Logo Header
  1. Môn Toán
  2. Đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6

Đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6

Đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6

Chào mừng các em học sinh lớp 7 đến với đề thi giữa kì 2 môn Toán chương trình Kết nối tri thức - Đề số 6.

Đề thi này được thiết kế dựa trên nội dung chương trình học kì 2, giúp các em tự đánh giá năng lực và chuẩn bị tốt nhất cho kỳ thi sắp tới.

Đề bài

    I. Trắc nghiệm
    Câu 1 :

    Trong các cặp tỉ số sau, cặp tỉ số nào lập thành một tỉ lệ thức?

    • A.
      \(12:18\) và \(\frac{2}{3}\).
    • B.
      \(12:18\) và \(\frac{3}{2}\).
    • C.
      \(\frac{{12}}{{ - 18}}\) và \(\frac{2}{3}\).
    • D.
      \(\left( { - 12} \right):\left( { - 18} \right)\) và \(\frac{{ - 2}}{3}\).
    Câu 2 :

    Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}.\) Khẳng định đúng

    • A.
      \(ab = cd\).
    • B.
      \(ad = bc\).
    • C.
      \(a + d = b + c\).
    • D.
      \(\frac{a}{d} = \frac{b}{c}\).
    Câu 3 :

    Từ đẳng thức \(2.\left( { - 15} \right) = \left( { - 5} \right).6\), ta có thể lập được tỉ lệ thức nào?

    • A.
      \(\frac{2}{{ - 15}} = \frac{{ - 5}}{6}.\)
    • B.
      \(\frac{2}{6} = \frac{{ - 15}}{{ - 5}}.\)
    • C.
      \(\frac{{ - 5}}{2} = \frac{{ - 5}}{6}.\)
    • D.
      \(\frac{2}{{ - 5}} = \frac{6}{{ - 15}}\).
    Câu 4 :

    Cho \(x,y\) là hai đại lượng tỉ lệ nghịch với nhau, biết \({x_1},{y_1}\) và \({x_2},{y_2}\) là các cặp giá trị tương ứng của chúng. Khẳng định nào sau đây là sai?

    • A.

      \(\frac{{{x_1}}}{{{y_2}}} = \frac{{{x_2}}}{{{y_1}}}.\)

    • B.

      \(\frac{{{y_1}}}{{{x_1}}} = \frac{{{x_2}}}{{{y_2}}}.\)

    • C.
      \({x_1}{y_1} = {x_2}{y_2}.\)
    • D.
      \(\frac{{{x_1}}}{{{x_2}}} = \frac{{{y_2}}}{{{y_1}}}.\)
    Câu 5 :

    Nếu ba số \(a;{\rm{ }}b;{\rm{ }}c\)tương ứng tỉ lệ với \(2;5;7\)ta có dãy tỉ số bằng nhau là:

    • A.
      \(\frac{a}{2} = \frac{b}{7} = \frac{c}{5}.\)
    • B.
      \(2a = 5b = 7c.\)
    • C.
      \(7a = 5b = 2c.\)
    • D.
      \(\frac{a}{2} = \frac{b}{5} = \frac{c}{7}.\)
    Câu 6 :

    Cho đại lượng \(y\) tỉ lệ thuận với đại lượng \(x\) theo hệ số tỉ lệ \(k = - 3.\) Hệ thức liên hệ của \(y\) và \(x\) là:

    • A.
      \(xy = - 3.\)
    • B.
      \(y = - 3x.\)
    • C.
      \(y = \frac{x}{{ - 3}}.\)
    • D.
      \(y = \frac{{ - 3}}{x}.\)
    Câu 7 :

    Biểu thức nào là đa thức một biến?

    • A.
      \(2{x^2} + 3y + 5\).
    • B.
      \(2{x^3} - {x^2} + 5\).
    • C.
      \(5xy + {x^3} - 1\).
    • D.
      \(xyz - 2xy + 5\).
    Câu 8 :

    Trong hình vẽ bên, có điểm \(C\) nằm giữa \(B\) và \(D\). So sánh \(AB;AC;AD\) ta được

    Đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6 0 1

    • A.
      \(AC < AD < AB.\)
    • B.
      \(AD > AC > AB.\)
    • C.
      \(AC > AB > AD.\)
    • D.
      \(AC < AB < AD.\)
    Câu 9 :

    Trong các bộ ba đoạn thẳng sau đây. Bộ gồm ba đoạn thẳng nào là độ dài ba cạnh của một tam giác?

    • A.
      \(5\,cm,\,3\,cm,\,2\,cm.\)
    • B.
      \(5\,cm,\,1\,cm,\,1\,cm.\)
    • C.
      \(5\,cm,\,3\,cm,\,6\,cm.\)
    • D.
      \(5\,cm,\,5\,cm,\,10\,cm.\)
    Câu 10 :

    Cho đại lượng y tỉ lệ thuận với đại lượng x. Khi \(x = 4\) thì \(y = 16\) . Vậy hệ số tỉ lệ bằng

    • A.
      \(4.\)
    • B.
      \(64.\)
    • C.
      \( - 4.\)
    • D.
      \(16.\)
    Câu 11 :

    Biểu thức biểu thị chu vi của hình chữ nhật có chiều dài \(8cm\) và chiều rộng \(6cm\) là

    • A.
      \(6 + 8{\rm{ }}\left( {cm} \right){\rm{.}}\)
    • B.
      \(2.6 + 8{\rm{ }}\left( {cm} \right){\rm{.}}\)
    • C.
      \(6 + 8.2{\rm{ }}\left( {cm} \right){\rm{.}}\)
    • D.
      \(\left( {6 + 8} \right){\rm{.2 }}\left( {cm} \right){\rm{.}}\)
    Câu 12 :

    Đường vuông góc kẻ từ H xuống đường thẳng m là:

    Đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6 0 2

    • A.
      HM.
    • B.
      HN.
    • C.
      HO.
    • D.
      HP.
    II. Tự luận
    Câu 1 :

    a) Tìm x biết \(\frac{6}{x} = \frac{{ - 4}}{5}\).

    b) Tìm \(x;y\) biết: \(\frac{x}{5} = \frac{y}{3}\) và \(x + 2y = 33\).

    c) Tìm a, b, c tỉ lệ với ba số 2; 3; -4 và a + b – c = 18.

    Câu 2 :

    Số học sinh lớp 7A, 7B, 7C tương ứng tỉ lệ với 21; 20; 22. Tính số học sinh của mỗi lớp, biết rằng lớp 7C có nhiều hơn lớp 7A là 2 học sinh.

    Câu 3 :

    Một khu đất hình chữ nhật có chiều dài và chiều rộng tỉ lệ với 8 và 5. Diện tích khu đất đó bằng \(360{m^2}\). Tính chiều dài và chiều rộng của khu đất đó.

    Câu 4 :

    Cho tam giác ABC cân tại A. Từ A kẻ AH vuông góc với BC tại H, trên đoạn thẳng AH lấy điểm M tùy ý (M khác A và H). Chứng minh rằng:

    a) BH = CH.

    b) BA > BM.

    Câu 5 :

    Cho tam giác ABC có trung tuyến AM. Chứng minh rằng \(AB + AC > 2AM\).

    Lời giải và đáp án

      I. Trắc nghiệm
      Câu 1 :

      Trong các cặp tỉ số sau, cặp tỉ số nào lập thành một tỉ lệ thức?

      • A.
        \(12:18\) và \(\frac{2}{3}\).
      • B.
        \(12:18\) và \(\frac{3}{2}\).
      • C.
        \(\frac{{12}}{{ - 18}}\) và \(\frac{2}{3}\).
      • D.
        \(\left( { - 12} \right):\left( { - 18} \right)\) và \(\frac{{ - 2}}{3}\).

      Đáp án : A

      Phương pháp giải :

      Tỉ lệ thức là đẳng thức của hai tỉ số \(\frac{a}{b} = \frac{c}{d}\).

      Lời giải chi tiết :

      Ta có: \(12:18 = \frac{{12}}{{18}} = \frac{2}{3}\) nên cặp tỉ số A lập thành một tỉ lệ thức.

      \(12:18 = \frac{{12}}{{18}} = \frac{2}{3} \ne \frac{3}{2}\) nên cặp tỉ số B không lập thành một tỉ lệ thức.

      \(\frac{{12}}{{ - 18}} = \frac{{ - 2}}{3} \ne \frac{2}{3}\) nên cặp tỉ số C không lập thành một tỉ lệ thức.

      \(\left( { - 12} \right):\left( { - 18} \right) = \frac{{ - 12}}{{ - 18}} = \frac{2}{3} \ne \frac{{ - 2}}{3}\) nên cặp tỉ số D không lập thành một tỉ lệ thức.

      Câu 2 :

      Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}.\) Khẳng định đúng

      • A.
        \(ab = cd\).
      • B.
        \(ad = bc\).
      • C.
        \(a + d = b + c\).
      • D.
        \(\frac{a}{d} = \frac{b}{c}\).

      Đáp án : B

      Phương pháp giải :

      Dựa vào tính chất cơ bản của tỉ lệ thức.

      Lời giải chi tiết :

      Áp dụng tính chất cơ bản của tỉ lệ thức, ta có:

      Nếu \(\frac{a}{b} = \frac{c}{d}\) thì \(ad = bc\).

      Câu 3 :

      Từ đẳng thức \(2.\left( { - 15} \right) = \left( { - 5} \right).6\), ta có thể lập được tỉ lệ thức nào?

      • A.
        \(\frac{2}{{ - 15}} = \frac{{ - 5}}{6}.\)
      • B.
        \(\frac{2}{6} = \frac{{ - 15}}{{ - 5}}.\)
      • C.
        \(\frac{{ - 5}}{2} = \frac{{ - 5}}{6}.\)
      • D.
        \(\frac{2}{{ - 5}} = \frac{6}{{ - 15}}\).

      Đáp án : D

      Phương pháp giải :

      Ta sử dụng tính chất: Nếu \(ad = bc\) thì \(\frac{a}{b} = \frac{c}{d};\frac{a}{c} = \frac{b}{d};\frac{d}{b} = \frac{c}{a};\frac{d}{c} = \frac{b}{a}\).

      Lời giải chi tiết :

      Từ đẳng thức \(2.\left( { - 15} \right) = \left( { - 5} \right).6\), ta có:

      \(\frac{2}{{ - 5}} = \frac{6}{{ - 15}};\frac{2}{6} = \frac{{ - 5}}{{ - 15}};\frac{{ - 5}}{2} = \frac{{ - 15}}{6};\frac{6}{2} = \frac{{ - 15}}{{ - 5}}\).

      \( \Rightarrow \) Đáp án D là đáp án đúng.

      Câu 4 :

      Cho \(x,y\) là hai đại lượng tỉ lệ nghịch với nhau, biết \({x_1},{y_1}\) và \({x_2},{y_2}\) là các cặp giá trị tương ứng của chúng. Khẳng định nào sau đây là sai?

      • A.

        \(\frac{{{x_1}}}{{{y_2}}} = \frac{{{x_2}}}{{{y_1}}}.\)

      • B.

        \(\frac{{{y_1}}}{{{x_1}}} = \frac{{{x_2}}}{{{y_2}}}.\)

      • C.
        \({x_1}{y_1} = {x_2}{y_2}.\)
      • D.
        \(\frac{{{x_1}}}{{{x_2}}} = \frac{{{y_2}}}{{{y_1}}}.\)

      Đáp án : B

      Phương pháp giải :

      Dựa vào tính chất của hai đại lượng tỉ lệ nghịch.

      Lời giải chi tiết :

      x, y là hai đại lượng tỉ lệ nghịch với nhau nên \(\frac{{{x_1}}}{{{x_2}}} = \frac{{{y_2}}}{{{y_1}}}\); \(\frac{{{x_1}}}{{{y_2}}} = \frac{{{x_2}}}{{{y_1}}}\); \({x_1}{y_1} = {x_2}{y_2}\)

      \( \Rightarrow A,C,D\) đúng.

      Câu 5 :

      Nếu ba số \(a;{\rm{ }}b;{\rm{ }}c\)tương ứng tỉ lệ với \(2;5;7\)ta có dãy tỉ số bằng nhau là:

      • A.
        \(\frac{a}{2} = \frac{b}{7} = \frac{c}{5}.\)
      • B.
        \(2a = 5b = 7c.\)
      • C.
        \(7a = 5b = 2c.\)
      • D.
        \(\frac{a}{2} = \frac{b}{5} = \frac{c}{7}.\)

      Đáp án : D

      Phương pháp giải :

      Dựa vào kiến thức về dãy tỉ số bằng nhau.

      Lời giải chi tiết :

      Vì a; b; c tương ứng tỉ lệ với 2; 5; 7 nên ta có dãy tỉ số bằng nhau là:

      \(\frac{a}{2} = \frac{b}{5} = \frac{c}{7}\).

      Câu 6 :

      Cho đại lượng \(y\) tỉ lệ thuận với đại lượng \(x\) theo hệ số tỉ lệ \(k = - 3.\) Hệ thức liên hệ của \(y\) và \(x\) là:

      • A.
        \(xy = - 3.\)
      • B.
        \(y = - 3x.\)
      • C.
        \(y = \frac{x}{{ - 3}}.\)
      • D.
        \(y = \frac{{ - 3}}{x}.\)

      Đáp án : B

      Phương pháp giải :

      Dựa vào kiến thức về hai đại lượng tỉ lệ thuận.

      Lời giải chi tiết :

      Đại lượng \(y\) tỉ lệ thuận với đại lượng \(x\) theo hệ số tỉ lệ \(k = - 3\) ta có hệ thức liên hệ của y và x là \(y = - 3x\).

      Câu 7 :

      Biểu thức nào là đa thức một biến?

      • A.
        \(2{x^2} + 3y + 5\).
      • B.
        \(2{x^3} - {x^2} + 5\).
      • C.
        \(5xy + {x^3} - 1\).
      • D.
        \(xyz - 2xy + 5\).

      Đáp án : B

      Phương pháp giải :

      Dựa vào kiến thức về đa thức một biến.

      Lời giải chi tiết :

      Trong các biểu thức trên, \(2{x^3} - {x^2} + 5\) là đa thức một biến.

      Câu 8 :

      Trong hình vẽ bên, có điểm \(C\) nằm giữa \(B\) và \(D\). So sánh \(AB;AC;AD\) ta được

      Đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6 1 1

      • A.
        \(AC < AD < AB.\)
      • B.
        \(AD > AC > AB.\)
      • C.
        \(AC > AB > AD.\)
      • D.
        \(AC < AB < AD.\)

      Đáp án : B

      Phương pháp giải :

      Dựa vào quan hệ giữa đường xiên và hình chiếu.

      Lời giải chi tiết :

      Vì AB < BD, C nằm giữa B và D nên BC < BD.

      Do đó AB < AC < AD. (quan hệ giữa đường xiên và hình chiếu).

      Câu 9 :

      Trong các bộ ba đoạn thẳng sau đây. Bộ gồm ba đoạn thẳng nào là độ dài ba cạnh của một tam giác?

      • A.
        \(5\,cm,\,3\,cm,\,2\,cm.\)
      • B.
        \(5\,cm,\,1\,cm,\,1\,cm.\)
      • C.
        \(5\,cm,\,3\,cm,\,6\,cm.\)
      • D.
        \(5\,cm,\,5\,cm,\,10\,cm.\)

      Đáp án : C

      Phương pháp giải :

      Dựa vào quan hệ giữa ba cạnh của một tam giác: Trong một tam giác, tổng độ dài hai cạnh bất kỳ bao giờ cũng lớn hơn độ dài cạnh còn lại.

      Lời giải chi tiết :

      Ta có: \(5 = 3 + 2\) nên \(5\,cm,\,3\,cm,\,2\,cm\) không là độ dài ba cạnh của một tam giác.

      \(1 + 1 = 2 < 5\) nên \(5\,cm,\,1\,cm,\,1\,cm\) không là độ dài ba cạnh của một tam giác.

      \(5 + 3 = 8 > 6;\,5 + 6 = 11 > 3;\,3 + 6 = 9 > 5\) nên \(5\,cm,\,3\,cm,\,6\,cm\) là độ dài ba cạnh của một tam giác.

      \(5 + 5 = 10\) nên \(5\,cm,\,5\,cm,\,10\,cm\) không là độ dài ba cạnh của một tam giác.

      Câu 10 :

      Cho đại lượng y tỉ lệ thuận với đại lượng x. Khi \(x = 4\) thì \(y = 16\) . Vậy hệ số tỉ lệ bằng

      • A.
        \(4.\)
      • B.
        \(64.\)
      • C.
        \( - 4.\)
      • D.
        \(16.\)

      Đáp án : A

      Phương pháp giải :

      Dựa vào kiến thức về hai đại lượng tỉ lệ thuận.

      Lời giải chi tiết :

      Đại lượng y tỉ lệ thuận với đại lượng x nên hệ số tỉ lệ là:

      \(k = \frac{y}{x} = \frac{{16}}{4} = 4\).

      Câu 11 :

      Biểu thức biểu thị chu vi của hình chữ nhật có chiều dài \(8cm\) và chiều rộng \(6cm\) là

      • A.
        \(6 + 8{\rm{ }}\left( {cm} \right){\rm{.}}\)
      • B.
        \(2.6 + 8{\rm{ }}\left( {cm} \right){\rm{.}}\)
      • C.
        \(6 + 8.2{\rm{ }}\left( {cm} \right){\rm{.}}\)
      • D.
        \(\left( {6 + 8} \right){\rm{.2 }}\left( {cm} \right){\rm{.}}\)

      Đáp án : D

      Phương pháp giải :

      Dựa vào kiến thức về biểu thức số, công thức tính chu vi của hình chữ nhật.

      Lời giải chi tiết :

      Biểu thức biểu thị chu vi của hình chữ nhật là:

      \(\left( {6 + 8} \right).2\left( {cm} \right)\).

      Câu 12 :

      Đường vuông góc kẻ từ H xuống đường thẳng m là:

      Đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6 1 2

      • A.
        HM.
      • B.
        HN.
      • C.
        HO.
      • D.
        HP.

      Đáp án : C

      Phương pháp giải :

      Dựa vào kiến thức về đường vuông góc.

      Lời giải chi tiết :

      Đường vuông góc kẻ từ H xuống đường thẳng m là HO.

      II. Tự luận
      Câu 1 :

      a) Tìm x biết \(\frac{6}{x} = \frac{{ - 4}}{5}\).

      b) Tìm \(x;y\) biết: \(\frac{x}{5} = \frac{y}{3}\) và \(x + 2y = 33\).

      c) Tìm a, b, c tỉ lệ với ba số 2; 3; -4 và a + b – c = 18.

      Phương pháp giải :

      a) Dựa vào tính chất của tỉ lệ thức để tìm x.

      b, c) Sử dụng tính chất của dãy tỉ số bằng nhau để tìm ẩn.

      Lời giải chi tiết :

      a) Ta có:

      \(\begin{array}{l}\frac{6}{x} = \frac{{ - 4}}{5}\\6.5 = - 4.x\\ - 4x = 30\\x = \frac{{ - 30}}{4} = \frac{{ - 15}}{2}\end{array}\)

      Vậy \(x = \frac{{ - 15}}{2}\).

      b) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

      \(\frac{x}{5} = \frac{y}{3} = \frac{{x + 2y}}{{5 + 2.3}} = \frac{{33}}{{11}} = 3\)

      Từ đó suy ra:

      \(\begin{array}{l}x = 3.5 = 15\\y = 3.3 = 9\end{array}\)

      Vậy x = 15; y = 9.

      c) Ta có a, b, c tỉ lệ với ba số 2; 3; -4 nên ta có dãy tỉ số bằng nhau:

      \(\frac{a}{2} = \frac{b}{3} = \frac{c}{{ - 4}}\)

      Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

      \(\frac{a}{2} = \frac{b}{3} = \frac{c}{{ - 4}} = \frac{{a + b - c}}{{2 + 3 - \left( { - 4} \right)}} = \frac{{18}}{9} = 2\)

      Từ đó suy ra:

      \(\begin{array}{l}a = 2.2 = 4\\b = 2.3 = 6\\c = 2.\left( { - 4} \right) = - 8\end{array}\)

      Vậy \(a = 4;b = 6;c = - 8\).

      Câu 2 :

      Số học sinh lớp 7A, 7B, 7C tương ứng tỉ lệ với 21; 20; 22. Tính số học sinh của mỗi lớp, biết rằng lớp 7C có nhiều hơn lớp 7A là 2 học sinh.

      Phương pháp giải :

      Áp dụng tính chất của dãy tỉ số bằng nhau để tìm số học sinh của mỗi lớp.

      Lời giải chi tiết :

      Gọi số học sinh lớp 7A, 7B, 7C lần lượt là a, b, c \(\left( {a,b,c \in \mathbb{N}*,c > 2} \right)\) (học sinh)

      Vì số học sinh lớp 7A, 7B, 7C tương ứng tỉ lệ với 21; 20; 22 nên ta có dãy tỉ số bằng nhau:

      \(\frac{a}{{21}} = \frac{b}{{20}} = \frac{c}{{22}}\)

      Do lớp 7C có nhiều hơn lớp 7A 2 học sinh nên áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

      \(\frac{b}{{20}} = \frac{c}{{22}} = \frac{a}{{21}} = \frac{{c - a}}{{22 - 21}} = \frac{2}{1} = 2\).

      Từ đó suy ra:

      \(\begin{array}{l}c = 2.22 = 44\\a = 2.21 = 42\\b = 2.20 = 40\end{array}\) (Thỏa mãn)

      Vậy số học sinh lớp 7A, 7B, 7C lần lượt là 42; 40; 44 học sinh.

      Câu 3 :

      Một khu đất hình chữ nhật có chiều dài và chiều rộng tỉ lệ với 8 và 5. Diện tích khu đất đó bằng \(360{m^2}\). Tính chiều dài và chiều rộng của khu đất đó.

      Phương pháp giải :

      Áp dụng tính chất của dãy tỉ số bằng nhau và công thức tính diện tích hình chữ nhật để tìm chiều dài và chiều rộng của khu đất đó.

      Lời giải chi tiết :

      Gọi chiều dài và chiều rộng của khu đất lần lượt là \(x,y\left( {x > y > 0} \right)\) \(\left( m \right)\).

      Vì chiều dài và chiều rộng tỉ lệ với 8 và 5 nên ta có:

      \(\frac{x}{8} = \frac{y}{5} = k\left( {k > 0} \right)\) suy ra \(x = 8k;y = 5k\).

      Mà diện tích khu đất bằng \(360{m^2}\) nên ta có \(x.y = 360\) hay \(8k.5k = 360\)

      \(\begin{array}{l}40{k^2} = 360\\{k^2} = 9\end{array}\)

      \(k = 3\) (vì \(k > 0\))

      Từ đó suy ra:

      \(\begin{array}{l}x = 8.3 = 24\\y = 5.3 = 15\end{array}\)(thỏa mãn)

      Vậy chiều dài và chiều rộng của khu đất đó lần lượt là \(24m\) và \(15m\).

      Câu 4 :

      Cho tam giác ABC cân tại A. Từ A kẻ AH vuông góc với BC tại H, trên đoạn thẳng AH lấy điểm M tùy ý (M khác A và H). Chứng minh rằng:

      a) BH = CH.

      b) BA > BM.

      Phương pháp giải :

      a) Chứng minh \(\Delta AHB = \Delta AHC\) nên \(BH = CH\).

      b) Sử dụng quan hệ giữa đường vuông góc và đường xiên để chứng minh.

      Lời giải chi tiết :

      Đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6 1 3

      a) Xét \(\Delta AHB\) và \(\Delta AHC\) có:

      \(\widehat {AHB} = \widehat {AHC} = {90^0}\)

      \(AB = AC\) (\(\Delta ABC\) cân tại A)

      AH chung

      Suy ra \(\Delta AHB = \Delta AHC\) (cạnh huyền – cạnh góc vuông)

      Suy ra \(BH = CH\) (hai cạnh tương ứng) (đpcm)

      b) Do M nằm giữa A và H nên HA > HM.

      Ta có BH là đường vuông góc, BA và BM là các đường xiên kẻ từ B đến đường thẳng AH nên HM là hình chiếu của BM, HA là hình chiếu của AB xuống AH.

      Vì HA > HM nên BA > BM.

      Vậy BA > BM (đpcm).

      Câu 5 :

      Cho tam giác ABC có trung tuyến AM. Chứng minh rằng \(AB + AC > 2AM\).

      Phương pháp giải :

      Dựa vào kiến thức về đường trung tuyến trong tam giác.

      Lấy điểm D thuộc tia đối của tia MA sao cho AM = DM.

      Chứng minh \(\Delta AMB = \Delta DMC\) suy ra \(AB = CD\).

      Sử dụng bất đẳng thức tam giác để chứng minh \(AB + AC > AD = 2AM\).

      Lời giải chi tiết :

      Đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6 1 4

      Do AM là trung tuyến của tam giác ABC nên ta có BM = CM.

      Trên tia đối của tia MA lấy điểm D sao cho AM = DM.

      Xét \(\Delta AMB\) và \(\Delta DMC\) có:

      \(AM = DM\)

      \(BM = CM\)

      \(\widehat {AMB} = \widehat {DMC}\) (hai góc đối đỉnh)

      Suy ra \(\Delta AMB = \Delta DMC\) (c.g.c) suy ra AB = CD (hai cạnh tương ứng)

      Khi đó \(AB + AC = DC + AC > AD\) (bất đẳng thức tam giác)

      Mà AM = DM nên AD = 2.AM

      Do đó: \(AB + AC > 2AM\).

      Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6 tại chuyên mục toán 7 trên toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

      Đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6: Tổng quan và Hướng dẫn Giải chi tiết

      Đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6 là một bài kiểm tra quan trọng, đánh giá mức độ nắm vững kiến thức và kỹ năng giải toán của học sinh sau nửa học kỳ. Đề thi bao gồm các dạng bài tập khác nhau, tập trung vào các chủ đề chính như biểu thức đại số, phương trình bậc nhất một ẩn, bất đẳng thức, hàm số và các ứng dụng thực tế của toán học.

      Cấu trúc đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6

      Thông thường, đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6 có cấu trúc gồm các phần sau:

      1. Phần trắc nghiệm: Kiểm tra khả năng hiểu và vận dụng kiến thức cơ bản.
      2. Phần tự luận: Yêu cầu học sinh trình bày chi tiết lời giải cho các bài toán.

      Tỷ lệ điểm giữa phần trắc nghiệm và tự luận có thể khác nhau tùy theo quy định của từng trường.

      Nội dung chính của đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6

      • Biểu thức đại số: Các bài tập về thu gọn biểu thức, tìm giá trị của biểu thức, phân tích đa thức thành nhân tử.
      • Phương trình bậc nhất một ẩn: Giải phương trình, ứng dụng phương trình để giải bài toán thực tế.
      • Bất đẳng thức: Giải bất đẳng thức, so sánh các số thực.
      • Hàm số: Xác định hàm số, vẽ đồ thị hàm số, tìm giá trị của hàm số.
      • Hình học: Các bài tập về tam giác, tứ giác, đường thẳng song song, đường thẳng vuông góc.

      Hướng dẫn giải chi tiết Đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6

      Để giải tốt đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6, học sinh cần nắm vững các kiến thức cơ bản, rèn luyện kỹ năng giải toán và thực hành thường xuyên. Dưới đây là một số lời khuyên:

      • Đọc kỹ đề bài: Hiểu rõ yêu cầu của bài toán trước khi bắt đầu giải.
      • Lập kế hoạch giải: Xác định các bước cần thực hiện để giải bài toán.
      • Trình bày lời giải rõ ràng: Viết các bước giải một cách logic và dễ hiểu.
      • Kiểm tra lại kết quả: Đảm bảo kết quả cuối cùng là chính xác.

      Ví dụ minh họa

      Bài 1: (Trắc nghiệm) Giá trị của biểu thức 3x + 2y tại x = 1, y = -1 là:

      A. 1

      B. -1

      C. 0

      D. 2

      Giải: Thay x = 1 và y = -1 vào biểu thức 3x + 2y, ta được: 3(1) + 2(-1) = 3 - 2 = 1. Vậy đáp án đúng là A.

      Tài liệu ôn tập hữu ích

      Để chuẩn bị tốt nhất cho đề thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6, học sinh có thể tham khảo các tài liệu sau:

      • Sách giáo khoa Toán 7 Kết nối tri thức
      • Sách bài tập Toán 7 Kết nối tri thức
      • Các đề thi thử giữa kì 2 Toán 7 Kết nối tri thức
      • Các video bài giảng Toán 7 Kết nối tri thức trên giaitoan.edu.vn

      Lời khuyên cuối cùng

      Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi giữa kì 2 Toán 7 Kết nối tri thức - Đề số 6! Hãy tự tin vào khả năng của mình và đừng quên dành thời gian nghỉ ngơi hợp lý để có một sức khỏe tốt.

      Tài liệu, đề thi và đáp án Toán 7