Bài tập trắc nghiệm này được thiết kế để giúp học sinh lớp 4 ôn luyện và củng cố kiến thức về phân số và phép chia số tự nhiên theo chương trình Kết nối tri thức. Các câu hỏi được xây dựng dựa trên nội dung sách giáo khoa, giúp học sinh làm quen với các dạng bài tập thường gặp.
Với hình thức trắc nghiệm, học sinh có thể tự đánh giá năng lực của mình một cách nhanh chóng và hiệu quả. Đồng thời, đáp án chi tiết đi kèm sẽ giúp học sinh hiểu rõ hơn về cách giải bài tập và khắc phục những sai lầm.
Thương của phép chia số tự nhiên cho số tự nhiên (khác \(0\)) có thể viết thành một phân số, tử số là …, mẫu số là …
Các cụm từ còn thiếu điền vào chỗ chấm từ trái sang phải lần lượt là:
A. Số chia; số bị chia
B. Số bị chia; số chia
C. Số chia; thương
D. Số bị chia; thương
Thương của phép chia \(9:14\) được viết dưới dạng phân số là:
A. \(\dfrac{{14}}{9}\)
B. \(\dfrac{9}{1}\)
C. \(\dfrac{9}{{14}}\)
D. Không viết được
Điền số thích hợp vào ô trống:
Thương của phép chia \(16 : 29 \) được viết dưới dạng phân số là :
Điền số thích hợp vào chỗ trống:
Viết theo mẫu: \(24:8 = \dfrac{{24}}{8} = 3\).
Điền số thích hợp vào ô trống:
Điền số thích hợp vào ô trống:
Viết phân số sau dưới dạng thương:
Điền số thích hợp vào ô trống:
Từ ba chữ số \(8\,;\,\,2\,;\,\,5\) ta lập được tất cả
phân số bằng \(1\) mà tử số và mẫu số là các số có một chữ số.
Chia đoạn thẳng MN thành các phần có độ dài bằng nhau
MP = ...... MN
$\frac{2}{5}$
$\frac{3}{5}$
$\frac{1}{5}$
$\frac{4}{5}$
Chia đều 6 quả cam cho 5 người. Số phần cam của mỗi người là
Lời giải và đáp án
Thương của phép chia số tự nhiên cho số tự nhiên (khác \(0\)) có thể viết thành một phân số, tử số là …, mẫu số là …
Các cụm từ còn thiếu điền vào chỗ chấm từ trái sang phải lần lượt là:
A. Số chia; số bị chia
B. Số bị chia; số chia
C. Số chia; thương
D. Số bị chia; thương
B. Số bị chia; số chia
Thương của phép chia số tự nhiên cho số tự nhiên (khác \(0\)) có thể viết thành một phân số, tử số là số bị chia, mẫu số là số chia.
Vậy cụm từ còn thiếu điền vào ô trống lần lượt là số bị chia; số chia.
Thương của phép chia \(9:14\) được viết dưới dạng phân số là:
A. \(\dfrac{{14}}{9}\)
B. \(\dfrac{9}{1}\)
C. \(\dfrac{9}{{14}}\)
D. Không viết được
C. \(\dfrac{9}{{14}}\)
Thương của phép chia số tự nhiên cho một số tự nhiên (khác \(0\)) có thể viết thành một phân số, tử số là số bị chia và mẫu số là số chia.
Do đó ta có \(9:14 = \dfrac{9}{{14}}\).
Vậy thương của phép chia \(9:14\) được viết dưới dạng phân số là \(\dfrac{9}{{14}}\).
Điền số thích hợp vào ô trống:
Thương của phép chia \(16 : 29 \) được viết dưới dạng phân số là :
Thương của phép chia số tự nhiên cho một số tự nhiên (khác \(0\)) có thể viết thành một phân số, tử số là số bị chia và mẫu số là số chia.
Ta có: \(16:29 = \dfrac{{16}}{{29}}\)
Vậy thương của phép chia \(16:29\) đươc viết dưới dạng phân số là \(\dfrac{{16}}{{29}}\).
Đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là: \(16\,;\,\,29\).
Điền số thích hợp vào chỗ trống:
Viết theo mẫu: \(24:8 = \dfrac{{24}}{8} = 3\).
Viết thương của phép chia dưới dạng phân số sau đó viết thương dưới dạng số tự nhiên.
Ta có: \(66:11 = \dfrac{{66}}{{11}} = 6\)
Vậy đáp án đúng điền vào ô trống: tử số điền \(66\), mẫu số điền \(11\), ô trống cuối điền \(6\).
Điền số thích hợp vào ô trống:
Mọi số tự nhiên có thể viết thành phân số có tử số là số tự nhiên đó và mẫu số bằng \(1\).
Mọi số tự nhiên có thể viết thành phân số có tử số là số tự nhiên đó và mẫu số bằng \(1\).
Do đó ta có: \(56 = \dfrac{{56}}{1}\).
Vậy số thích hợp điền vào ô trống là \(56\).
Điền số thích hợp vào ô trống:
Viết phân số sau dưới dạng thương:
Tử số chính là số bị chia, mẫu số là số chia.
Muốn tìm thương ta lấy số bị chia chia cho số chia, hay ta lấy tử số chia cho mẫu số.
Ta có: \( \dfrac{{24}}{{49}}=24:49\).
Vậy đáp án đúng điền vào ô trống lần lượt từ trái sang phải là \(24\,;\,\,49\).
Điền số thích hợp vào ô trống:
Từ ba chữ số \(8\,;\,\,2\,;\,\,5\) ta lập được tất cả
phân số bằng \(1\) mà tử số và mẫu số là các số có một chữ số.
Từ ba chữ số \(8\,;\,\,2\,;\,\,5\) ta lập được tất cả
3phân số bằng \(1\) mà tử số và mẫu số là các số có một chữ số.
- Viết tất cả các phân số mà tử số và mẫu số là các số có một chữ số được lập từ ba chữ số đã cho.
- Tìm các phân số có tử số bằng mẫu số, đó chính là các phân số bằng \(1\).
Từ các chữ số \(8\,;\,\,2 \,;\,5\) ta có thể lập được các phân số mà tử số và mẫu số là các số có một chữ số sau:
\(\dfrac{8}{8}\,\,;\,\,\,\dfrac{8}{2}\,;\,\,\,\dfrac{8}{5}\,;\,\,\,\dfrac{2}{8}\,;\,\,\,\dfrac{2}{2}\,;\,\,\,\dfrac{2}{5}\,;\,\,\,\dfrac{5}{5}\,;\,\,\,\dfrac{5}{2}\,;\,\,\,\dfrac{5}{8}\,\).
Trong đó chỉ có \(3\) phân số bằng \(1\), đó là \(\dfrac{8}{8}\,\,;\,\,\,\dfrac{2}{2}\,\,\,;\,\,\,\,\dfrac{5}{5}\) .
Vậy đáp án đúng điền vào ô trống là \(3\).
Chia đoạn thẳng MN thành các phần có độ dài bằng nhau
MP = ...... MN
$\frac{2}{5}$
$\frac{3}{5}$
$\frac{1}{5}$
$\frac{4}{5}$
Đáp án : A
Quan sát hình vẽ để chọn phân số thích hợp.
Ta có MP = $\frac{2}{5}$ MN
Chia đều 6 quả cam cho 5 người. Số phần cam của mỗi người là
Viết số thích hợp vào ô trống.
Chia đều 6 quả cam cho 5 người. Số phần cam của mỗi người là $\frac{6}{5}$.
Thương của phép chia số tự nhiên cho số tự nhiên (khác \(0\)) có thể viết thành một phân số, tử số là …, mẫu số là …
Các cụm từ còn thiếu điền vào chỗ chấm từ trái sang phải lần lượt là:
A. Số chia; số bị chia
B. Số bị chia; số chia
C. Số chia; thương
D. Số bị chia; thương
Thương của phép chia \(9:14\) được viết dưới dạng phân số là:
A. \(\dfrac{{14}}{9}\)
B. \(\dfrac{9}{1}\)
C. \(\dfrac{9}{{14}}\)
D. Không viết được
Điền số thích hợp vào ô trống:
Thương của phép chia \(16 : 29 \) được viết dưới dạng phân số là :
Điền số thích hợp vào chỗ trống:
Viết theo mẫu: \(24:8 = \dfrac{{24}}{8} = 3\).
Điền số thích hợp vào ô trống:
Điền số thích hợp vào ô trống:
Viết phân số sau dưới dạng thương:
Điền số thích hợp vào ô trống:
Từ ba chữ số \(8\,;\,\,2\,;\,\,5\) ta lập được tất cả
phân số bằng \(1\) mà tử số và mẫu số là các số có một chữ số.
Chia đoạn thẳng MN thành các phần có độ dài bằng nhau
MP = ...... MN
$\frac{2}{5}$
$\frac{3}{5}$
$\frac{1}{5}$
$\frac{4}{5}$
Chia đều 6 quả cam cho 5 người. Số phần cam của mỗi người là
Thương của phép chia số tự nhiên cho số tự nhiên (khác \(0\)) có thể viết thành một phân số, tử số là …, mẫu số là …
Các cụm từ còn thiếu điền vào chỗ chấm từ trái sang phải lần lượt là:
A. Số chia; số bị chia
B. Số bị chia; số chia
C. Số chia; thương
D. Số bị chia; thương
B. Số bị chia; số chia
Thương của phép chia số tự nhiên cho số tự nhiên (khác \(0\)) có thể viết thành một phân số, tử số là số bị chia, mẫu số là số chia.
Vậy cụm từ còn thiếu điền vào ô trống lần lượt là số bị chia; số chia.
Thương của phép chia \(9:14\) được viết dưới dạng phân số là:
A. \(\dfrac{{14}}{9}\)
B. \(\dfrac{9}{1}\)
C. \(\dfrac{9}{{14}}\)
D. Không viết được
C. \(\dfrac{9}{{14}}\)
Thương của phép chia số tự nhiên cho một số tự nhiên (khác \(0\)) có thể viết thành một phân số, tử số là số bị chia và mẫu số là số chia.
Do đó ta có \(9:14 = \dfrac{9}{{14}}\).
Vậy thương của phép chia \(9:14\) được viết dưới dạng phân số là \(\dfrac{9}{{14}}\).
Điền số thích hợp vào ô trống:
Thương của phép chia \(16 : 29 \) được viết dưới dạng phân số là :
Thương của phép chia số tự nhiên cho một số tự nhiên (khác \(0\)) có thể viết thành một phân số, tử số là số bị chia và mẫu số là số chia.
Ta có: \(16:29 = \dfrac{{16}}{{29}}\)
Vậy thương của phép chia \(16:29\) đươc viết dưới dạng phân số là \(\dfrac{{16}}{{29}}\).
Đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là: \(16\,;\,\,29\).
Điền số thích hợp vào chỗ trống:
Viết theo mẫu: \(24:8 = \dfrac{{24}}{8} = 3\).
Viết thương của phép chia dưới dạng phân số sau đó viết thương dưới dạng số tự nhiên.
Ta có: \(66:11 = \dfrac{{66}}{{11}} = 6\)
Vậy đáp án đúng điền vào ô trống: tử số điền \(66\), mẫu số điền \(11\), ô trống cuối điền \(6\).
Điền số thích hợp vào ô trống:
Mọi số tự nhiên có thể viết thành phân số có tử số là số tự nhiên đó và mẫu số bằng \(1\).
Mọi số tự nhiên có thể viết thành phân số có tử số là số tự nhiên đó và mẫu số bằng \(1\).
Do đó ta có: \(56 = \dfrac{{56}}{1}\).
Vậy số thích hợp điền vào ô trống là \(56\).
Điền số thích hợp vào ô trống:
Viết phân số sau dưới dạng thương:
Tử số chính là số bị chia, mẫu số là số chia.
Muốn tìm thương ta lấy số bị chia chia cho số chia, hay ta lấy tử số chia cho mẫu số.
Ta có: \( \dfrac{{24}}{{49}}=24:49\).
Vậy đáp án đúng điền vào ô trống lần lượt từ trái sang phải là \(24\,;\,\,49\).
Điền số thích hợp vào ô trống:
Từ ba chữ số \(8\,;\,\,2\,;\,\,5\) ta lập được tất cả
phân số bằng \(1\) mà tử số và mẫu số là các số có một chữ số.
Từ ba chữ số \(8\,;\,\,2\,;\,\,5\) ta lập được tất cả
3phân số bằng \(1\) mà tử số và mẫu số là các số có một chữ số.
- Viết tất cả các phân số mà tử số và mẫu số là các số có một chữ số được lập từ ba chữ số đã cho.
- Tìm các phân số có tử số bằng mẫu số, đó chính là các phân số bằng \(1\).
Từ các chữ số \(8\,;\,\,2 \,;\,5\) ta có thể lập được các phân số mà tử số và mẫu số là các số có một chữ số sau:
\(\dfrac{8}{8}\,\,;\,\,\,\dfrac{8}{2}\,;\,\,\,\dfrac{8}{5}\,;\,\,\,\dfrac{2}{8}\,;\,\,\,\dfrac{2}{2}\,;\,\,\,\dfrac{2}{5}\,;\,\,\,\dfrac{5}{5}\,;\,\,\,\dfrac{5}{2}\,;\,\,\,\dfrac{5}{8}\,\).
Trong đó chỉ có \(3\) phân số bằng \(1\), đó là \(\dfrac{8}{8}\,\,;\,\,\,\dfrac{2}{2}\,\,\,;\,\,\,\,\dfrac{5}{5}\) .
Vậy đáp án đúng điền vào ô trống là \(3\).
Chia đoạn thẳng MN thành các phần có độ dài bằng nhau
MP = ...... MN
$\frac{2}{5}$
$\frac{3}{5}$
$\frac{1}{5}$
$\frac{4}{5}$
Đáp án : A
Quan sát hình vẽ để chọn phân số thích hợp.
Ta có MP = $\frac{2}{5}$ MN
Chia đều 6 quả cam cho 5 người. Số phần cam của mỗi người là
Viết số thích hợp vào ô trống.
Chia đều 6 quả cam cho 5 người. Số phần cam của mỗi người là $\frac{6}{5}$.
Bài 54 trong chương trình Toán 4 Kết nối tri thức tập trung vào việc củng cố kiến thức về phân số và ứng dụng của phép chia số tự nhiên trong việc giải các bài toán liên quan đến phân số. Học sinh cần nắm vững các khái niệm cơ bản về phân số, cách so sánh phân số, và quy tắc chia số tự nhiên cho phân số (hoặc ngược lại).
Để so sánh hai phân số, ta có thể thực hiện các bước sau:
Ví dụ: So sánh 2/5 và 3/5. Vì hai phân số có cùng mẫu số là 5, ta so sánh tử số: 2 < 3. Vậy 2/5 < 3/5.
Để chia một số tự nhiên cho một phân số, ta thực hiện như sau:
Ví dụ: 4 : 2/3 = 4 x 3/2 = 6.
Trắc nghiệm Bài 54: Phân số và phép chia số tự nhiên Toán 4 Kết nối tri thức là một công cụ hữu ích giúp học sinh ôn tập và củng cố kiến thức. Việc luyện tập thường xuyên sẽ giúp học sinh tự tin hơn khi làm bài kiểm tra và đạt kết quả tốt trong môn Toán.