Chào mừng các em học sinh lớp 4 đến với bài trắc nghiệm Bài 77: Trừ hai phân số khác mẫu số môn Toán, chương trình Cánh diều. Bài trắc nghiệm này được thiết kế để giúp các em ôn luyện và củng cố kiến thức về phép trừ hai phân số khi chúng có mẫu số khác nhau.
Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, kèm đáp án chi tiết, giúp các em tự đánh giá năng lực và chuẩn bị tốt nhất cho các bài kiểm tra trên lớp.
Hoa nói rằng “Muốn trừ hai phân số khác mẫu số, ta quy đồng mẫu số hai phân số, rồi trừ hai phân số đó”. Theo em, Hoa nói đúng hay sai?
A. Đúng
B. Sai
Tính: \(\dfrac{{17}}{{18}} - \dfrac{5}{6}\)
A. \(\dfrac{1}{9}\)
B. \(\dfrac{5}{9}\)
C. \(\dfrac{1}{6}\)
D. \(1\)
Điền số thích hợp vào chỗ chấm:
\(\dfrac{{16}}{{20}} - \dfrac{3}{{18}} = \dfrac{{...}}{{...}}\)
Rút gọn rồi tính:
A. \(16\,;\,\,30\)
B. \(17\,;\,\,30\)
C. \(18\,;\,\,30\)
D. \(19\,;\,\,30\)
Tính: \(8 - \dfrac{3}{7}\)
A. \(\dfrac{4}{7}\)
B. \(\dfrac{{11}}{7}\)
C. \(\dfrac{{53}}{7}\)
D. \(\dfrac{{59}}{7}\)
Tìm \(x\), biết: \(x + \dfrac{3}{7} = \dfrac{{15}}{{28}}\)
A. \(x = \dfrac{4}{7}\)
B. \(x = \dfrac{3}{{28}}\)
C. \(x = \dfrac{{27}}{{28}}\)
D. \(x = \dfrac{{18}}{{35}}\)
Tính giá trị biểu thức: \(\dfrac{9}{{10}} - \left( {\dfrac{2}{5} + \dfrac{1}{{10}}} \right) + \dfrac{9}{{20}}\)
A. \(\dfrac{{23}}{{20}}\)
B. \(\dfrac{{21}}{{20}}\)
C. \(\dfrac{{19}}{{20}}\)
D. \(\dfrac{{17}}{{20}}\)
Điền dấu (\(>;\,<;\, =\)) thích hợp vào ô trống:
\(\dfrac{5}{6} - \dfrac{1}{3}\,\,\)
\(\,\,\,\dfrac{7}{2} - 3\)
Hai hộp bánh cân nặng \(\dfrac{4}{5}kg\), trong đó một hộp cân nặng \(\dfrac{3}{8}kg\).
Tính bằng cách thuận tiện:
Một quầy lương thực buổi sáng bán được \(\dfrac{2}{7}\) tổng số gạo, buổi chiều bán được nhiều hơn buổi sáng \(\dfrac{1}{5}\) tổng số gạo. Hỏi số gạo còn lại chiếm bao nhiêu phần số gạo của quầy lương thực đó?
A. \(\dfrac{4}{{35}}\) tổng số gạo
B. \(\dfrac{8}{{35}}\) tổng số gạo
C. \(\dfrac{{27}}{{35}}\) tổng số gạo
D. \(\dfrac{{17}}{{35}}\) tổng số gạo
Ca thứ nhất có $\frac{5}{{16}}$ lít nước, ca thứ hai có $\frac{3}{4}$ lít nước. Đổ nước từ hai chiếc ca đó vào một chiếc bình. Bạn Hoa rót $\frac{1}{2}$ lít nước từ trong chiếc bình đó. Lượng nước còn lại trong bình là:
$\frac{9}{{16}}$ lít nước
$\frac{1}{4}$ lít nước
$\frac{{25}}{{16}}$ lít nước
$\frac{5}{4}$ lít nước
Lời giải và đáp án
Hoa nói rằng “Muốn trừ hai phân số khác mẫu số, ta quy đồng mẫu số hai phân số, rồi trừ hai phân số đó”. Theo em, Hoa nói đúng hay sai?
A. Đúng
B. Sai
A. Đúng
B. Sai
Muốn trừ hai phân số khác mẫu số, ta quy đồng mẫu số hai phân số, rồi trừ hai phân số đó.
Vậy Hoa nói đúng.
Tính: \(\dfrac{{17}}{{18}} - \dfrac{5}{6}\)
A. \(\dfrac{1}{9}\)
B. \(\dfrac{5}{9}\)
C. \(\dfrac{1}{6}\)
D. \(1\)
A. \(\dfrac{1}{9}\)
Quy đồng mẫu số hai phân số, rồi trừ hai phân số đó. Nếu phân số thu được chưa tối giản thì ta rút gọn thành phân số tối giản.
Ta có: \(\dfrac{{17}}{{18}} - \dfrac{5}{6} = \dfrac{{17}}{{18}} - \dfrac{{15}}{{18}} = \dfrac{2}{{18}} = \dfrac{1}{9}\)
Vậy đáp án đúng là \(\dfrac{1}{9}\).
Điền số thích hợp vào chỗ chấm:
\(\dfrac{{16}}{{20}} - \dfrac{3}{{18}} = \dfrac{{...}}{{...}}\)
Rút gọn rồi tính:
A. \(16\,;\,\,30\)
B. \(17\,;\,\,30\)
C. \(18\,;\,\,30\)
D. \(19\,;\,\,30\)
D. \(19\,;\,\,30\)
Rút gọn các phân số đã cho rồi thực hiện phép trừ hai phân số đó.
Ta có: \(\dfrac{{16}}{{20}} - \dfrac{3}{{18}} = \dfrac{4}{5} - \dfrac{1}{6} = \dfrac{{24}}{{30}} - \dfrac{5}{{30}} = \dfrac{{19}}{{30}}\)
Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(19\,;\,\,30\).
Tính: \(8 - \dfrac{3}{7}\)
A. \(\dfrac{4}{7}\)
B. \(\dfrac{{11}}{7}\)
C. \(\dfrac{{53}}{7}\)
D. \(\dfrac{{59}}{7}\)
C. \(\dfrac{{53}}{7}\)
Viết \(8\) dưới dạng phân số là \(\dfrac{8}{1}\) rồi thực hiện phép tính trừ hai phân số.
Ta có: \(8 - \dfrac{3}{7} = \dfrac{8}{1} - \dfrac{3}{7} = \dfrac{{56}}{7} - \dfrac{3}{7} = \dfrac{{53}}{7}\)
Hoặc ta có thể viết gọn như sau: \(8 - \dfrac{3}{7} = \dfrac{{56}}{7} - \dfrac{3}{7} = \dfrac{{53}}{7}\)
Vậy đáp án đúng là \(\dfrac{{53}}{7}\).
Tìm \(x\), biết: \(x + \dfrac{3}{7} = \dfrac{{15}}{{28}}\)
A. \(x = \dfrac{4}{7}\)
B. \(x = \dfrac{3}{{28}}\)
C. \(x = \dfrac{{27}}{{28}}\)
D. \(x = \dfrac{{18}}{{35}}\)
B. \(x = \dfrac{3}{{28}}\)
\(x\) ở vị trí số hạng, muốn tìm số hạng chưa biết ta lấy tổng trừ đi số hạng đã biết.
Ta có:
\(\begin{array}{l}x + \dfrac{3}{7} = \dfrac{{15}}{{28}}\\x = \dfrac{{15}}{{28}} - \dfrac{3}{7}\\x = \dfrac{{15}}{{28}} - \dfrac{{12}}{{28}}\\x = \dfrac{3}{{28}}\end{array}\)
Vậy \(x = \dfrac{3}{{28}}\).
Tính giá trị biểu thức: \(\dfrac{9}{{10}} - \left( {\dfrac{2}{5} + \dfrac{1}{{10}}} \right) + \dfrac{9}{{20}}\)
A. \(\dfrac{{23}}{{20}}\)
B. \(\dfrac{{21}}{{20}}\)
C. \(\dfrac{{19}}{{20}}\)
D. \(\dfrac{{17}}{{20}}\)
D. \(\dfrac{{17}}{{20}}\)
Biểu thức chứa dấu ngoặc nên ta tính trong ngoặc trước , ngoài ngoặc sau ; nếu biểu thức chỉ có phép cộng và phép trừ thì ta tính lần lượt từ trái sang phải.
Ta có:
\(\begin{array}{l}\dfrac{9}{{10}} - \left( {\dfrac{2}{5} + \dfrac{1}{{10}}} \right) + \dfrac{9}{{20}} \\ = \dfrac{9}{{10}} - \left( {\dfrac{4}{{10}} + \dfrac{1}{{10}}} \right) + \dfrac{9}{{20}}\\ = \dfrac{9}{{10}} - \dfrac{5}{{10}} + \dfrac{9}{{20}}\\ = \dfrac{4}{{10}} + \dfrac{9}{{20}}\\ = \dfrac{8}{{20}} + \dfrac{9}{{20}}\\ = \dfrac{{17}}{{20}}\end{array}\)
Vậy đáp án đúng là \(\dfrac{{17}}{{20}}\)
Điền dấu (\(>;\,<;\, =\)) thích hợp vào ô trống:
\(\dfrac{5}{6} - \dfrac{1}{3}\,\,\)
\(\,\,\,\dfrac{7}{2} - 3\)
\(\dfrac{5}{6} - \dfrac{1}{3}\,\,\)
=\(\,\,\,\dfrac{7}{2} - 3\)
Tính giá trị biểu thức ở hai vế rồi so sánh kết quả với nhau.
Ta có:
\(\dfrac{5}{6} - \dfrac{1}{3}\,\, = \dfrac{5}{6} - \dfrac{2}{6} = \dfrac{3}{6} = \dfrac{1}{2}\);
\(\dfrac{7}{2} - 3 = \dfrac{7}{2} - \dfrac{6}{2} = \dfrac{1}{2}\).
Mà \(\dfrac{1}{2} = \dfrac{1}{2}\)
Do đó \(\dfrac{5}{6} - \dfrac{1}{3}\,\, = \,\,\,\dfrac{7}{2} - 3\).
Vậy dấu thích hợp điền vào ô trống là \( = \).
Hai hộp bánh cân nặng \(\dfrac{4}{5}kg\), trong đó một hộp cân nặng \(\dfrac{3}{8}kg\).
Muốn tìm cân nặng của hộp bánh còn lại ta lấy cân nặng của hai hộp bánh trừ đi cân nặng của hộp bánh đã biết.
Hộp bánh thứ hai cân nặng số ki-lô-gam là:
\(\dfrac{4}{5} - \dfrac{3}{8} = \dfrac{{17}}{{40}}\,\,(kg)\)
Đáp số: \(\dfrac{{17}}{{40}}kg\)
Vậy đáp án đúng điền vào chỗ chấm lần lượt từ trên xuống dưới là \(17\,;\,\,40\).
Tính bằng cách thuận tiện:
Rút gọn các phân số rồi thực hiện nhóm các phân số có cùng mẫu số thành một nhóm.
$\begin{array}{l}\dfrac{4}{5} + \dfrac{2}{{10}} - \dfrac{1}{3} - \dfrac{{10}}{{15}} \\ = \dfrac{4}{5} + \dfrac{1}{5} - \dfrac{1}{3} - \dfrac{2}{3}\\= \left( {\dfrac{4}{5} + \dfrac{1}{5}} \right) - \left( {\dfrac{1}{3} + \dfrac{2}{3}} \right)\\ = \dfrac{5}{5} - \dfrac{3}{3}\\ = \,\,1 - 1 \\= \quad 0\end{array}$
Một quầy lương thực buổi sáng bán được \(\dfrac{2}{7}\) tổng số gạo, buổi chiều bán được nhiều hơn buổi sáng \(\dfrac{1}{5}\) tổng số gạo. Hỏi số gạo còn lại chiếm bao nhiêu phần số gạo của quầy lương thực đó?
A. \(\dfrac{4}{{35}}\) tổng số gạo
B. \(\dfrac{8}{{35}}\) tổng số gạo
C. \(\dfrac{{27}}{{35}}\) tổng số gạo
D. \(\dfrac{{17}}{{35}}\) tổng số gạo
B. \(\dfrac{8}{{35}}\) tổng số gạo
- Coi tổng số gạo là \(1\) đơn vị.
- Tìm số gạo bán trong buổi chiều ta lấy số gạo bán được trong buổi sáng cộng với \(\dfrac{1}{5}\).
- Tìm tổng số gạo đã bán trong hai buổi sáng và chiều.
- Tìm số gạo còn lại ta lấy \(1\) trừ đi tổng số gạo đã bán trong hai buổi sáng và chiều.
Trong buổi chiều, quầy lương thực đó đã bán được số gạo là:
\(\dfrac{2}{7} + \dfrac{1}{5} = \dfrac{{17}}{{35}}\) (tổng số gạo)
Trong buổi sáng và buổi chiều, quầy lương thực đó đã bán được số gạo là:
\(\dfrac{2}{7} + \dfrac{{17}}{{35}} = \dfrac{{27}}{{35}}\) (tổng số gạo)
Số gạo còn lại của quầy lương thực đó là:
\(1 - \dfrac{{27}}{{35}} = \dfrac{8}{{35}}\) (tổng số gạo)
Đáp số: \(\dfrac{8}{{35}}\) tổng số gạo.
Ca thứ nhất có $\frac{5}{{16}}$ lít nước, ca thứ hai có $\frac{3}{4}$ lít nước. Đổ nước từ hai chiếc ca đó vào một chiếc bình. Bạn Hoa rót $\frac{1}{2}$ lít nước từ trong chiếc bình đó. Lượng nước còn lại trong bình là:
$\frac{9}{{16}}$ lít nước
$\frac{1}{4}$ lít nước
$\frac{{25}}{{16}}$ lít nước
$\frac{5}{4}$ lít nước
Đáp án : A
- Tìm lượng nước có trong bình = Lượng nước ca 1 + Lượng nước ca 2
- Lượng nước còn lại = Lượng nước có trong bình – Lượng nước rót ra
Lượng nước có trong bình là:
$\frac{5}{{16}} + \frac{3}{4} = \frac{{17}}{{16}}$ (lít)
Lượng nước còn lại trong bình là:
$\frac{{17}}{{16}} - \frac{1}{2} = \frac{9}{{16}}$ (lít)
Đáp số: $\frac{9}{{16}}$ lít nước
Hoa nói rằng “Muốn trừ hai phân số khác mẫu số, ta quy đồng mẫu số hai phân số, rồi trừ hai phân số đó”. Theo em, Hoa nói đúng hay sai?
A. Đúng
B. Sai
Tính: \(\dfrac{{17}}{{18}} - \dfrac{5}{6}\)
A. \(\dfrac{1}{9}\)
B. \(\dfrac{5}{9}\)
C. \(\dfrac{1}{6}\)
D. \(1\)
Điền số thích hợp vào chỗ chấm:
\(\dfrac{{16}}{{20}} - \dfrac{3}{{18}} = \dfrac{{...}}{{...}}\)
Rút gọn rồi tính:
A. \(16\,;\,\,30\)
B. \(17\,;\,\,30\)
C. \(18\,;\,\,30\)
D. \(19\,;\,\,30\)
Tính: \(8 - \dfrac{3}{7}\)
A. \(\dfrac{4}{7}\)
B. \(\dfrac{{11}}{7}\)
C. \(\dfrac{{53}}{7}\)
D. \(\dfrac{{59}}{7}\)
Tìm \(x\), biết: \(x + \dfrac{3}{7} = \dfrac{{15}}{{28}}\)
A. \(x = \dfrac{4}{7}\)
B. \(x = \dfrac{3}{{28}}\)
C. \(x = \dfrac{{27}}{{28}}\)
D. \(x = \dfrac{{18}}{{35}}\)
Tính giá trị biểu thức: \(\dfrac{9}{{10}} - \left( {\dfrac{2}{5} + \dfrac{1}{{10}}} \right) + \dfrac{9}{{20}}\)
A. \(\dfrac{{23}}{{20}}\)
B. \(\dfrac{{21}}{{20}}\)
C. \(\dfrac{{19}}{{20}}\)
D. \(\dfrac{{17}}{{20}}\)
Điền dấu (\(>;\,<;\, =\)) thích hợp vào ô trống:
\(\dfrac{5}{6} - \dfrac{1}{3}\,\,\)
\(\,\,\,\dfrac{7}{2} - 3\)
Hai hộp bánh cân nặng \(\dfrac{4}{5}kg\), trong đó một hộp cân nặng \(\dfrac{3}{8}kg\).
Tính bằng cách thuận tiện:
Một quầy lương thực buổi sáng bán được \(\dfrac{2}{7}\) tổng số gạo, buổi chiều bán được nhiều hơn buổi sáng \(\dfrac{1}{5}\) tổng số gạo. Hỏi số gạo còn lại chiếm bao nhiêu phần số gạo của quầy lương thực đó?
A. \(\dfrac{4}{{35}}\) tổng số gạo
B. \(\dfrac{8}{{35}}\) tổng số gạo
C. \(\dfrac{{27}}{{35}}\) tổng số gạo
D. \(\dfrac{{17}}{{35}}\) tổng số gạo
Ca thứ nhất có $\frac{5}{{16}}$ lít nước, ca thứ hai có $\frac{3}{4}$ lít nước. Đổ nước từ hai chiếc ca đó vào một chiếc bình. Bạn Hoa rót $\frac{1}{2}$ lít nước từ trong chiếc bình đó. Lượng nước còn lại trong bình là:
$\frac{9}{{16}}$ lít nước
$\frac{1}{4}$ lít nước
$\frac{{25}}{{16}}$ lít nước
$\frac{5}{4}$ lít nước
Hoa nói rằng “Muốn trừ hai phân số khác mẫu số, ta quy đồng mẫu số hai phân số, rồi trừ hai phân số đó”. Theo em, Hoa nói đúng hay sai?
A. Đúng
B. Sai
A. Đúng
B. Sai
Muốn trừ hai phân số khác mẫu số, ta quy đồng mẫu số hai phân số, rồi trừ hai phân số đó.
Vậy Hoa nói đúng.
Tính: \(\dfrac{{17}}{{18}} - \dfrac{5}{6}\)
A. \(\dfrac{1}{9}\)
B. \(\dfrac{5}{9}\)
C. \(\dfrac{1}{6}\)
D. \(1\)
A. \(\dfrac{1}{9}\)
Quy đồng mẫu số hai phân số, rồi trừ hai phân số đó. Nếu phân số thu được chưa tối giản thì ta rút gọn thành phân số tối giản.
Ta có: \(\dfrac{{17}}{{18}} - \dfrac{5}{6} = \dfrac{{17}}{{18}} - \dfrac{{15}}{{18}} = \dfrac{2}{{18}} = \dfrac{1}{9}\)
Vậy đáp án đúng là \(\dfrac{1}{9}\).
Điền số thích hợp vào chỗ chấm:
\(\dfrac{{16}}{{20}} - \dfrac{3}{{18}} = \dfrac{{...}}{{...}}\)
Rút gọn rồi tính:
A. \(16\,;\,\,30\)
B. \(17\,;\,\,30\)
C. \(18\,;\,\,30\)
D. \(19\,;\,\,30\)
D. \(19\,;\,\,30\)
Rút gọn các phân số đã cho rồi thực hiện phép trừ hai phân số đó.
Ta có: \(\dfrac{{16}}{{20}} - \dfrac{3}{{18}} = \dfrac{4}{5} - \dfrac{1}{6} = \dfrac{{24}}{{30}} - \dfrac{5}{{30}} = \dfrac{{19}}{{30}}\)
Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(19\,;\,\,30\).
Tính: \(8 - \dfrac{3}{7}\)
A. \(\dfrac{4}{7}\)
B. \(\dfrac{{11}}{7}\)
C. \(\dfrac{{53}}{7}\)
D. \(\dfrac{{59}}{7}\)
C. \(\dfrac{{53}}{7}\)
Viết \(8\) dưới dạng phân số là \(\dfrac{8}{1}\) rồi thực hiện phép tính trừ hai phân số.
Ta có: \(8 - \dfrac{3}{7} = \dfrac{8}{1} - \dfrac{3}{7} = \dfrac{{56}}{7} - \dfrac{3}{7} = \dfrac{{53}}{7}\)
Hoặc ta có thể viết gọn như sau: \(8 - \dfrac{3}{7} = \dfrac{{56}}{7} - \dfrac{3}{7} = \dfrac{{53}}{7}\)
Vậy đáp án đúng là \(\dfrac{{53}}{7}\).
Tìm \(x\), biết: \(x + \dfrac{3}{7} = \dfrac{{15}}{{28}}\)
A. \(x = \dfrac{4}{7}\)
B. \(x = \dfrac{3}{{28}}\)
C. \(x = \dfrac{{27}}{{28}}\)
D. \(x = \dfrac{{18}}{{35}}\)
B. \(x = \dfrac{3}{{28}}\)
\(x\) ở vị trí số hạng, muốn tìm số hạng chưa biết ta lấy tổng trừ đi số hạng đã biết.
Ta có:
\(\begin{array}{l}x + \dfrac{3}{7} = \dfrac{{15}}{{28}}\\x = \dfrac{{15}}{{28}} - \dfrac{3}{7}\\x = \dfrac{{15}}{{28}} - \dfrac{{12}}{{28}}\\x = \dfrac{3}{{28}}\end{array}\)
Vậy \(x = \dfrac{3}{{28}}\).
Tính giá trị biểu thức: \(\dfrac{9}{{10}} - \left( {\dfrac{2}{5} + \dfrac{1}{{10}}} \right) + \dfrac{9}{{20}}\)
A. \(\dfrac{{23}}{{20}}\)
B. \(\dfrac{{21}}{{20}}\)
C. \(\dfrac{{19}}{{20}}\)
D. \(\dfrac{{17}}{{20}}\)
D. \(\dfrac{{17}}{{20}}\)
Biểu thức chứa dấu ngoặc nên ta tính trong ngoặc trước , ngoài ngoặc sau ; nếu biểu thức chỉ có phép cộng và phép trừ thì ta tính lần lượt từ trái sang phải.
Ta có:
\(\begin{array}{l}\dfrac{9}{{10}} - \left( {\dfrac{2}{5} + \dfrac{1}{{10}}} \right) + \dfrac{9}{{20}} \\ = \dfrac{9}{{10}} - \left( {\dfrac{4}{{10}} + \dfrac{1}{{10}}} \right) + \dfrac{9}{{20}}\\ = \dfrac{9}{{10}} - \dfrac{5}{{10}} + \dfrac{9}{{20}}\\ = \dfrac{4}{{10}} + \dfrac{9}{{20}}\\ = \dfrac{8}{{20}} + \dfrac{9}{{20}}\\ = \dfrac{{17}}{{20}}\end{array}\)
Vậy đáp án đúng là \(\dfrac{{17}}{{20}}\)
Điền dấu (\(>;\,<;\, =\)) thích hợp vào ô trống:
\(\dfrac{5}{6} - \dfrac{1}{3}\,\,\)
\(\,\,\,\dfrac{7}{2} - 3\)
\(\dfrac{5}{6} - \dfrac{1}{3}\,\,\)
=\(\,\,\,\dfrac{7}{2} - 3\)
Tính giá trị biểu thức ở hai vế rồi so sánh kết quả với nhau.
Ta có:
\(\dfrac{5}{6} - \dfrac{1}{3}\,\, = \dfrac{5}{6} - \dfrac{2}{6} = \dfrac{3}{6} = \dfrac{1}{2}\);
\(\dfrac{7}{2} - 3 = \dfrac{7}{2} - \dfrac{6}{2} = \dfrac{1}{2}\).
Mà \(\dfrac{1}{2} = \dfrac{1}{2}\)
Do đó \(\dfrac{5}{6} - \dfrac{1}{3}\,\, = \,\,\,\dfrac{7}{2} - 3\).
Vậy dấu thích hợp điền vào ô trống là \( = \).
Hai hộp bánh cân nặng \(\dfrac{4}{5}kg\), trong đó một hộp cân nặng \(\dfrac{3}{8}kg\).
Muốn tìm cân nặng của hộp bánh còn lại ta lấy cân nặng của hai hộp bánh trừ đi cân nặng của hộp bánh đã biết.
Hộp bánh thứ hai cân nặng số ki-lô-gam là:
\(\dfrac{4}{5} - \dfrac{3}{8} = \dfrac{{17}}{{40}}\,\,(kg)\)
Đáp số: \(\dfrac{{17}}{{40}}kg\)
Vậy đáp án đúng điền vào chỗ chấm lần lượt từ trên xuống dưới là \(17\,;\,\,40\).
Tính bằng cách thuận tiện:
Rút gọn các phân số rồi thực hiện nhóm các phân số có cùng mẫu số thành một nhóm.
$\begin{array}{l}\dfrac{4}{5} + \dfrac{2}{{10}} - \dfrac{1}{3} - \dfrac{{10}}{{15}} \\ = \dfrac{4}{5} + \dfrac{1}{5} - \dfrac{1}{3} - \dfrac{2}{3}\\= \left( {\dfrac{4}{5} + \dfrac{1}{5}} \right) - \left( {\dfrac{1}{3} + \dfrac{2}{3}} \right)\\ = \dfrac{5}{5} - \dfrac{3}{3}\\ = \,\,1 - 1 \\= \quad 0\end{array}$
Một quầy lương thực buổi sáng bán được \(\dfrac{2}{7}\) tổng số gạo, buổi chiều bán được nhiều hơn buổi sáng \(\dfrac{1}{5}\) tổng số gạo. Hỏi số gạo còn lại chiếm bao nhiêu phần số gạo của quầy lương thực đó?
A. \(\dfrac{4}{{35}}\) tổng số gạo
B. \(\dfrac{8}{{35}}\) tổng số gạo
C. \(\dfrac{{27}}{{35}}\) tổng số gạo
D. \(\dfrac{{17}}{{35}}\) tổng số gạo
B. \(\dfrac{8}{{35}}\) tổng số gạo
- Coi tổng số gạo là \(1\) đơn vị.
- Tìm số gạo bán trong buổi chiều ta lấy số gạo bán được trong buổi sáng cộng với \(\dfrac{1}{5}\).
- Tìm tổng số gạo đã bán trong hai buổi sáng và chiều.
- Tìm số gạo còn lại ta lấy \(1\) trừ đi tổng số gạo đã bán trong hai buổi sáng và chiều.
Trong buổi chiều, quầy lương thực đó đã bán được số gạo là:
\(\dfrac{2}{7} + \dfrac{1}{5} = \dfrac{{17}}{{35}}\) (tổng số gạo)
Trong buổi sáng và buổi chiều, quầy lương thực đó đã bán được số gạo là:
\(\dfrac{2}{7} + \dfrac{{17}}{{35}} = \dfrac{{27}}{{35}}\) (tổng số gạo)
Số gạo còn lại của quầy lương thực đó là:
\(1 - \dfrac{{27}}{{35}} = \dfrac{8}{{35}}\) (tổng số gạo)
Đáp số: \(\dfrac{8}{{35}}\) tổng số gạo.
Ca thứ nhất có $\frac{5}{{16}}$ lít nước, ca thứ hai có $\frac{3}{4}$ lít nước. Đổ nước từ hai chiếc ca đó vào một chiếc bình. Bạn Hoa rót $\frac{1}{2}$ lít nước từ trong chiếc bình đó. Lượng nước còn lại trong bình là:
$\frac{9}{{16}}$ lít nước
$\frac{1}{4}$ lít nước
$\frac{{25}}{{16}}$ lít nước
$\frac{5}{4}$ lít nước
Đáp án : A
- Tìm lượng nước có trong bình = Lượng nước ca 1 + Lượng nước ca 2
- Lượng nước còn lại = Lượng nước có trong bình – Lượng nước rót ra
Lượng nước có trong bình là:
$\frac{5}{{16}} + \frac{3}{4} = \frac{{17}}{{16}}$ (lít)
Lượng nước còn lại trong bình là:
$\frac{{17}}{{16}} - \frac{1}{2} = \frac{9}{{16}}$ (lít)
Đáp số: $\frac{9}{{16}}$ lít nước
Bài 77 trong chương trình Toán 4 Cánh diều tập trung vào kỹ năng trừ hai phân số khi chúng có mẫu số khác nhau. Đây là một kỹ năng quan trọng trong chương trình học, giúp học sinh xây dựng nền tảng vững chắc cho các phép toán phức tạp hơn ở các lớp trên. Để thành thạo kỹ năng này, học sinh cần nắm vững các bước thực hiện: quy đồng mẫu số, trừ tử số, giữ nguyên mẫu số.
Hãy tính: 2/3 - 1/4
Trong bài 77, học sinh sẽ gặp các dạng bài tập sau:
Để giải nhanh các bài tập về phép trừ hai phân số khác mẫu số, học sinh nên:
Dưới đây là một số câu hỏi trắc nghiệm để các em luyện tập:
Khi quy đồng mẫu số, hãy chọn MSC nhỏ nhất để việc tính toán trở nên dễ dàng hơn. Luôn kiểm tra lại kết quả để đảm bảo tính chính xác. Đừng ngần ngại hỏi thầy cô hoặc bạn bè nếu gặp khó khăn trong quá trình giải bài tập.
Trắc nghiệm Bài 77: Trừ hai phân số khác mẫu số Toán 4 Cánh diều là một bài học quan trọng giúp học sinh nắm vững kỹ năng cơ bản về phép trừ phân số. Bằng cách luyện tập thường xuyên và áp dụng các mẹo giải nhanh, các em sẽ tự tin hơn trong việc giải các bài toán liên quan đến phân số.