{3}{2}$

    Từ đó \(A < B\).

    Câu 18 :

    Kết quả của phép tính \(\left( {\sqrt {\dfrac{9}{{25}}} - 2.9} \right):\left( {\dfrac{4}{5} + 0,2} \right)\) là:

    • A.

      \(\dfrac{{87}}{5}\)

    • B.

      \(\dfrac{{ - 87}}{5}\)

    • C.

      \(\dfrac{{ - 5}}{{87}}\)

    • D.

      \(\dfrac{5}{{87}}\)

    Đáp án : B

    Phương pháp giải :

    + Ta thực hiện phép tính dưới dấu căn trước.

    + Sau đó ta thực hiện phép tính theo thứ tự trong ngoặc trước ngoài ngoặc sau, nhân chia trước cộng trừ sau.

    Lời giải chi tiết :

    \(\left( {\sqrt {\dfrac{9}{{25}}} - 2.9} \right):\left( {\dfrac{4}{5} + 0,2} \right)\)

    \( = \left( {\dfrac{3}{5} - 18} \right):\left( {\dfrac{4}{5} + \dfrac{1}{5}} \right)\)

    \( = \left( {\dfrac{3}{5} - 18} \right):\left( {\dfrac{4}{5} + \dfrac{1}{5}} \right) \)

    \(= \left( {\dfrac{3}{5} - \dfrac{{90}}{5}} \right):\dfrac{5}{5} \)

    \(= \dfrac{{ - 87}}{5}:1 = \dfrac{{ - 87}}{5}\)

    Câu 19 :

    Nếu ${x^2} = 7$ thì $x$ bằng:

    • A.

      $49$ hoặc $ - 49$

    • B.

      \(\sqrt 7 \) hoặc \( - \sqrt 7 \)

    • C.

      \(\dfrac{7}{2}\)

    • D.

      \( \pm 14\)

    Đáp án : B

    Phương pháp giải :

    Ta áp dụng tính chất với \(a \ge 0\), đẳng thức \({x^2} = a \Leftrightarrow x = \sqrt a \) hoặc \(x = - \sqrt a \)

    Lời giải chi tiết :

    Ta có \({x^2} = 7 \Leftrightarrow {x^2} = {\left( { \pm \sqrt 7 } \right)^2}\).

    Suy ra \(x = \sqrt 7 \) hoặc \(x = - \sqrt 7 \)

    Câu 20 :

    Sắp xếp các số sau theo thứ tự tăng dần: \( - \dfrac{1}{2};0,5; - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4};\dfrac{4}{5}\)

    • A.

      \( - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4}; - \dfrac{1}{2};\dfrac{4}{5};0,5\)

    • B.

      \( - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4}; - \dfrac{1}{2};0,5;\dfrac{4}{5}\)

    • C.

      \( - \dfrac{3}{4}; - \dfrac{1}{2}; - \sqrt 2 - \dfrac{3}{4};0,5;\dfrac{4}{5}\)

    • D.

      \( - \sqrt 2 - \dfrac{3}{4}; - \dfrac{3}{4}; - \dfrac{1}{2};0,5;\dfrac{4}{5}\)

    Đáp án : D

    Phương pháp giải :

    Áp dụng các quy tắc so sánh: số âm với số âm, số dương với số dương, số âm với số dương.

    Lời giải chi tiết :

    Ta chia các số đã cho thành hai nhóm: \( - \dfrac{1}{2}; - \dfrac{3}{4}; - \sqrt 2 - \dfrac{3}{4}\) và \(0,5;\dfrac{4}{5}\).

    Nhóm 1: Vì \(\dfrac{3}{4} < \sqrt 2 + \dfrac{3}{4}\) nên \( - \dfrac{3}{4} > - \left( {\sqrt 2 + \dfrac{3}{4}} \right) = - \sqrt 2 - \dfrac{3}{4}\).

    Lại có \(\dfrac{1}{2} = \dfrac{2}{4} < \dfrac{3}{4}\) nên \( - \dfrac{1}{2} > - \dfrac{3}{4}\) suy ra \( - \sqrt 2 - \dfrac{3}{4} < - \dfrac{3}{4} < - \dfrac{1}{2}\).

    Nhóm 2: \(0,5 = \dfrac{1}{2} = \dfrac{5}{{10}} < \dfrac{8}{{10}} = \dfrac{4}{5} \) suy ra \( 0,5 < \dfrac{4}{5}\).

    Vậy ta có dãy số tăng dần là \( - \sqrt 2 - \dfrac{3}{4}; - \dfrac{3}{4}; - \dfrac{1}{2};0,5;\dfrac{4}{5}\).

    Câu 21 :

    Chọn chữ số thích hợp điền vào chỗ trống $ - 5,07 < - 5,...4$

    • A.

      $1;2;...9$

    • B.

      $0;1;2;...9$

    • C.

      $0$

    • D.

      $0;1$

    Đáp án : C

    Phương pháp giải :

    Sử dụng cách so sánh hai số nguyên âm để tìm đáp án phù hợp

    Lời giải chi tiết :

    Áp dụng so sánh hai số nguyên âm ta thấy chỉ có $ - 5,07 < - 5,04$ . Do đó ô trống cần điền là số $0$

    Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Trắc nghiệm Bài 7: Tập hợp các số thực Toán 7 Kết nối tri thức tại chuyên mục giải bài tập toán 7 trên soạn toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

    Trắc nghiệm Bài 7: Tập hợp các số thực Toán 7 Kết nối tri thức - Tổng quan

    Bài 7 trong chương trình Toán 7 Kết nối tri thức tập trung vào việc giới thiệu và làm rõ khái niệm về tập hợp các số thực. Đây là một trong những nền tảng quan trọng của toán học, giúp học sinh hiểu rõ hơn về cấu trúc của các con số và mối quan hệ giữa chúng. Bài học này bao gồm các nội dung chính sau:

    • Số hữu tỉ: Định nghĩa, cách biểu diễn, tính chất và các phép toán trên số hữu tỉ.
    • Số vô tỉ: Định nghĩa, cách biểu diễn và các ví dụ về số vô tỉ (ví dụ: √2, π).
    • Tập hợp các số thực: Sự bao hàm giữa tập hợp số hữu tỉ và số vô tỉ, cách biểu diễn trên trục số.
    • So sánh các số thực: Sử dụng trục số và các quy tắc so sánh để xác định số nào lớn hơn, số nào nhỏ hơn.

    Các dạng bài tập trắc nghiệm thường gặp

    Trong quá trình ôn tập và luyện thi, học sinh thường gặp các dạng bài tập trắc nghiệm sau:

    1. Xác định số hữu tỉ và số vô tỉ: Đề bài yêu cầu học sinh phân loại các số cho trước vào đúng nhóm.
    2. Tìm số đối của một số thực: Yêu cầu học sinh tìm số đối của một số thực cụ thể.
    3. So sánh các số thực: Đề bài yêu cầu so sánh hai hoặc nhiều số thực và xác định số lớn nhất, số nhỏ nhất.
    4. Biểu diễn số thực trên trục số: Yêu cầu học sinh xác định vị trí của một số thực trên trục số.
    5. Tính toán với số thực: Các bài tập liên quan đến các phép cộng, trừ, nhân, chia số thực.

    Hướng dẫn giải bài tập trắc nghiệm

    Để giải các bài tập trắc nghiệm về tập hợp các số thực một cách hiệu quả, học sinh cần:

    • Nắm vững định nghĩa: Hiểu rõ định nghĩa của số hữu tỉ, số vô tỉ và số thực.
    • Biết cách biểu diễn: Thành thạo cách biểu diễn các số thực trên trục số.
    • Vận dụng tính chất: Sử dụng các tính chất của số thực để giải quyết các bài toán.
    • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

    Ví dụ minh họa

    Câu hỏi: Số nào sau đây là số vô tỉ?

    1. A. 3/4
    2. B. -2
    3. C. √5
    4. D. 0.5

    Giải:

    Số vô tỉ là số không thể biểu diễn dưới dạng phân số a/b, với a và b là các số nguyên và b khác 0. Trong các đáp án trên, √5 là số vô tỉ vì nó không thể biểu diễn dưới dạng phân số. Vậy đáp án đúng là C.

    Luyện tập và củng cố kiến thức

    Để đạt kết quả tốt trong các bài kiểm tra và thi cử, học sinh nên dành thời gian luyện tập thường xuyên với các bài tập trắc nghiệm khác nhau. giaitoan.edu.vn cung cấp một kho bài tập phong phú và đa dạng, giúp các em củng cố kiến thức và rèn luyện kỹ năng giải bài tập. Hãy truy cập website của chúng tôi để bắt đầu luyện tập ngay hôm nay!

    Bảng tổng hợp các khái niệm quan trọng

    Khái niệmĐịnh nghĩaVí dụ
    Số hữu tỉSố có thể biểu diễn dưới dạng phân số a/b1/2, -3, 0.75
    Số vô tỉSố không thể biểu diễn dưới dạng phân số a/b√2, π, 0.333...
    Số thựcTập hợp bao gồm cả số hữu tỉ và số vô tỉTất cả các số trên trục số

    Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

    Tài liệu, đề thi và đáp án Toán 7