Logo Header
  1. Môn Toán
  2. Đề thi giữa kì 2 Toán 7 - Đề số 2 - Kết nối tri thức

Đề thi giữa kì 2 Toán 7 - Đề số 2 - Kết nối tri thức

Đề thi giữa kì 2 Toán 7 - Đề số 2 - Kết nối tri thức: Cập nhật mới nhất

Giaitoan.edu.vn xin giới thiệu Đề thi giữa kì 2 Toán 7 - Đề số 2 - Kết nối tri thức, được biên soạn theo chương trình học mới nhất của Bộ Giáo dục và Đào tạo. Đề thi này là tài liệu ôn tập lý tưởng giúp học sinh làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải toán.

Đề thi bao gồm các dạng bài tập khác nhau, từ trắc nghiệm đến tự luận, giúp học sinh đánh giá toàn diện kiến thức đã học. Đi kèm với đề thi là đáp án chi tiết, giúp học sinh tự kiểm tra và rút kinh nghiệm.

I. TRẮC NGHIỆM ( 3 điểm) Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Đề bài

    I. TRẮC NGHIỆM (3 điểm)

    Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

    Câu 1. Thay tỉ số 1,25 : 3,45 bằng tỉ số giữa các số nguyên ta được

    A. 12,5 : 34,5;

    B. 29 : 65;

    C. 25 : 69;

    D. 1 : 3.

    Câu 2. Biết 7x = 4y và y – x = 24. Khi đó, giá trị của x, y là

    A. x = −56, y = −32;

    B. x = 32, y = 56;

    C. x = 56, y = 32;

    D. x = 56, y = −32.

    Câu 3. Biết y tỉ lệ thuận với x theo hệ số tỉ lệ k = 2. Khi x = –3 thì giá trị của y bằng bao nhiêu?

    A. –6;

    B. 0;

    C. –9;

    D. –1.

    Câu 4. Cho x và y là hai đại lượng tỉ lệ nghịch với nhau và khi x = –12 thì y = 8. Khi x = 3 thì y bằng:

    A. –32;

    B. 32;

    C. –2;

    D. 2.

    Câu 5. Biểu thức đại số biểu thị “Lập phương của tổng của hai số x và y” là

    A. x3 – y3;

    B. x + y;

    C. x3 + y3;

    D. (x + y)3.

    Câu 6. Hệ số tự do của đa thức M = -8x2 – 4x + 3 – 2x

    A. -2;

    B. 4;

    C. 3;

    D. 5.

    Câu 7. Cho hai đa thức P(x) = 6x3 − 3x− 2x + 4 và G(x) = 5x2 − 7x + 9. Giá trị P(x) − G(x) bằng

    A. x− 9x +13;

    B. 6x3 − 8x2 + 5x −5;

    C. x3 − 8x2 + 5x −5;

    D. 5x3 − 8x2 + 5x +13.

    Câu 8. Trong các giá trị sau đây, đâu là nghiệm của đa thức 5x− 3x – 2?

    A. \(x = 0\);

    B. \(x = - 1\);

    C. \(x = \dfrac{2}{5}\);

    D. \(x = \dfrac{{ - 2}}{5}\).

    Câu 9. Cho tam giác MNP có: \(\widehat N = 70^\circ ;\widehat P = 55^\circ \). Khẳng định nào sau đây là đúng ?

    A. NP < MN;

    B. NP = MN;

    C. NP > MN;

    D. Không đủ dữ kiện so sánh.

    Câu 10. Cho tam giác MNP có: MN < MP, MD ⊥ NP. Khẳng định nào sau đây là đúng?

    Đề thi giữa kì 2 Toán 7 - Đề số 2 - Kết nối tri thức 0 1

    A. DN = DP;

    B. MD < MP;

    C. MD > MN;

    D. MN = MP.

    Câu 11. Bộ ba độ dài đoạn thẳng nào sau đây không thể tạo thành một tam giác?

    A. 18cm; 28cm; 10cm;

    B. 5cm; 4cm; 6cm;

    C. 15cm; 18cm; 20cm;

    D. 11cm; 9cm; 7cm.

    Câu 12. Cho G là trọng tâm tam giác MNP có trung tuyến MK. Khẳng định nào sau đây là đúng?

    A. \(\dfrac{{MG}}{{GK}} = \dfrac{1}{2}\);

    B. \(\dfrac{{MG}}{{MK}} = \dfrac{1}{3}\) ;

    C. \(\dfrac{{KG}}{{MK}} = \dfrac{1}{3}\);

    D. \(\dfrac{{MG}}{{MK}} = \dfrac{2}{3}\).

    II. PHẦN TỰ LUẬN (7,0 điểm)

    Bài 1. (1,5 điểm) Tìm \(x\) biết:

    a) \(x - \dfrac{2}{5} = \dfrac{{ - 9}}{{10}}\)

    b) \(\dfrac{3}{4} + \dfrac{1}{4}x = \dfrac{{ - 5}}{6}\)

    c) \(\dfrac{{x - 1}}{3} = \dfrac{{2 - x}}{{ - 2}}\)

    Bài 2. (1,5 điểm) Tính chu vi của hình chữ nhật biết rằng chiều dài và chiều rộng của hình chữ nhật đó lần lượt tỉ lệ với \(5\,\,;\,\,3\) và hai lần chiều dài hơn ba lần chiều rộng là 8 cm.

    Bài 3. (1,5 điểm) Cho hai đa thức: \(P\left( x \right) = {\rm{ }}{x^3}\; - 2{x^2} + x - 2\);

    \(Q\left( x \right) = 2{x^3}\; - 4{x^2} + 3x - 6\)

    a) Tính \(P(x) - Q(x)\)

    b) Chứng tỏ rằng x = 2 là nghiệm của cả hai đa thức P(x) và Q(x).

    Bài 4. (2,0 điểm) Cho \(\Delta ABC\) vuông tại \(A\), đường trung tuyến \(AM\). Trên tia đối của tia \(MA\) lấy điểm \(D\) sao cho \(DM = MA\).

    a) Chứng minh \(\Delta AMB = \Delta DMC\).

    b) Trên tia đối của tia \(CD\), lấy điểm \(I\) sao cho \(CI = CA\), qua điểm \(I\) vẽ đường thẳng song song với \(AC\) cắt \(AB\) tại \(E\). Chứng minh \(\Delta ACE = \Delta ICE\), từ đó suy ra \(\Delta ACE\) là tam giác vuông cân.

    Bài 5. (0,5 điểm) Cho đa thức \(f\left( x \right)\) thỏa mãn \(f\left( x \right) + x.f\left( { - x} \right) = x + 1\) với mọi giá trị của \(x\). Tính \(f\left( 1 \right)\).

    Lựa chọn câu để xem lời giải nhanh hơn
    • Đề bài
    • Lời giải
    • Tải về

    I. TRẮC NGHIỆM (3 điểm)

    Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

    Câu 1. Thay tỉ số 1,25 : 3,45 bằng tỉ số giữa các số nguyên ta được

    A. 12,5 : 34,5;

    B. 29 : 65;

    C. 25 : 69;

    D. 1 : 3.

    Câu 2. Biết 7x = 4y và y – x = 24. Khi đó, giá trị của x, y là

    A. x = −56, y = −32;

    B. x = 32, y = 56;

    C. x = 56, y = 32;

    D. x = 56, y = −32.

    Câu 3. Biết y tỉ lệ thuận với x theo hệ số tỉ lệ k = 2. Khi x = –3 thì giá trị của y bằng bao nhiêu?

    A. –6;

    B. 0;

    C. –9;

    D. –1.

    Câu 4. Cho x và y là hai đại lượng tỉ lệ nghịch với nhau và khi x = –12 thì y = 8. Khi x = 3 thì y bằng:

    A. –32;

    B. 32;

    C. –2;

    D. 2.

    Câu 5. Biểu thức đại số biểu thị “Lập phương của tổng của hai số x và y” là

    A. x3 – y3;

    B. x + y;

    C. x3 + y3;

    D. (x + y)3.

    Câu 6. Hệ số tự do của đa thức M = -8x2 – 4x + 3 – 2x

    A. -2;

    B. 4;

    C. 3;

    D. 5.

    Câu 7. Cho hai đa thức P(x) = 6x3 − 3x− 2x + 4 và G(x) = 5x2 − 7x + 9. Giá trị P(x) − G(x) bằng

    A. x− 9x +13;

    B. 6x3 − 8x2 + 5x −5;

    C. x3 − 8x2 + 5x −5;

    D. 5x3 − 8x2 + 5x +13.

    Câu 8. Trong các giá trị sau đây, đâu là nghiệm của đa thức 5x− 3x – 2?

    A. \(x = 0\);

    B. \(x = - 1\);

    C. \(x = \dfrac{2}{5}\);

    D. \(x = \dfrac{{ - 2}}{5}\).

    Câu 9. Cho tam giác MNP có: \(\widehat N = 70^\circ ;\widehat P = 55^\circ \). Khẳng định nào sau đây là đúng ?

    A. NP < MN;

    B. NP = MN;

    C. NP > MN;

    D. Không đủ dữ kiện so sánh.

    Câu 10. Cho tam giác MNP có: MN < MP, MD ⊥ NP. Khẳng định nào sau đây là đúng?

    Đề thi giữa kì 2 Toán 7 - Đề số 2 - Kết nối tri thức 1

    A. DN = DP;

    B. MD < MP;

    C. MD > MN;

    D. MN = MP.

    Câu 11. Bộ ba độ dài đoạn thẳng nào sau đây không thể tạo thành một tam giác?

    A. 18cm; 28cm; 10cm;

    B. 5cm; 4cm; 6cm;

    C. 15cm; 18cm; 20cm;

    D. 11cm; 9cm; 7cm.

    Câu 12. Cho G là trọng tâm tam giác MNP có trung tuyến MK. Khẳng định nào sau đây là đúng?

    A. \(\dfrac{{MG}}{{GK}} = \dfrac{1}{2}\);

    B. \(\dfrac{{MG}}{{MK}} = \dfrac{1}{3}\) ;

    C. \(\dfrac{{KG}}{{MK}} = \dfrac{1}{3}\);

    D. \(\dfrac{{MG}}{{MK}} = \dfrac{2}{3}\).

    II. PHẦN TỰ LUẬN (7,0 điểm)

    Bài 1. (1,5 điểm) Tìm \(x\) biết:

    a) \(x - \dfrac{2}{5} = \dfrac{{ - 9}}{{10}}\)

    b) \(\dfrac{3}{4} + \dfrac{1}{4}x = \dfrac{{ - 5}}{6}\)

    c) \(\dfrac{{x - 1}}{3} = \dfrac{{2 - x}}{{ - 2}}\)

    Bài 2. (1,5 điểm) Tính chu vi của hình chữ nhật biết rằng chiều dài và chiều rộng của hình chữ nhật đó lần lượt tỉ lệ với \(5\,\,;\,\,3\) và hai lần chiều dài hơn ba lần chiều rộng là 8 cm.

    Bài 3. (1,5 điểm) Cho hai đa thức: \(P\left( x \right) = {\rm{ }}{x^3}\; - 2{x^2} + x - 2\);

    \(Q\left( x \right) = 2{x^3}\; - 4{x^2} + 3x - 6\)

    a) Tính \(P(x) - Q(x)\)

    b) Chứng tỏ rằng x = 2 là nghiệm của cả hai đa thức P(x) và Q(x).

    Bài 4. (2,0 điểm) Cho \(\Delta ABC\) vuông tại \(A\), đường trung tuyến \(AM\). Trên tia đối của tia \(MA\) lấy điểm \(D\) sao cho \(DM = MA\).

    a) Chứng minh \(\Delta AMB = \Delta DMC\).

    b) Trên tia đối của tia \(CD\), lấy điểm \(I\) sao cho \(CI = CA\), qua điểm \(I\) vẽ đường thẳng song song với \(AC\) cắt \(AB\) tại \(E\). Chứng minh \(\Delta ACE = \Delta ICE\), từ đó suy ra \(\Delta ACE\) là tam giác vuông cân.

    Bài 5. (0,5 điểm) Cho đa thức \(f\left( x \right)\) thỏa mãn \(f\left( x \right) + x.f\left( { - x} \right) = x + 1\) với mọi giá trị của \(x\). Tính \(f\left( 1 \right)\).

    I. Trắc nghiệm

    1.C

    2.B

    3. A

    4.A

    5.D

    6.C

    7.B

    8.D

    9.B

    10.B

    11.A

    12.C

    Câu 1.

    Phương pháp

    Nhân cả tử và mẫu của phân số với 1 số khác 0, ta được phân số có giá trị không đổi.

    Lời giải

    1,25 : 3,45 = 125 : 345 = 25 : 69.

    Chọn C.

    Câu 2.

    Phương pháp

    Áp dụng tính chất dãy tỉ số bằng nhau

    Lời giải

    Vì 7x = 4y nên \(\dfrac{x}{4} = \dfrac{y}{7}\)

    Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

    \(\dfrac{x}{4} = \dfrac{y}{7} = \dfrac{{y - x}}{{7 - 4}} = \dfrac{{24}}{3} = 8\)

    Do đó x = 4 . 8 = 32; y = 7 . 8 = 56.

    Chọn B.

    Câu 3.

    Phương pháp

    Đại lượng \(y\) tỉ lệ thuận với \(x\) theo hệ số tỉ lệ \(k\) thì \(y = kx\)

    Lời giải

    Khi x = - 3 thì \(y = kx = 2.( - 3) = - 6\)

    Chọn A.

    Câu 4.

    Phương pháp

    Tính chất hai đại lượng tỉ lệ nghịch: tích 2 giá trị tương ứng của 2 đại lượng luôn không đổi (bằng hệ số tỉ lệ)

    Cách giải:

    Hệ số tỉ lệ là: -12 . 8 = -96.

    Khi x = 3 thì y = -96 : 3 = -32.

    Chọn A

    Câu 5.

    Phương pháp

    Mô tả biểu thức đại số theo đề bài

    Cách giải:

    “Lập phương của tổng của hai số x và y” là \((x + y)^3\)

    Chọn D

    Câu 6.

    Phương pháp

    Hệ số tự do là số hạng không chứa biến.

    Cách giải:

    Hệ số tự do của đa thức M = -8x2 – 4x + 3 – 2xlà 3.

    Chọn C

    Câu 7.

    Ta có: P(x) − G(x) = (6x3 − 3x− 2x + 4) − (5x− 7x + 9)

    = 6x3 − 3x− 2x + 4 − 5x2 + 7x − 9

    = 6x3 + (−3x− 5x2) + (−2x + 7x) + (4 − 9)

    = 6x3 − 8x2 + 5x − 5.

    Vậy P(x) − G(x) = 6x3 − 8x2 + 5x −5.

    Chọn B.

    Câu 8.

    Phương pháp

    Thay lần lượt các giá trị của x vào đa thức.

    Khi x = a, đa thức có giá trị bằng 0 thì a là nghiệm của đa thức.

    Lời giải

    Thay \(x = \dfrac{{ - 2}}{5}\)vào đa thức 5x− 3x – 2, ta có:

    \(5.{\left( {\dfrac{{ - 2}}{5}} \right)^2} - 3.\dfrac{{ - 2}}{5} - 2 = 0\)

    Do đó, \(x = \dfrac{{ - 2}}{5}\) là nghiệm của đa thức 5x− 3x – 2.

    Chọn D.

    Câu 9.

    Phương pháp: Áp dụng định lí tổng ba góc trong tam giác, tính góc M.

    Dựa vào quan hệ giữa cạnh và góc đối diện trong tam giác.

    Cách giải:

    Xét tam giác MNP có: \(\widehat M + \widehat N + \widehat P = 180^\circ \) (định lí tổng ba góc trong một tam giác)

    \( \Rightarrow \widehat M = 180^\circ - \widehat N - \widehat P = 180^\circ - 70^\circ - 55^\circ = 55^\circ \)

    Ta được: \(\widehat M = \widehat P\)

    Mà cạnh NP là cạnh đối của góc M, MN là cạnh đối của góc P.

    Vậy NP = MN.

    Chọn B.

    Câu 10:

    Phương pháp: Sử dụng mối quan hệ đường xiên và hình chiếu.

    Sử dụng quan hệ đường vuông góc và đường xiên.

    Cách giải:

    Đề thi giữa kì 2 Toán 7 - Đề số 2 - Kết nối tri thức 2

    Trong tam giác MNP có MN < MP, hình chiếu của MN và MP trên cạnh NP lần lượt là ND và PD.

    Do đó, ND < PD.

    Ta có: MD < MP (đường vuông góc nhỏ hơn đường xiên)

    Chọn B

    Câu 11.

    Phương pháp: Bất đẳng thức tam giác: Kiểm tra tổng độ dài 2 cạnh nhỏ hơn có lớn hơn độ dài cạnh lớn nhất không. Nếu không thì bộ 3 độ dài đó không tạo được thành tam giác.

    Cách giải:

    Vì 18 + 10 = 28 nên không thỏa mãn bất đẳng thức tam giác.

    Do đó, bộ ba độ dài đoạn thẳng 18 cm; 28 cm; 10 cm không thể tạo thành một tam giác.

    Chọn A.

    Câu 12.

    Phương pháp

    Nếu \(\Delta ABC\) có trung tuyến \(AM\) và trọng tâm \(G\) thì \(AG = \dfrac{2}{3}AM\)

    Lời giải

    Đề thi giữa kì 2 Toán 7 - Đề số 2 - Kết nối tri thức 3

    Vì G là trọng tâm tam giác MNP nên G là giao điểm của ba đường trung tuyến nên 

    \(MG = \dfrac{2}{3}MK;GK = \dfrac{1}{3}MK;MG = 2GK\)

    Chọn C.

    II. PHẦN TỰ LUẬN (7,0 điểm)

    Bài 1.

    a) + b) Thực hiện các phép toán với số hữu tỉ.

    c) Vận dụng định nghĩa hai phân thức bằng nhau.

    Cách giải:

    a) \(x - \dfrac{2}{5} = \dfrac{{ - 9}}{{10}}\)

    \(\begin{array}{l}x = \dfrac{{ - 9}}{{10}} + \dfrac{2}{5}\\x = \dfrac{{ - 9 + 2.2}}{{10}}\\x = \dfrac{{ - 5}}{{10}} = \dfrac{{ - 1}}{2}\end{array}\)

    Vậy \(x = - \dfrac{1}{2}\)

    b) \(\dfrac{3}{4} + \dfrac{1}{4}x = \dfrac{{ - 5}}{6}\)

    \(\begin{array}{l}\dfrac{1}{4}x = \dfrac{{ - 5}}{6} - \dfrac{3}{4}\\\dfrac{1}{4}x = \dfrac{{ - 5.2 - 3.3}}{{12}}\\\dfrac{1}{4}x = \dfrac{{ - 19}}{{12}}\\x = \dfrac{{ - 19}}{{12}}:\dfrac{1}{4}\\x = \dfrac{{ - 19}}{3}\end{array}\)

    Vậy \(x = \dfrac{{ - 19}}{3}\)

    c) \(\dfrac{{x - 1}}{3} = \dfrac{{2 - x}}{{ - 2}}\)

    \(\begin{array}{l} - 2\left( {x - 1} \right) = 3\left( {2 - x} \right)\\ - 2x + 2 = 6 - 3x\\ - 2x + 3x = 6 - 2\\x = 4\end{array}\)

    Vậy \(x = 4\)

    Bài 2

    Phương pháp:

    Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là \(x,y\) (cm) (điều kiện: \(x,y > 0\))

    Áp dụng tính chất của dãy tỉ số bằng nhau.

    Cách giải:

    Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là \(x,y\) (cm) (điều kiện: \(x,y > 0\))

    Theo đề bài: chiều dài và chiều rộng của hình chữ nhật đó lần lượt tỉ lệ với \(5\,\,;\,\,3\) nên ta có: \(\dfrac{x}{5} = \dfrac{y}{3}\)

    Hai lần chiều dài hơn ba lần chiều rộng là \(8\) cm nên \(2x - 3y = 8\)

    Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\dfrac{x}{5} = \dfrac{y}{3} = \dfrac{{2x}}{{10}} = \dfrac{{3y}}{9} = \dfrac{{2x - 3y}}{{10 - 9}} = \dfrac{8}{1} = 8\)

    Khi đó, \(\dfrac{x}{5} = 8 \Rightarrow x = 40\) (tmđk)

     \(\dfrac{y}{3} = 8 \Rightarrow y = 24\) (tmđk)

    Chu vi của hình chữ nhật là: \(2\left( {x + y} \right) = 2\left( {40 + 24} \right) = 128\) (cm)

    Bài 3.

    a) Ta có P(x) – Q(x) = (x3 – 2x2 + x – 2) – (2x3 – 4x2 + 3x – 6)

    = x3 – 2x2 + x – 2 – 2x3 + 4x2 – 3x + 6

    = (x3 – 2x3) + (4x2 – 2x2) + (x – 3x) + (6 – 2)

    = – x3 + 2x2 – 2x +4.

    Vậy P(x) – Q(x) = – x3+ 2x2 – 2x +4.

    b) Thay x = 2 vào đa thức P(x), ta có:

    P(2) = 23 – 2 . 22 + 2 – 2 = 8 – 2 . 4 + 0 = 8 – 8 = 0;

    Thay x = 2 vào đa thức Q(x), ta có:

    Q(2) = 2 . 23 – 4 . 22 + 3 . 2 – 6 = 2 . 8 – 4 . 4 + 6 – 6

    = 16 – 16 + 0 = 0.

    Vậy x = 2 là nghiệm của cả hai đa thức P(x) và Q(x).

    Bài 4.

    Phương pháp:

    a) Ta sẽ chứng minh: \(\Delta AMB = \Delta DMC\left( {c.g.c} \right)\)

    b) Ta sẽ chứng minh: \(\angle EIC = {90^0}\), từ đó chứng minh được \(\Delta ACE = \Delta ICE\)(cạnh huyền – cạnh góc vuông)

    \( \Rightarrow \angle ACE = \angle ICE\) (hai góc tương ứng)

    \( \Rightarrow \Delta ACE\) vuông cân tại \(A\left( {\angle EAC = {{90}^0}} \right)\)

    Cách giải:

    Đề thi giữa kì 2 Toán 7 - Đề số 2 - Kết nối tri thức 4

    a) \(\Delta ABC\) vuông tại \(A,AM\) là đường trung tuyến\( \Rightarrow CM = BM\)

    Ta có: \(\angle CMD = \angle AMB\) (hai góc đối đỉnh)

    Xét \(\Delta AMB\) và \(\Delta DMC\) có:

    \(\left. \begin{array}{l}CM = BM\left( {cmt} \right)\\\angle CMD = \angle AMB\left( {cmt} \right)\\AM = MD\left( {gt} \right)\end{array} \right\} \Rightarrow \Delta AMB = \Delta DMC\left( {c.g.c} \right)\)

    b) Ta có: \(\Delta AMB = \Delta DMC\left( {cmt} \right) \Rightarrow \angle ABM = \angle DCM\) (hai góc tương ứng)

    Mà hai góc \(\angle ABM;\angle DCM\) ở vị trí so le trong

    \( \Rightarrow AB//CD\)

    Mà \(AB \bot AC(\Delta ABC\) vuông tại \(A)\)

    \( \Rightarrow CD \bot AC\) tại \(C \Rightarrow EI \bot CD\) tại \(I\) (vì \(EI//AC\)) hay \(\angle EIC = {90^0}\)

    Xét \(\Delta ACE\) và \(\Delta ICE\) có:

    \(\left. \begin{array}{l}\angle EAC = \angle EIC = {90^0}\\CE\,\,chung\\AC = IC\left( {gt} \right)\end{array} \right\} \Rightarrow \Delta ACE = \Delta ICE\) (cạnh huyền – cạnh góc vuông)

    \( \Rightarrow \angle ACE = \angle ICE\) (hai góc tương ứng)

    Mà \(\angle ICE = \angle AEC\) (vì \(AB//CD\))

    \( \Rightarrow \angle ACE = \angle AEC\)

    \( \Rightarrow \Delta ACE\) vuông cân tại \(A\left( {\angle EAC = {{90}^0}} \right)\)

    Bài 5.

    Phương pháp:

    Xét với \(x = - 1\), ta tìm được mối liên hệ của \(f\left( { - 1} \right)\) và \(f\left( 1 \right)\)

    Xét với \(x = 1\), ta tìm được \(f\left( 1 \right)\).

    Cách giải:

    + Với \(x = - 1\), ta có: \(f\left( { - 1} \right) + \left( { - 1} \right).f\left( 1 \right) = - 1 + 1\)

    \(\begin{array}{l} \Rightarrow f\left( { - 1} \right) - f\left( 1 \right) = 0\\ \Rightarrow f\left( { - 1} \right) = f\left( 1 \right)\end{array}\)

    + Với \(x = 1\), ta có: \(f\left( 1 \right) + 1.f\left( { - 1} \right) = 1 + 1\)

    \( \Rightarrow f\left( 1 \right) + f\left( { - 1} \right) = 2\)

    Suy ra, \(f\left( 1 \right) + f\left( 1 \right) = 2\)

    \(\begin{array}{l} \Rightarrow 2f\left( 1 \right) = 2\\ \Rightarrow f\left( 1 \right) = 1\end{array}\)

    Vậy \(f\left( 1 \right) = 1\)

    Lời giải

      I. Trắc nghiệm

      1.C

      2.B

      3. A

      4.A

      5.D

      6.C

      7.B

      8.D

      9.B

      10.B

      11.A

      12.C

      Câu 1.

      Phương pháp

      Nhân cả tử và mẫu của phân số với 1 số khác 0, ta được phân số có giá trị không đổi.

      Lời giải

      1,25 : 3,45 = 125 : 345 = 25 : 69.

      Chọn C.

      Câu 2.

      Phương pháp

      Áp dụng tính chất dãy tỉ số bằng nhau

      Lời giải

      Vì 7x = 4y nên \(\dfrac{x}{4} = \dfrac{y}{7}\)

      Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

      \(\dfrac{x}{4} = \dfrac{y}{7} = \dfrac{{y - x}}{{7 - 4}} = \dfrac{{24}}{3} = 8\)

      Do đó x = 4 . 8 = 32; y = 7 . 8 = 56.

      Chọn B.

      Câu 3.

      Phương pháp

      Đại lượng \(y\) tỉ lệ thuận với \(x\) theo hệ số tỉ lệ \(k\) thì \(y = kx\)

      Lời giải

      Khi x = - 3 thì \(y = kx = 2.( - 3) = - 6\)

      Chọn A.

      Câu 4.

      Phương pháp

      Tính chất hai đại lượng tỉ lệ nghịch: tích 2 giá trị tương ứng của 2 đại lượng luôn không đổi (bằng hệ số tỉ lệ)

      Cách giải:

      Hệ số tỉ lệ là: -12 . 8 = -96.

      Khi x = 3 thì y = -96 : 3 = -32.

      Chọn A

      Câu 5.

      Phương pháp

      Mô tả biểu thức đại số theo đề bài

      Cách giải:

      “Lập phương của tổng của hai số x và y” là \((x + y)^3\)

      Chọn D

      Câu 6.

      Phương pháp

      Hệ số tự do là số hạng không chứa biến.

      Cách giải:

      Hệ số tự do của đa thức M = -8x2 – 4x + 3 – 2xlà 3.

      Chọn C

      Câu 7.

      Ta có: P(x) − G(x) = (6x3 − 3x− 2x + 4) − (5x− 7x + 9)

      = 6x3 − 3x− 2x + 4 − 5x2 + 7x − 9

      = 6x3 + (−3x− 5x2) + (−2x + 7x) + (4 − 9)

      = 6x3 − 8x2 + 5x − 5.

      Vậy P(x) − G(x) = 6x3 − 8x2 + 5x −5.

      Chọn B.

      Câu 8.

      Phương pháp

      Thay lần lượt các giá trị của x vào đa thức.

      Khi x = a, đa thức có giá trị bằng 0 thì a là nghiệm của đa thức.

      Lời giải

      Thay \(x = \dfrac{{ - 2}}{5}\)vào đa thức 5x− 3x – 2, ta có:

      \(5.{\left( {\dfrac{{ - 2}}{5}} \right)^2} - 3.\dfrac{{ - 2}}{5} - 2 = 0\)

      Do đó, \(x = \dfrac{{ - 2}}{5}\) là nghiệm của đa thức 5x− 3x – 2.

      Chọn D.

      Câu 9.

      Phương pháp: Áp dụng định lí tổng ba góc trong tam giác, tính góc M.

      Dựa vào quan hệ giữa cạnh và góc đối diện trong tam giác.

      Cách giải:

      Xét tam giác MNP có: \(\widehat M + \widehat N + \widehat P = 180^\circ \) (định lí tổng ba góc trong một tam giác)

      \( \Rightarrow \widehat M = 180^\circ - \widehat N - \widehat P = 180^\circ - 70^\circ - 55^\circ = 55^\circ \)

      Ta được: \(\widehat M = \widehat P\)

      Mà cạnh NP là cạnh đối của góc M, MN là cạnh đối của góc P.

      Vậy NP = MN.

      Chọn B.

      Câu 10:

      Phương pháp: Sử dụng mối quan hệ đường xiên và hình chiếu.

      Sử dụng quan hệ đường vuông góc và đường xiên.

      Cách giải:

      Đề thi giữa kì 2 Toán 7 - Đề số 2 - Kết nối tri thức 1 1

      Trong tam giác MNP có MN < MP, hình chiếu của MN và MP trên cạnh NP lần lượt là ND và PD.

      Do đó, ND < PD.

      Ta có: MD < MP (đường vuông góc nhỏ hơn đường xiên)

      Chọn B

      Câu 11.

      Phương pháp: Bất đẳng thức tam giác: Kiểm tra tổng độ dài 2 cạnh nhỏ hơn có lớn hơn độ dài cạnh lớn nhất không. Nếu không thì bộ 3 độ dài đó không tạo được thành tam giác.

      Cách giải:

      Vì 18 + 10 = 28 nên không thỏa mãn bất đẳng thức tam giác.

      Do đó, bộ ba độ dài đoạn thẳng 18 cm; 28 cm; 10 cm không thể tạo thành một tam giác.

      Chọn A.

      Câu 12.

      Phương pháp

      Nếu \(\Delta ABC\) có trung tuyến \(AM\) và trọng tâm \(G\) thì \(AG = \dfrac{2}{3}AM\)

      Lời giải

      Đề thi giữa kì 2 Toán 7 - Đề số 2 - Kết nối tri thức 1 2

      Vì G là trọng tâm tam giác MNP nên G là giao điểm của ba đường trung tuyến nên 

      \(MG = \dfrac{2}{3}MK;GK = \dfrac{1}{3}MK;MG = 2GK\)

      Chọn C.

      II. PHẦN TỰ LUẬN (7,0 điểm)

      Bài 1.

      a) + b) Thực hiện các phép toán với số hữu tỉ.

      c) Vận dụng định nghĩa hai phân thức bằng nhau.

      Cách giải:

      a) \(x - \dfrac{2}{5} = \dfrac{{ - 9}}{{10}}\)

      \(\begin{array}{l}x = \dfrac{{ - 9}}{{10}} + \dfrac{2}{5}\\x = \dfrac{{ - 9 + 2.2}}{{10}}\\x = \dfrac{{ - 5}}{{10}} = \dfrac{{ - 1}}{2}\end{array}\)

      Vậy \(x = - \dfrac{1}{2}\)

      b) \(\dfrac{3}{4} + \dfrac{1}{4}x = \dfrac{{ - 5}}{6}\)

      \(\begin{array}{l}\dfrac{1}{4}x = \dfrac{{ - 5}}{6} - \dfrac{3}{4}\\\dfrac{1}{4}x = \dfrac{{ - 5.2 - 3.3}}{{12}}\\\dfrac{1}{4}x = \dfrac{{ - 19}}{{12}}\\x = \dfrac{{ - 19}}{{12}}:\dfrac{1}{4}\\x = \dfrac{{ - 19}}{3}\end{array}\)

      Vậy \(x = \dfrac{{ - 19}}{3}\)

      c) \(\dfrac{{x - 1}}{3} = \dfrac{{2 - x}}{{ - 2}}\)

      \(\begin{array}{l} - 2\left( {x - 1} \right) = 3\left( {2 - x} \right)\\ - 2x + 2 = 6 - 3x\\ - 2x + 3x = 6 - 2\\x = 4\end{array}\)

      Vậy \(x = 4\)

      Bài 2

      Phương pháp:

      Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là \(x,y\) (cm) (điều kiện: \(x,y > 0\))

      Áp dụng tính chất của dãy tỉ số bằng nhau.

      Cách giải:

      Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là \(x,y\) (cm) (điều kiện: \(x,y > 0\))

      Theo đề bài: chiều dài và chiều rộng của hình chữ nhật đó lần lượt tỉ lệ với \(5\,\,;\,\,3\) nên ta có: \(\dfrac{x}{5} = \dfrac{y}{3}\)

      Hai lần chiều dài hơn ba lần chiều rộng là \(8\) cm nên \(2x - 3y = 8\)

      Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\dfrac{x}{5} = \dfrac{y}{3} = \dfrac{{2x}}{{10}} = \dfrac{{3y}}{9} = \dfrac{{2x - 3y}}{{10 - 9}} = \dfrac{8}{1} = 8\)

      Khi đó, \(\dfrac{x}{5} = 8 \Rightarrow x = 40\) (tmđk)

       \(\dfrac{y}{3} = 8 \Rightarrow y = 24\) (tmđk)

      Chu vi của hình chữ nhật là: \(2\left( {x + y} \right) = 2\left( {40 + 24} \right) = 128\) (cm)

      Bài 3.

      a) Ta có P(x) – Q(x) = (x3 – 2x2 + x – 2) – (2x3 – 4x2 + 3x – 6)

      = x3 – 2x2 + x – 2 – 2x3 + 4x2 – 3x + 6

      = (x3 – 2x3) + (4x2 – 2x2) + (x – 3x) + (6 – 2)

      = – x3 + 2x2 – 2x +4.

      Vậy P(x) – Q(x) = – x3+ 2x2 – 2x +4.

      b) Thay x = 2 vào đa thức P(x), ta có:

      P(2) = 23 – 2 . 22 + 2 – 2 = 8 – 2 . 4 + 0 = 8 – 8 = 0;

      Thay x = 2 vào đa thức Q(x), ta có:

      Q(2) = 2 . 23 – 4 . 22 + 3 . 2 – 6 = 2 . 8 – 4 . 4 + 6 – 6

      = 16 – 16 + 0 = 0.

      Vậy x = 2 là nghiệm của cả hai đa thức P(x) và Q(x).

      Bài 4.

      Phương pháp:

      a) Ta sẽ chứng minh: \(\Delta AMB = \Delta DMC\left( {c.g.c} \right)\)

      b) Ta sẽ chứng minh: \(\angle EIC = {90^0}\), từ đó chứng minh được \(\Delta ACE = \Delta ICE\)(cạnh huyền – cạnh góc vuông)

      \( \Rightarrow \angle ACE = \angle ICE\) (hai góc tương ứng)

      \( \Rightarrow \Delta ACE\) vuông cân tại \(A\left( {\angle EAC = {{90}^0}} \right)\)

      Cách giải:

      Đề thi giữa kì 2 Toán 7 - Đề số 2 - Kết nối tri thức 1 3

      a) \(\Delta ABC\) vuông tại \(A,AM\) là đường trung tuyến\( \Rightarrow CM = BM\)

      Ta có: \(\angle CMD = \angle AMB\) (hai góc đối đỉnh)

      Xét \(\Delta AMB\) và \(\Delta DMC\) có:

      \(\left. \begin{array}{l}CM = BM\left( {cmt} \right)\\\angle CMD = \angle AMB\left( {cmt} \right)\\AM = MD\left( {gt} \right)\end{array} \right\} \Rightarrow \Delta AMB = \Delta DMC\left( {c.g.c} \right)\)

      b) Ta có: \(\Delta AMB = \Delta DMC\left( {cmt} \right) \Rightarrow \angle ABM = \angle DCM\) (hai góc tương ứng)

      Mà hai góc \(\angle ABM;\angle DCM\) ở vị trí so le trong

      \( \Rightarrow AB//CD\)

      Mà \(AB \bot AC(\Delta ABC\) vuông tại \(A)\)

      \( \Rightarrow CD \bot AC\) tại \(C \Rightarrow EI \bot CD\) tại \(I\) (vì \(EI//AC\)) hay \(\angle EIC = {90^0}\)

      Xét \(\Delta ACE\) và \(\Delta ICE\) có:

      \(\left. \begin{array}{l}\angle EAC = \angle EIC = {90^0}\\CE\,\,chung\\AC = IC\left( {gt} \right)\end{array} \right\} \Rightarrow \Delta ACE = \Delta ICE\) (cạnh huyền – cạnh góc vuông)

      \( \Rightarrow \angle ACE = \angle ICE\) (hai góc tương ứng)

      Mà \(\angle ICE = \angle AEC\) (vì \(AB//CD\))

      \( \Rightarrow \angle ACE = \angle AEC\)

      \( \Rightarrow \Delta ACE\) vuông cân tại \(A\left( {\angle EAC = {{90}^0}} \right)\)

      Bài 5.

      Phương pháp:

      Xét với \(x = - 1\), ta tìm được mối liên hệ của \(f\left( { - 1} \right)\) và \(f\left( 1 \right)\)

      Xét với \(x = 1\), ta tìm được \(f\left( 1 \right)\).

      Cách giải:

      + Với \(x = - 1\), ta có: \(f\left( { - 1} \right) + \left( { - 1} \right).f\left( 1 \right) = - 1 + 1\)

      \(\begin{array}{l} \Rightarrow f\left( { - 1} \right) - f\left( 1 \right) = 0\\ \Rightarrow f\left( { - 1} \right) = f\left( 1 \right)\end{array}\)

      + Với \(x = 1\), ta có: \(f\left( 1 \right) + 1.f\left( { - 1} \right) = 1 + 1\)

      \( \Rightarrow f\left( 1 \right) + f\left( { - 1} \right) = 2\)

      Suy ra, \(f\left( 1 \right) + f\left( 1 \right) = 2\)

      \(\begin{array}{l} \Rightarrow 2f\left( 1 \right) = 2\\ \Rightarrow f\left( 1 \right) = 1\end{array}\)

      Vậy \(f\left( 1 \right) = 1\)

      Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Đề thi giữa kì 2 Toán 7 - Đề số 2 - Kết nối tri thức tại chuyên mục giải sgk toán 7 trên tài liệu toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

      Đề thi giữa kì 2 Toán 7 - Đề số 2 - Kết nối tri thức: Phân tích chi tiết và hướng dẫn giải

      Đề thi giữa kì 2 Toán 7 - Đề số 2 - Kết nối tri thức là một bài kiểm tra quan trọng giúp đánh giá mức độ nắm vững kiến thức của học sinh sau nửa học kỳ. Đề thi này bao gồm các chủ đề chính như biểu thức đại số, phương trình bậc nhất một ẩn, bất đẳng thức, và các ứng dụng thực tế của đại số.

      Cấu trúc đề thi

      Đề thi thường được chia thành hai phần chính: trắc nghiệm và tự luận. Phần trắc nghiệm thường chiếm khoảng 30-40% tổng số điểm, tập trung vào việc kiểm tra khả năng hiểu và vận dụng các khái niệm cơ bản. Phần tự luận chiếm khoảng 60-70% tổng số điểm, yêu cầu học sinh trình bày chi tiết các bước giải và giải thích logic.

      Nội dung đề thi

      Các dạng bài tập thường xuất hiện trong đề thi giữa kì 2 Toán 7 - Đề số 2 - Kết nối tri thức bao gồm:

      • Bài tập về biểu thức đại số: Tính giá trị của biểu thức, thu gọn biểu thức, phân tích đa thức thành nhân tử.
      • Bài tập về phương trình bậc nhất một ẩn: Giải phương trình, tìm nghiệm của phương trình, ứng dụng phương trình để giải bài toán thực tế.
      • Bài tập về bất đẳng thức: Giải bất đẳng thức, tìm tập nghiệm của bất đẳng thức, so sánh các số thực.
      • Bài tập về ứng dụng thực tế: Giải các bài toán liên quan đến các tình huống thực tế, ví dụ như tính toán diện tích, chu vi, vận tốc, thời gian.

      Hướng dẫn giải một số dạng bài tập điển hình

      Dạng 1: Giải phương trình bậc nhất một ẩn

      Để giải phương trình bậc nhất một ẩn, ta thực hiện các bước sau:

      1. Bước 1: Biến đổi phương trình về dạng ax + b = 0.
      2. Bước 2: Giải phương trình bằng cách chia cả hai vế cho a (với a ≠ 0).
      3. Bước 3: Kiểm tra lại nghiệm vừa tìm được bằng cách thay vào phương trình ban đầu.

      Ví dụ: Giải phương trình 2x + 3 = 7

      Giải:

      2x + 3 = 7

      2x = 7 - 3

      2x = 4

      x = 4 / 2

      x = 2

      Dạng 2: Tính giá trị của biểu thức đại số

      Để tính giá trị của biểu thức đại số, ta thực hiện các bước sau:

      1. Bước 1: Thay các giá trị của biến vào biểu thức.
      2. Bước 2: Thực hiện các phép toán theo thứ tự ưu tiên (ngoặc, lũy thừa, nhân chia, cộng trừ).

      Ví dụ: Tính giá trị của biểu thức 3x2 + 2x - 1 khi x = -1

      Giải:

      3x2 + 2x - 1 = 3(-1)2 + 2(-1) - 1

      = 3(1) - 2 - 1

      = 3 - 2 - 1

      = 0

      Lời khuyên khi làm bài thi

      • Đọc kỹ đề bài trước khi làm.
      • Lập kế hoạch giải bài và phân bổ thời gian hợp lý.
      • Trình bày bài giải rõ ràng, mạch lạc.
      • Kiểm tra lại bài làm trước khi nộp.

      Tài liệu ôn tập hữu ích

      Để chuẩn bị tốt nhất cho kỳ thi giữa kì 2 Toán 7 - Đề số 2 - Kết nối tri thức, học sinh nên tham khảo các tài liệu sau:

      • Sách giáo khoa Toán 7 - Kết nối tri thức.
      • Sách bài tập Toán 7 - Kết nối tri thức.
      • Các đề thi thử giữa kì 2 Toán 7 - Kết nối tri thức.
      • Các video bài giảng Toán 7 trên giaitoan.edu.vn.

      Giaitoan.edu.vn hy vọng rằng đề thi này và những hướng dẫn trên sẽ giúp các em học sinh ôn tập và đạt kết quả tốt nhất trong kỳ thi sắp tới.

      Tài liệu, đề thi và đáp án Toán 7