Bài tập trắc nghiệm này được thiết kế để giúp học sinh lớp 4 ôn luyện và củng cố kiến thức về quy đồng mẫu số các phân số.
Với các câu hỏi đa dạng, bám sát chương trình Kết nối tri thức, học sinh sẽ được rèn luyện kỹ năng giải toán một cách hiệu quả.
Giaitoan.edu.vn cung cấp đáp án chi tiết cho từng câu hỏi, giúp học sinh tự đánh giá và cải thiện kết quả học tập.
Mẫu số chung nhỏ nhất của hai phân số \(\dfrac{5}{6}\) và \(\dfrac{7}{{18}}\) là:
A. \(12\)
B. \(18\)
C. \(36\)
D. \(54\)
Quy đồng mẫu số các phân số \(\dfrac{7}{{12}}\) và \(\dfrac{1}{2}\) ta được hai phân số \(\dfrac{7}{{12}}\) và \(\dfrac{6}{{12}}\). Đúng hay sai?
A. Đúng
B. Sai
Quy đồng mẫu số các phân số \(\dfrac{7}{9}\) và \(\dfrac{{35}}{{72}}\) ta được hai phân số là:
A. \(\dfrac{{504}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
B. \(\dfrac{{56}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
C. \(\dfrac{{79}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
D. \(\dfrac{{42}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
Quy đồng mẫu số \(3\) phân số \(\dfrac{1}{3}\,;\,\,\dfrac{3}{4}\,;\,\,\dfrac{7}{{12}}\) ta được \(3\) phân số lần lượt là:
Quy đồng mẫu số của phân số \(\dfrac{2}{3}\) và \(\dfrac{1}{4}\) ta được phân số \(\dfrac{8}{{12}}\) và phân số \(...\).
Phân số thích hợp điền vào chỗ chấm là:
A. \(\dfrac{3}{{12}}\)
B. \(\dfrac{4}{{12}}\)
C. \(\dfrac{5}{{12}}\)
D. \(\dfrac{6}{{12}}\)
Quy đồng mẫu số các phân số \(\dfrac{4}{5}\) và \(\dfrac{3}{7}\) ta được hai phân số lần lượt là:
A. \(\dfrac{{12}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
B. \(\dfrac{{11}}{{35}}\) và \(\dfrac{8}{{35}}\)
C. \(\dfrac{{35}}{{28}}\) và \(\dfrac{{35}}{{15}}\)
D. \(\dfrac{{28}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
Hai phân số lần lượt bằng \(\dfrac{5}{8}\) và \(\dfrac{7}{{12}}\) và có mẫu số chung bằng \(24\) là:
A. \(\dfrac{{20}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
B. \(\dfrac{{14}}{{24}}\) và \(\dfrac{{15}}{{24}}\)
C. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{21}}{{24}}\)
D. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
Quy đồng mẫu số \(3\) phân số \(\dfrac{3}{5}\,\,;\,\,\dfrac{2}{3}\,\,;\,\,\dfrac{8}{9}\) ta được các phân số lần lượt là:
A. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
B. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{38}}{{45}}\,\,\,;\,\,\,\,\dfrac{{38}}{{45}}\,\)
C. \(\dfrac{{25}}{{45}}\,\,\,;\,\,\,\,\dfrac{{35}}{{45}}\,\,\,;\,\,\,\,\dfrac{{42}}{{45}}\,\)
D. \(\dfrac{{20}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
Quy đồng mẫu số các phân số \(\dfrac{5}{8}\) và \(\dfrac{2}{3}\) (với mẫu số chung nhỏ nhất) ta được hai phân số lần lượt là:
Viết các phân số \(\dfrac{{63}}{{72}}\) và \(\dfrac{{45}}{{135}}\) thành \(2\) phân số đều có mẫu số là \(24\).
Vậy ta viết được các phân số lần lượt là:
A. \(\dfrac{{20}}{{24}}\) và \(\dfrac{8}{{24}}\)
B. \(\dfrac{{21}}{{24}}\) và \(\dfrac{8}{{24}}\)
C. \(\dfrac{{21}}{{24}}\) và \(\dfrac{6}{{24}}\)
D. \(\dfrac{{14}}{{24}}\) và \(\dfrac{{10}}{{24}}\)
Lời giải và đáp án
Mẫu số chung nhỏ nhất của hai phân số \(\dfrac{5}{6}\) và \(\dfrac{7}{{18}}\) là:
A. \(12\)
B. \(18\)
C. \(36\)
D. \(54\)
B. \(18\)
Mẫu số chung nhỏ nhất là mẫu số nhỏ nhất chia hết cho mẫu số của hai phân số đã cho.
Ta thấy: \(18; 36; 54\) chia hết cho cả \(6\) và \(18\).
\(18\) là mẫu số chung chia hết cho mẫu số của hai phân số \(\dfrac{5}{6}\) và \(\dfrac{7}{{18}}\) và là mẫu số chung nhỏ nhất.
Vậy đáp án đúng là \(18\).
Quy đồng mẫu số các phân số \(\dfrac{7}{{12}}\) và \(\dfrac{1}{2}\) ta được hai phân số \(\dfrac{7}{{12}}\) và \(\dfrac{6}{{12}}\). Đúng hay sai?
A. Đúng
B. Sai
A. Đúng
B. Sai
Ta thấy \(12:2 = 6\) nên chọn \(12\) là mẫu số chung. Ta quy đồng phân số \(\dfrac{1}{2}\) bằng cách nhân cả tử số và mẫu số với \(6\) và giữ nguyên phân số \(\dfrac{7}{{12}}\).
Ta thấy \(12:2 = 6\) nên chọn \(MSC = 12\)
Quy đồng mẫu số hai phân số \(\dfrac{7}{{12}}\) và \(\dfrac{1}{2}\) ta được:
Giữ nguyên \(\dfrac{7}{{12}}\) ; \(\dfrac{1}{2} = \dfrac{{1 \times 6}}{{2 \times 6}} = \dfrac{6}{{12}}\)
Vậy quy đồng mẫu số của phân số \(\dfrac{7}{{12}}\) và \(\dfrac{1}{2}\) ta được hai phân số \(\dfrac{7}{{12}}\) và \(\dfrac{6}{{12}}\).
Quy đồng mẫu số các phân số \(\dfrac{7}{9}\) và \(\dfrac{{35}}{{72}}\) ta được hai phân số là:
A. \(\dfrac{{504}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
B. \(\dfrac{{56}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
C. \(\dfrac{{79}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
D. \(\dfrac{{42}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
B. \(\dfrac{{56}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
Ta thấy \(72:9 = 8\) nên chọn \(72\) là mẫu số chung. Ta quy đồng phân số \(\dfrac{7}{9}\) bằng cách nhân cả tử số và mẫu số với \(8\) và giữ nguyên phân số \(\dfrac{{35}}{{72}}\).
Ta thấy \(72:9 = 8\) nên chọn \(MSC = 72\).
Quy đồng mẫu số các phân số \(\dfrac{7}{9}\) và \(\dfrac{{35}}{{72}}\) như sau:
\(\dfrac{7}{9} = \dfrac{{7 \times 8}}{{9 \times 8}} = \dfrac{{56}}{{72}}\) ; Giữ nguyên phân số \(\dfrac{{35}}{{72}}\)
Vậy quy đồng mẫu số các phân số \(\dfrac{7}{9}\) và \(\dfrac{{35}}{{72}}\) ta được hai phân số \(\dfrac{{56}}{{72}}\) và \(\dfrac{{35}}{{72}}\).
Quy đồng mẫu số \(3\) phân số \(\dfrac{1}{3}\,;\,\,\dfrac{3}{4}\,;\,\,\dfrac{7}{{12}}\) ta được \(3\) phân số lần lượt là:
Ta thấy \(12:3 = 4\,\,;\,\,12:4 = 3\) nên chọn mẫu số chung nhỏ nhất là \(12\).
Ta quy đồng các phân số đã cho với mẫu số chung là \(12\).
Ta thấy \(12:3 = 4\,\,;\,\,12:4 = 3\) nên chọn mẫu số chung nhỏ nhất là \(12\).
Quy đồng mẫu số các phân số ta được:
\(\dfrac{1}{3} = \dfrac{{1 \times 4}}{{3 \times 4}} = \dfrac{4}{{12}}\,\,\,;\,\,\, \quad \quad \quad \dfrac{3}{4} = \dfrac{{3 \times 3}}{{4 \times 3}} = \dfrac{9}{{12}};\)
Giữ nguyên phân số \(\dfrac{7}{{12}}\).
Vậy quy đồng mẫu số \(3\) phân số \(\dfrac{1}{3}\,;\,\,\dfrac{3}{4}\,;\,\,\dfrac{7}{{12}}\) ta được \(3\) phân số lần lượt là \(\dfrac{4}{{12}}\,\,;\,\,\,\,\dfrac{9}{{12}}\) và \(\dfrac{7}{{12}}\).
Quy đồng mẫu số của phân số \(\dfrac{2}{3}\) và \(\dfrac{1}{4}\) ta được phân số \(\dfrac{8}{{12}}\) và phân số \(...\).
Phân số thích hợp điền vào chỗ chấm là:
A. \(\dfrac{3}{{12}}\)
B. \(\dfrac{4}{{12}}\)
C. \(\dfrac{5}{{12}}\)
D. \(\dfrac{6}{{12}}\)
A. \(\dfrac{3}{{12}}\)
Khi quy đồng mẫu số hai phân số có thể làm như sau:
- Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.
- Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.
Chọn \(MSC = 12\)
Quy đồng mẫu số hai phân số \(\dfrac{2}{3}\) và \(\dfrac{1}{4}\) ta được:
\(\dfrac{2}{3} = \dfrac{{2 \times 4}}{{3 \times 4}} = \dfrac{8}{{12}}\,\,\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{1}{4} = \dfrac{{1 \times 3}}{{4 \times 3}} = \dfrac{3}{{12}}\)
Vậy quy đồng mẫu số của phân số \(\dfrac{2}{3}\) và \(\dfrac{1}{4}\) ta được hai phân số \(\dfrac{8}{{12}}\) và \(\dfrac{3}{{12}}\).
Quy đồng mẫu số các phân số \(\dfrac{4}{5}\) và \(\dfrac{3}{7}\) ta được hai phân số lần lượt là:
A. \(\dfrac{{12}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
B. \(\dfrac{{11}}{{35}}\) và \(\dfrac{8}{{35}}\)
C. \(\dfrac{{35}}{{28}}\) và \(\dfrac{{35}}{{15}}\)
D. \(\dfrac{{28}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
D. \(\dfrac{{28}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
Khi quy đồng mẫu số hai phân số có thể làm như sau:
- Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.
- Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.
Chọn \(MSC = 35\)
Quy đồng mẫu số hai phân số \(\dfrac{4}{5}\) và \(\dfrac{3}{7}\) ta được:
\(\dfrac{4}{5} = \dfrac{{4 \times 7}}{{5 \times 7}} = \dfrac{{28}}{{35}}\,\,\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{3}{7} = \dfrac{{3 \times 5}}{{7 \times 5}} = \dfrac{{15}}{{36}}\)
Vậy quy đồng mẫu số của phân số \(\dfrac{4}{5}\) và \(\dfrac{3}{7}\) ta được hai phân số \(\dfrac{{28}}{{35}}\) và \(\dfrac{{15}}{{35}}\).
Hai phân số lần lượt bằng \(\dfrac{5}{8}\) và \(\dfrac{7}{{12}}\) và có mẫu số chung bằng \(24\) là:
A. \(\dfrac{{20}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
B. \(\dfrac{{14}}{{24}}\) và \(\dfrac{{15}}{{24}}\)
C. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{21}}{{24}}\)
D. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
D. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
Quy đồng hai phân số đã cho với mẫu số chung là \(24\).
Chọn \(MSC = 24\)
Quy đồng mẫu số hai phân số \(\dfrac{5}{8}\) và \(\dfrac{7}{{12}}\):
\(\dfrac{5}{8} = \dfrac{{5 \times 3}}{{8 \times 3}} = \dfrac{{15}}{{24}}\,\,\,\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\, \quad \dfrac{7}{{12}} = \dfrac{{7 \times 2}}{{12 \times 2}} = \dfrac{{14}}{{24}}\)
Vậy hai phân số lần lượt bằng \(\dfrac{5}{8}\) và \(\dfrac{7}{{12}}\) và có mẫu số chung bằng \(24\) là \(\dfrac{{15}}{{24}}\) và \(\dfrac{{14}}{{24}}\).
Quy đồng mẫu số \(3\) phân số \(\dfrac{3}{5}\,\,;\,\,\dfrac{2}{3}\,\,;\,\,\dfrac{8}{9}\) ta được các phân số lần lượt là:
A. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
B. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{38}}{{45}}\,\,\,;\,\,\,\,\dfrac{{38}}{{45}}\,\)
C. \(\dfrac{{25}}{{45}}\,\,\,;\,\,\,\,\dfrac{{35}}{{45}}\,\,\,;\,\,\,\,\dfrac{{42}}{{45}}\,\)
D. \(\dfrac{{20}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
A. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
Ta thấy \(45:5 = 9\,\,;\,\,45:3 = 15\,\,;\,\,45:9 = 5\) nên chọn mẫu số chung nhỏ nhất là \(45\).
Ta quy đồng các phân số đã cho với mẫu số chung là \(45\).
Ta thấy \(45:5 = 9\,\,;\,\,45:3 = 15\,\,;\,\,45:9 = 5\) nên chọn mẫu số chung nhỏ nhất là \(45\).
Quy đồng mẫu số các phân số ta được:
\(\dfrac{3}{5} = \dfrac{{3 \times 9}}{{5 \times 9}} = \dfrac{{27}}{{45}}\,\,\,\,;\,\,\,\,\,\,\,\dfrac{2}{3} = \dfrac{{2 \times 15}}{{3 \times 15}} = \dfrac{{30}}{{45}}\,\,\,\,;\,\,\,\,\,\,\,\dfrac{8}{9} = \dfrac{{8 \times 5}}{{9 \times 5}} = \dfrac{{40}}{{45}}\)
Vậy quy đồng mẫu số \(3\) phân số \(\dfrac{3}{5}\,\,;\,\,\dfrac{2}{3}\,\,;\,\,\dfrac{8}{9}\) ta được \(3\) phân số lần lượt là \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\).
Quy đồng mẫu số các phân số \(\dfrac{5}{8}\) và \(\dfrac{2}{3}\) (với mẫu số chung nhỏ nhất) ta được hai phân số lần lượt là:
Khi quy đồng mẫu số hai phân số có thể làm như sau:
- Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.
- Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.
Chọn \(MSC = 24\).
Quy đồng mẫu số hai phân số \(\dfrac{5}{8}\) và \(\dfrac{2}{3}\) ta được:
$\dfrac{5}{8} = \dfrac{{5 \times 3}}{{8 \times 3}} = \dfrac{{15}}{{24}}\,\,\,;\,\,\,\, \quad \dfrac{2}{3} = \dfrac{{2 \times 8}}{{3 \times 8}} = \dfrac{{16}}{{24}}$
Vậy quy đồng mẫu số các phân số \(\dfrac{5}{8}\) và \(\dfrac{2}{3}\) ta được hai phân số \(\dfrac{{15}}{{24}}\) và $\dfrac{{16}}{{24}}$.
Viết các phân số \(\dfrac{{63}}{{72}}\) và \(\dfrac{{45}}{{135}}\) thành \(2\) phân số đều có mẫu số là \(24\).
Vậy ta viết được các phân số lần lượt là:
A. \(\dfrac{{20}}{{24}}\) và \(\dfrac{8}{{24}}\)
B. \(\dfrac{{21}}{{24}}\) và \(\dfrac{8}{{24}}\)
C. \(\dfrac{{21}}{{24}}\) và \(\dfrac{6}{{24}}\)
D. \(\dfrac{{14}}{{24}}\) và \(\dfrac{{10}}{{24}}\)
B. \(\dfrac{{21}}{{24}}\) và \(\dfrac{8}{{24}}\)
Rút gọn các phân số đã cho thành phân số tối giản rồi quy đồng mẫu số các phân số đó.
Rút gọn \(2\) phân số \(\dfrac{{63}}{{72}}\) và \(\dfrac{{45}}{{135}}\) ta có:
\( \dfrac{{63}}{{72}} = \dfrac{{63:9}}{{72:9}} = \dfrac{7}{8}\);
\( \dfrac{{45}}{{135}} = \dfrac{{45:5}}{{135:5}} = \dfrac{9}{{27}} = \dfrac{{9:3}}{{27:3}} = \dfrac{1}{3}\).
Quy đồng mẫu số hai phân số \(\dfrac{7}{8}\) và \(\dfrac{1}{3}\) với mẫu số chung là \(24\) ta có:
$\dfrac{7}{8} = \dfrac{{7 \times 3}}{{8 \times 3}} = \dfrac{{21}}{{24}}\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\dfrac{1}{3} = \dfrac{{1 \times 8}}{{3 \times 8}} = \dfrac{8}{{24}}$
Vậy các phân số \(\dfrac{{63}}{{72}}\) và \(\dfrac{{45}}{{135}}\) được viết thành \(2\) phân số đều có mẫu số là \(24\) lần lượt là \(\dfrac{{21}}{{24}}\) và \(\dfrac{8}{{24}}\).
Mẫu số chung nhỏ nhất của hai phân số \(\dfrac{5}{6}\) và \(\dfrac{7}{{18}}\) là:
A. \(12\)
B. \(18\)
C. \(36\)
D. \(54\)
Quy đồng mẫu số các phân số \(\dfrac{7}{{12}}\) và \(\dfrac{1}{2}\) ta được hai phân số \(\dfrac{7}{{12}}\) và \(\dfrac{6}{{12}}\). Đúng hay sai?
A. Đúng
B. Sai
Quy đồng mẫu số các phân số \(\dfrac{7}{9}\) và \(\dfrac{{35}}{{72}}\) ta được hai phân số là:
A. \(\dfrac{{504}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
B. \(\dfrac{{56}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
C. \(\dfrac{{79}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
D. \(\dfrac{{42}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
Quy đồng mẫu số \(3\) phân số \(\dfrac{1}{3}\,;\,\,\dfrac{3}{4}\,;\,\,\dfrac{7}{{12}}\) ta được \(3\) phân số lần lượt là:
Quy đồng mẫu số của phân số \(\dfrac{2}{3}\) và \(\dfrac{1}{4}\) ta được phân số \(\dfrac{8}{{12}}\) và phân số \(...\).
Phân số thích hợp điền vào chỗ chấm là:
A. \(\dfrac{3}{{12}}\)
B. \(\dfrac{4}{{12}}\)
C. \(\dfrac{5}{{12}}\)
D. \(\dfrac{6}{{12}}\)
Quy đồng mẫu số các phân số \(\dfrac{4}{5}\) và \(\dfrac{3}{7}\) ta được hai phân số lần lượt là:
A. \(\dfrac{{12}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
B. \(\dfrac{{11}}{{35}}\) và \(\dfrac{8}{{35}}\)
C. \(\dfrac{{35}}{{28}}\) và \(\dfrac{{35}}{{15}}\)
D. \(\dfrac{{28}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
Hai phân số lần lượt bằng \(\dfrac{5}{8}\) và \(\dfrac{7}{{12}}\) và có mẫu số chung bằng \(24\) là:
A. \(\dfrac{{20}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
B. \(\dfrac{{14}}{{24}}\) và \(\dfrac{{15}}{{24}}\)
C. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{21}}{{24}}\)
D. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
Quy đồng mẫu số \(3\) phân số \(\dfrac{3}{5}\,\,;\,\,\dfrac{2}{3}\,\,;\,\,\dfrac{8}{9}\) ta được các phân số lần lượt là:
A. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
B. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{38}}{{45}}\,\,\,;\,\,\,\,\dfrac{{38}}{{45}}\,\)
C. \(\dfrac{{25}}{{45}}\,\,\,;\,\,\,\,\dfrac{{35}}{{45}}\,\,\,;\,\,\,\,\dfrac{{42}}{{45}}\,\)
D. \(\dfrac{{20}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
Quy đồng mẫu số các phân số \(\dfrac{5}{8}\) và \(\dfrac{2}{3}\) (với mẫu số chung nhỏ nhất) ta được hai phân số lần lượt là:
Viết các phân số \(\dfrac{{63}}{{72}}\) và \(\dfrac{{45}}{{135}}\) thành \(2\) phân số đều có mẫu số là \(24\).
Vậy ta viết được các phân số lần lượt là:
A. \(\dfrac{{20}}{{24}}\) và \(\dfrac{8}{{24}}\)
B. \(\dfrac{{21}}{{24}}\) và \(\dfrac{8}{{24}}\)
C. \(\dfrac{{21}}{{24}}\) và \(\dfrac{6}{{24}}\)
D. \(\dfrac{{14}}{{24}}\) và \(\dfrac{{10}}{{24}}\)
Mẫu số chung nhỏ nhất của hai phân số \(\dfrac{5}{6}\) và \(\dfrac{7}{{18}}\) là:
A. \(12\)
B. \(18\)
C. \(36\)
D. \(54\)
B. \(18\)
Mẫu số chung nhỏ nhất là mẫu số nhỏ nhất chia hết cho mẫu số của hai phân số đã cho.
Ta thấy: \(18; 36; 54\) chia hết cho cả \(6\) và \(18\).
\(18\) là mẫu số chung chia hết cho mẫu số của hai phân số \(\dfrac{5}{6}\) và \(\dfrac{7}{{18}}\) và là mẫu số chung nhỏ nhất.
Vậy đáp án đúng là \(18\).
Quy đồng mẫu số các phân số \(\dfrac{7}{{12}}\) và \(\dfrac{1}{2}\) ta được hai phân số \(\dfrac{7}{{12}}\) và \(\dfrac{6}{{12}}\). Đúng hay sai?
A. Đúng
B. Sai
A. Đúng
B. Sai
Ta thấy \(12:2 = 6\) nên chọn \(12\) là mẫu số chung. Ta quy đồng phân số \(\dfrac{1}{2}\) bằng cách nhân cả tử số và mẫu số với \(6\) và giữ nguyên phân số \(\dfrac{7}{{12}}\).
Ta thấy \(12:2 = 6\) nên chọn \(MSC = 12\)
Quy đồng mẫu số hai phân số \(\dfrac{7}{{12}}\) và \(\dfrac{1}{2}\) ta được:
Giữ nguyên \(\dfrac{7}{{12}}\) ; \(\dfrac{1}{2} = \dfrac{{1 \times 6}}{{2 \times 6}} = \dfrac{6}{{12}}\)
Vậy quy đồng mẫu số của phân số \(\dfrac{7}{{12}}\) và \(\dfrac{1}{2}\) ta được hai phân số \(\dfrac{7}{{12}}\) và \(\dfrac{6}{{12}}\).
Quy đồng mẫu số các phân số \(\dfrac{7}{9}\) và \(\dfrac{{35}}{{72}}\) ta được hai phân số là:
A. \(\dfrac{{504}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
B. \(\dfrac{{56}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
C. \(\dfrac{{79}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
D. \(\dfrac{{42}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
B. \(\dfrac{{56}}{{72}}\) và \(\dfrac{{35}}{{72}}\)
Ta thấy \(72:9 = 8\) nên chọn \(72\) là mẫu số chung. Ta quy đồng phân số \(\dfrac{7}{9}\) bằng cách nhân cả tử số và mẫu số với \(8\) và giữ nguyên phân số \(\dfrac{{35}}{{72}}\).
Ta thấy \(72:9 = 8\) nên chọn \(MSC = 72\).
Quy đồng mẫu số các phân số \(\dfrac{7}{9}\) và \(\dfrac{{35}}{{72}}\) như sau:
\(\dfrac{7}{9} = \dfrac{{7 \times 8}}{{9 \times 8}} = \dfrac{{56}}{{72}}\) ; Giữ nguyên phân số \(\dfrac{{35}}{{72}}\)
Vậy quy đồng mẫu số các phân số \(\dfrac{7}{9}\) và \(\dfrac{{35}}{{72}}\) ta được hai phân số \(\dfrac{{56}}{{72}}\) và \(\dfrac{{35}}{{72}}\).
Quy đồng mẫu số \(3\) phân số \(\dfrac{1}{3}\,;\,\,\dfrac{3}{4}\,;\,\,\dfrac{7}{{12}}\) ta được \(3\) phân số lần lượt là:
Ta thấy \(12:3 = 4\,\,;\,\,12:4 = 3\) nên chọn mẫu số chung nhỏ nhất là \(12\).
Ta quy đồng các phân số đã cho với mẫu số chung là \(12\).
Ta thấy \(12:3 = 4\,\,;\,\,12:4 = 3\) nên chọn mẫu số chung nhỏ nhất là \(12\).
Quy đồng mẫu số các phân số ta được:
\(\dfrac{1}{3} = \dfrac{{1 \times 4}}{{3 \times 4}} = \dfrac{4}{{12}}\,\,\,;\,\,\, \quad \quad \quad \dfrac{3}{4} = \dfrac{{3 \times 3}}{{4 \times 3}} = \dfrac{9}{{12}};\)
Giữ nguyên phân số \(\dfrac{7}{{12}}\).
Vậy quy đồng mẫu số \(3\) phân số \(\dfrac{1}{3}\,;\,\,\dfrac{3}{4}\,;\,\,\dfrac{7}{{12}}\) ta được \(3\) phân số lần lượt là \(\dfrac{4}{{12}}\,\,;\,\,\,\,\dfrac{9}{{12}}\) và \(\dfrac{7}{{12}}\).
Quy đồng mẫu số của phân số \(\dfrac{2}{3}\) và \(\dfrac{1}{4}\) ta được phân số \(\dfrac{8}{{12}}\) và phân số \(...\).
Phân số thích hợp điền vào chỗ chấm là:
A. \(\dfrac{3}{{12}}\)
B. \(\dfrac{4}{{12}}\)
C. \(\dfrac{5}{{12}}\)
D. \(\dfrac{6}{{12}}\)
A. \(\dfrac{3}{{12}}\)
Khi quy đồng mẫu số hai phân số có thể làm như sau:
- Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.
- Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.
Chọn \(MSC = 12\)
Quy đồng mẫu số hai phân số \(\dfrac{2}{3}\) và \(\dfrac{1}{4}\) ta được:
\(\dfrac{2}{3} = \dfrac{{2 \times 4}}{{3 \times 4}} = \dfrac{8}{{12}}\,\,\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{1}{4} = \dfrac{{1 \times 3}}{{4 \times 3}} = \dfrac{3}{{12}}\)
Vậy quy đồng mẫu số của phân số \(\dfrac{2}{3}\) và \(\dfrac{1}{4}\) ta được hai phân số \(\dfrac{8}{{12}}\) và \(\dfrac{3}{{12}}\).
Quy đồng mẫu số các phân số \(\dfrac{4}{5}\) và \(\dfrac{3}{7}\) ta được hai phân số lần lượt là:
A. \(\dfrac{{12}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
B. \(\dfrac{{11}}{{35}}\) và \(\dfrac{8}{{35}}\)
C. \(\dfrac{{35}}{{28}}\) và \(\dfrac{{35}}{{15}}\)
D. \(\dfrac{{28}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
D. \(\dfrac{{28}}{{35}}\) và \(\dfrac{{15}}{{35}}\)
Khi quy đồng mẫu số hai phân số có thể làm như sau:
- Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.
- Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.
Chọn \(MSC = 35\)
Quy đồng mẫu số hai phân số \(\dfrac{4}{5}\) và \(\dfrac{3}{7}\) ta được:
\(\dfrac{4}{5} = \dfrac{{4 \times 7}}{{5 \times 7}} = \dfrac{{28}}{{35}}\,\,\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{3}{7} = \dfrac{{3 \times 5}}{{7 \times 5}} = \dfrac{{15}}{{36}}\)
Vậy quy đồng mẫu số của phân số \(\dfrac{4}{5}\) và \(\dfrac{3}{7}\) ta được hai phân số \(\dfrac{{28}}{{35}}\) và \(\dfrac{{15}}{{35}}\).
Hai phân số lần lượt bằng \(\dfrac{5}{8}\) và \(\dfrac{7}{{12}}\) và có mẫu số chung bằng \(24\) là:
A. \(\dfrac{{20}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
B. \(\dfrac{{14}}{{24}}\) và \(\dfrac{{15}}{{24}}\)
C. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{21}}{{24}}\)
D. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
D. \(\dfrac{{15}}{{24}}\) và \(\dfrac{{14}}{{24}}\)
Quy đồng hai phân số đã cho với mẫu số chung là \(24\).
Chọn \(MSC = 24\)
Quy đồng mẫu số hai phân số \(\dfrac{5}{8}\) và \(\dfrac{7}{{12}}\):
\(\dfrac{5}{8} = \dfrac{{5 \times 3}}{{8 \times 3}} = \dfrac{{15}}{{24}}\,\,\,\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\, \quad \dfrac{7}{{12}} = \dfrac{{7 \times 2}}{{12 \times 2}} = \dfrac{{14}}{{24}}\)
Vậy hai phân số lần lượt bằng \(\dfrac{5}{8}\) và \(\dfrac{7}{{12}}\) và có mẫu số chung bằng \(24\) là \(\dfrac{{15}}{{24}}\) và \(\dfrac{{14}}{{24}}\).
Quy đồng mẫu số \(3\) phân số \(\dfrac{3}{5}\,\,;\,\,\dfrac{2}{3}\,\,;\,\,\dfrac{8}{9}\) ta được các phân số lần lượt là:
A. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
B. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{38}}{{45}}\,\,\,;\,\,\,\,\dfrac{{38}}{{45}}\,\)
C. \(\dfrac{{25}}{{45}}\,\,\,;\,\,\,\,\dfrac{{35}}{{45}}\,\,\,;\,\,\,\,\dfrac{{42}}{{45}}\,\)
D. \(\dfrac{{20}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
A. \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\,\)
Ta thấy \(45:5 = 9\,\,;\,\,45:3 = 15\,\,;\,\,45:9 = 5\) nên chọn mẫu số chung nhỏ nhất là \(45\).
Ta quy đồng các phân số đã cho với mẫu số chung là \(45\).
Ta thấy \(45:5 = 9\,\,;\,\,45:3 = 15\,\,;\,\,45:9 = 5\) nên chọn mẫu số chung nhỏ nhất là \(45\).
Quy đồng mẫu số các phân số ta được:
\(\dfrac{3}{5} = \dfrac{{3 \times 9}}{{5 \times 9}} = \dfrac{{27}}{{45}}\,\,\,\,;\,\,\,\,\,\,\,\dfrac{2}{3} = \dfrac{{2 \times 15}}{{3 \times 15}} = \dfrac{{30}}{{45}}\,\,\,\,;\,\,\,\,\,\,\,\dfrac{8}{9} = \dfrac{{8 \times 5}}{{9 \times 5}} = \dfrac{{40}}{{45}}\)
Vậy quy đồng mẫu số \(3\) phân số \(\dfrac{3}{5}\,\,;\,\,\dfrac{2}{3}\,\,;\,\,\dfrac{8}{9}\) ta được \(3\) phân số lần lượt là \(\dfrac{{27}}{{45}}\,\,\,;\,\,\,\,\dfrac{{30}}{{45}}\,\,\,;\,\,\,\,\dfrac{{40}}{{45}}\).
Quy đồng mẫu số các phân số \(\dfrac{5}{8}\) và \(\dfrac{2}{3}\) (với mẫu số chung nhỏ nhất) ta được hai phân số lần lượt là:
Khi quy đồng mẫu số hai phân số có thể làm như sau:
- Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.
- Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.
Chọn \(MSC = 24\).
Quy đồng mẫu số hai phân số \(\dfrac{5}{8}\) và \(\dfrac{2}{3}\) ta được:
$\dfrac{5}{8} = \dfrac{{5 \times 3}}{{8 \times 3}} = \dfrac{{15}}{{24}}\,\,\,;\,\,\,\, \quad \dfrac{2}{3} = \dfrac{{2 \times 8}}{{3 \times 8}} = \dfrac{{16}}{{24}}$
Vậy quy đồng mẫu số các phân số \(\dfrac{5}{8}\) và \(\dfrac{2}{3}\) ta được hai phân số \(\dfrac{{15}}{{24}}\) và $\dfrac{{16}}{{24}}$.
Viết các phân số \(\dfrac{{63}}{{72}}\) và \(\dfrac{{45}}{{135}}\) thành \(2\) phân số đều có mẫu số là \(24\).
Vậy ta viết được các phân số lần lượt là:
A. \(\dfrac{{20}}{{24}}\) và \(\dfrac{8}{{24}}\)
B. \(\dfrac{{21}}{{24}}\) và \(\dfrac{8}{{24}}\)
C. \(\dfrac{{21}}{{24}}\) và \(\dfrac{6}{{24}}\)
D. \(\dfrac{{14}}{{24}}\) và \(\dfrac{{10}}{{24}}\)
B. \(\dfrac{{21}}{{24}}\) và \(\dfrac{8}{{24}}\)
Rút gọn các phân số đã cho thành phân số tối giản rồi quy đồng mẫu số các phân số đó.
Rút gọn \(2\) phân số \(\dfrac{{63}}{{72}}\) và \(\dfrac{{45}}{{135}}\) ta có:
\( \dfrac{{63}}{{72}} = \dfrac{{63:9}}{{72:9}} = \dfrac{7}{8}\);
\( \dfrac{{45}}{{135}} = \dfrac{{45:5}}{{135:5}} = \dfrac{9}{{27}} = \dfrac{{9:3}}{{27:3}} = \dfrac{1}{3}\).
Quy đồng mẫu số hai phân số \(\dfrac{7}{8}\) và \(\dfrac{1}{3}\) với mẫu số chung là \(24\) ta có:
$\dfrac{7}{8} = \dfrac{{7 \times 3}}{{8 \times 3}} = \dfrac{{21}}{{24}}\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\dfrac{1}{3} = \dfrac{{1 \times 8}}{{3 \times 8}} = \dfrac{8}{{24}}$
Vậy các phân số \(\dfrac{{63}}{{72}}\) và \(\dfrac{{45}}{{135}}\) được viết thành \(2\) phân số đều có mẫu số là \(24\) lần lượt là \(\dfrac{{21}}{{24}}\) và \(\dfrac{8}{{24}}\).
Quy đồng mẫu số các phân số là một kỹ năng quan trọng trong chương trình Toán 4, giúp học sinh thực hiện các phép toán với phân số một cách dễ dàng và chính xác. Bài 57 trong sách Toán 4 Kết nối tri thức tập trung vào việc rèn luyện kỹ năng này thông qua các bài tập thực hành.
Để quy đồng mẫu số các phân số, ta thực hiện các bước sau:
Các bài tập trắc nghiệm về quy đồng mẫu số thường bao gồm các dạng sau:
Ví dụ 1: Chọn phân số quy đồng đúng mẫu số với 1/2 và 1/3, mẫu số chung là 6.
A. 2/6 B. 3/6 C. 4/6 D. 5/6
Giải:
Để quy đồng mẫu số với 6, ta có:
Vậy đáp án đúng là B. 3/6
Ví dụ 2: Tìm BCNN của 4 và 6.
A. 2 B. 8 C. 12 D. 24
Giải:
Các bội của 4 là: 4, 8, 12, 16, 20, 24,...
Các bội của 6 là: 6, 12, 18, 24, 30,...
BCNN của 4 và 6 là 12. Vậy đáp án đúng là C. 12
Để nâng cao kỹ năng quy đồng mẫu số, học sinh nên luyện tập thêm với các bài tập khác trong sách giáo khoa và các tài liệu tham khảo. Giaitoan.edu.vn cung cấp nhiều bài tập trắc nghiệm và bài tập tự luận về quy đồng mẫu số, giúp học sinh ôn luyện kiến thức một cách hiệu quả.
Phân số 1 | Phân số 2 | Mẫu số chung | Phân số 1 (quy đồng) | Phân số 2 (quy đồng) |
---|---|---|---|---|
1/4 | 1/6 | 12 | 3/12 | 2/12 |
2/5 | 1/3 | 15 | 6/15 | 5/15 |
Hy vọng với những kiến thức và bài tập trên, các em học sinh sẽ nắm vững kỹ năng quy đồng mẫu số các phân số và đạt kết quả tốt trong môn Toán.