Logo Header
  1. Môn Toán
  2. Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức

Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức

Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức

Chào mừng các em học sinh lớp 7 đến với đề thi học kì 1 môn Toán - Đề số 13, chương trình Kết nối tri thức. Đề thi này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong học kì 1.

Giaitoan.edu.vn cung cấp đề thi chính thức, đáp án chi tiết và lời giải bài tập để các em có thể tự học và nâng cao kỹ năng giải toán.

Đề bài

    I. Trắc nghiệm
    Câu 1 :

    Căn bậc hai số học của 36 là:

    • A.
      \(\sqrt 6 \).
    • B.
      6.
    • C.
      – 6.
    • D.
      –\(\sqrt 6 \).
    Câu 2 :

    Khẳng định nào sau đây đúng?

    • A.
      \( - 1,(3)\, \notin \,\,\mathbb{R}\).
    • B.
      \(3,5\, \in \,\,{\rm{I}}\).
    • C.
      \(\pi \, \in \,\,\mathbb{R}\).
    • D.
      \(\sqrt {11} \, \notin \,\,{\rm{I}}\).
    Câu 3 :

    Cho \(\left| x \right|\) = 9 thì giá trị của x là:

    • A.
      x = 9 hoặc x = –9.
    • B.
      x = 3.
    • C.
      x = 3 hoặc x = – 3.
    • D.
      x = –9.
    Câu 4 :

    Cho đoạn thẳng \(AB\) có độ dài \(6\)cm, đường trung trực của đoạn thẳng \(AB\) cắt \(AB\) tại \(I\), kết luận nào sau đây là đúng?

    • A.
      \(IA = IB = 6{\rm{ cm}}\).
    • B.
      \(IA = IB = 2{\rm{ cm}}\).
    • C.
      \(IA = IB = 3{\rm{ cm}}\).
    • D.
      \(IA = \frac{1}{2}IB\).
    Câu 5 :

    Cho hình vẽ sau có \(\widehat {CBA} = 50^\circ \). Số đo \(\widehat D\) bằng

    Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 0 1

    • A.
      \(40^\circ \).
    • B.
      \(45^\circ \).
    • C.
      \(32,5^\circ \).
    • D.
      \(35^\circ \).
    Câu 6 :

    Hãy điền vào chỗ “….” để được khẳng định đúng: Qua một điểm M nằm ngoài đường thẳng a …............. đường thẳng song song với đường thẳng a.

    • A.
      chỉ có một.
    • B.
      có vô số.
    • C.
      không có.
    • D.
      có hai.
    Câu 7 :

    Cho góc nhọn \(\widehat {xOy}\)có tia phân giác \(Ot\), trên tia \(Ot\) lấy điểm \(H\), từ \(H\) kẻ đường vuông góc với tia \(Ox\) tại \(A\), đường vuông góc với tia \(Oy\) tại \(B\). Nhận xét nào sau đây sai

    • A.
      \(\widehat {AOH} = \widehat {BOH}\).
    • B.
      \(\Delta OHA = \Delta OBH\).
    • C.
      \(HA = HB\).
    • D.
      \(\Delta HAO = \Delta HBO\).
    Câu 8 :

    Biểu đồ hình quạt tròn ở hình bên biểu diễn kết quả thống kê (tính theo tỉ số phần trăm) chọn môn thể thao ưa thích nhất trong bốn môn: Bóng đá, Cầu lông, Bóng bàn, Bóng chuyền của học sinh khối 7 ở trường A. Mỗi học sinh chỉ được chọn một môn thể thao khi được hỏi ý kiến. Hỏi số học sinh chọn môn Bóng đá và Cầu lông.

    Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 0 2

    • A.
      40%.
    • B.
      65%.
    • C.
      55%.
    • D.
      45%.
    Câu 9 :

    Trong các số sau, số nào biểu diễn số thập phân vô hạn tuần hoàn?

    • A.
      \(\frac{1}{{10}}\).
    • B.
      \(\frac{2}{5}\).
    • C.
      \(\frac{7}{6}\).
    • D.
      \(\sqrt {13} \).
    Câu 10 :

    Quan sát hình vẽ bên dưới, tia phân giác của góc xOy là:

    Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 0 3

    • A.
      Ox.
    • B.
      Oy.
    • C.
      Ot.
    • D.
      không có.
    Câu 11 :

    Cho hình vẽ bên, biết a // b. Số đo là bao nhiêu?

    Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 0 4

    • A.
      600.
    • B.
      650.
    • C.
      1150.
    • D.
      1000.
    Câu 12 :

    Hình vẽ nào sau đây không có hai đường thẳng song song?

    Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 0 5

    • A.
      Hình 1.
    • B.
      Hình 2.
    • C.
      Hình 3.
    • D.
      Hình 4.
    II. Tự luận
    Câu 1 :

    a) Tính: \(\frac{7}{{10}} \cdot \frac{{15}}{{19}} + \frac{7}{{10}} \cdot \frac{4}{{19}}\).

    b) Tìm x, biết: \(0,8 - \left( {{\rm{x + }}\frac{3}{5}} \right) = \frac{1}{2}\).

    Câu 2 :

    Viết giả thiết, kết luận của định lí: “Nếu hai đường thẳng a và b phân biệt cùng vuông góc với một đường thẳng c thì a và b song song với nhau”.

    Câu 3 :

    Tính các căn bậc hai số học của các số sau (kết quả làm tròn đến hàng phần trăm)

    a) \(\sqrt {31} \)

    b) \(\sqrt {123} \)

    c) \( - 200\sqrt 5 \)

    Câu 4 :

    Quan sát hình vẽ sau.

    Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 0 6

    Giải thích vì sao BC song song với EF?

    Câu 5 :

    Cho \(\Delta ABC\)vuông ở \(C\), có \(\widehat A = {60^o}\), tia phân giác của góc \(BAC\) cắt \(BC\) ở \(E\), kẻ \(EK\) vuông góc với \(AB\) (\(K\) thuộc \(AB\)), kẻ \(BD\) vuông góc với \(AE\) (\(D\) thuộc \(AE\))

    Chứng minh:

    a) \(AK{\rm{ }} = {\rm{ }}KB\);

    b) \(AD{\rm{ }} = {\rm{ }}BC\)

    Câu 6 :

    Số học sinh yêu thích các môn thể thao: đá bóng, đá cầu, cầu lông, bơi và môn thể thao khác của một trường THCS được biểu diễn qua biểu đồ hình quạt tròn dưới đây. Tính số phần trăm học sinh yêu thích môn thể thao khác?

    Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 0 7

    Câu 7 :

    Tính đến ngày 01/04/2019 Việt Nam là quốc gia đông dân thứ ba trong khu vực Đông Nam Á. Tổng số dân của Việt Nam là 96 208 984 người, trong đó dân số nam là 47 881 061 người và dân số nữ là 48 327 923 người. Hãy làm tròn các số liệu về dân số nam và dân số nữ nêu trên đến hàng nghìn.

    Câu 8 :

    Kết quả tìm hiểu về mức độ yêu thích đối với việc đọc sách trong thư viện của các bạn nam lớp 7C tại một trường Trung học cơ sở được cho bởi bảng thống kê sau:

    Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 0 8

    a) Hãy phân loại các dữ liệu trong bảng thống kê trên dựa vào tiêu chí định tính và định lượng.

    b) Biết lớp 7C có 50 học sinh. Hỏi dữ liệu trên có đại diện được cho mức độ yêu thích đối với việc đọc sách trong thư viện của các bạn học sinh lớp 7C hay không? Vì sao?

    Câu 9 :

    Một người luyện tập chạy bộ từ nhà đến một công viên ở cách đó 874,8 m đường bộ với tốc độ là 97,2 (m/phút). Khi đến công viên, người này đã ở đây trong 10 phút để chơi cầu lông cùng nhóm bạn. Sau đó người này đã chạy bộ theo đường cũ từ công viên về nhà và dừng lại tại một quán cà phê cách nhà 360 m đường bộ. Biết rằng tổng thời gian từ lúc bắt đầu chạy bộ từ nhà cho đến khi dừng ở quán cà phê là 34,6 phút và quán này nằm trên đoạn đường từ nhà đến công viên. Hỏi khi chạy bộ từ công viên đến quán cà phê, tốc độ của người đó là bao nhiêu? (đơn vị đo là m/phút)

    Lời giải và đáp án

      I. Trắc nghiệm
      Câu 1 :

      Căn bậc hai số học của 36 là:

      • A.
        \(\sqrt 6 \).
      • B.
        6.
      • C.
        – 6.
      • D.
        –\(\sqrt 6 \).

      Đáp án : B

      Phương pháp giải :

      Sử dụng kiến thức về căn bậc hai số học: Căn bậc hai số học của số a không âm là số x không âm sao cho \({x^2} = a\).

      Lời giải chi tiết :

      Căn bậc hai số học của 36 là \(\sqrt {36} = 6\).

      Câu 2 :

      Khẳng định nào sau đây đúng?

      • A.
        \( - 1,(3)\, \notin \,\,\mathbb{R}\).
      • B.
        \(3,5\, \in \,\,{\rm{I}}\).
      • C.
        \(\pi \, \in \,\,\mathbb{R}\).
      • D.
        \(\sqrt {11} \, \notin \,\,{\rm{I}}\).

      Đáp án : C

      Phương pháp giải :

      \(\mathbb{R}\) là tập hợp các số thực.

      \(I\) là tập hợp các số vô tỉ.

      Lời giải chi tiết :

      \( - 1,\left( 3 \right)\) là số thực nên A sai.

      \(3,5 = \frac{{35}}{{10}} = \frac{7}{2}\) là số hữu tỉ nên không phải là số vô tỉ, do đó \(3,5 \notin \,{\rm{I}}\) nên B sai.

      \(\pi = 3,14...\) là số thực, \(\pi \, \in \,\,\mathbb{R}\) nên C đúng.

      \(\sqrt {11} \) là số vô tỉ nên D sai.

      Câu 3 :

      Cho \(\left| x \right|\) = 9 thì giá trị của x là:

      • A.
        x = 9 hoặc x = –9.
      • B.
        x = 3.
      • C.
        x = 3 hoặc x = – 3.
      • D.
        x = –9.

      Đáp án : A

      Phương pháp giải :

      Dựa vào kiến thức về dấu giá trị tuyệt đối.

      Lời giải chi tiết :

      Ta có: \(\left| x \right| = 9\) thì x = 9 hoặc x = –9.

      Câu 4 :

      Cho đoạn thẳng \(AB\) có độ dài \(6\)cm, đường trung trực của đoạn thẳng \(AB\) cắt \(AB\) tại \(I\), kết luận nào sau đây là đúng?

      • A.
        \(IA = IB = 6{\rm{ cm}}\).
      • B.
        \(IA = IB = 2{\rm{ cm}}\).
      • C.
        \(IA = IB = 3{\rm{ cm}}\).
      • D.
        \(IA = \frac{1}{2}IB\).

      Đáp án : C

      Phương pháp giải :

      Dựa vào tính chất của đường trung trực của đoạn thẳng.

      Lời giải chi tiết :

      Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 1 1

      Đường trung trực của đoạn thẳng \(AB\)cắt \(AB\) tại \(I\) nên \(I\) là trung điểm của \(AB\)

      Suy ra: \(IA = IB = \frac{{AB}}{2} = \frac{6}{2} = 3{\rm{ cm}}\)

      Câu 5 :

      Cho hình vẽ sau có \(\widehat {CBA} = 50^\circ \). Số đo \(\widehat D\) bằng

      Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 1 2

      • A.
        \(40^\circ \).
      • B.
        \(45^\circ \).
      • C.
        \(32,5^\circ \).
      • D.
        \(35^\circ \).

      Đáp án : C

      Phương pháp giải :

      - Dựa vào tính chất của tam giác cân

      - Tính chất tổng 3 góc của tam giác bằng 1800.

      - Tính chất hai góc kề bù.

      Lời giải chi tiết :

      Xét tam giác ABC có AB = BC nên tam giác ABC cân tại B.

      \( \Rightarrow \widehat {BAC} = \widehat {BCA}\)

      Mà \(\widehat {CBA} = 50^\circ \) nên \(\widehat {BAC} = \widehat {BCA} = \frac{{{{180}^0} - {{50}^0}}}{2} = {65^0}\).

      \(\widehat {BAC} + \widehat {BAD} = {180^0} \Rightarrow \widehat {BAD} = {180^0} - {65^0} = {115^0}\).

      Xét tam giác ABD có AB = AD nên tam giác ABD cân tại A \( \Rightarrow \widehat {ABD} = \widehat {ADB} = \frac{{{{180}^0} - {{115}^0}}}{2} = 32,{5^0}\).

      Câu 6 :

      Hãy điền vào chỗ “….” để được khẳng định đúng: Qua một điểm M nằm ngoài đường thẳng a …............. đường thẳng song song với đường thẳng a.

      • A.
        chỉ có một.
      • B.
        có vô số.
      • C.
        không có.
      • D.
        có hai.

      Đáp án : A

      Phương pháp giải :

      Dựa vào kiến thức về các đường thẳng song song.

      Lời giải chi tiết :

      Qua một điểm M nằm ngoài đường thẳng a chỉ có một đường thẳng song song với đường thẳng a.

      Câu 7 :

      Cho góc nhọn \(\widehat {xOy}\)có tia phân giác \(Ot\), trên tia \(Ot\) lấy điểm \(H\), từ \(H\) kẻ đường vuông góc với tia \(Ox\) tại \(A\), đường vuông góc với tia \(Oy\) tại \(B\). Nhận xét nào sau đây sai

      • A.
        \(\widehat {AOH} = \widehat {BOH}\).
      • B.
        \(\Delta OHA = \Delta OBH\).
      • C.
        \(HA = HB\).
      • D.
        \(\Delta HAO = \Delta HBO\).

      Đáp án : B

      Phương pháp giải :

      Dựa vào tính chất đường phân giác và các trường hợp bằng nhau của tam giác vuông.

      Lời giải chi tiết :

      Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 1 3

      Vì \(Ot\) là tia phân giác của góc nhọn \(\widehat {xOy}\) nên \(\widehat {AOH} = \widehat {BOH}\), do vậy A đúng

      Vì \(\Delta HAO = \Delta HBO\)(cạnh huyền – góc nhọn) nên D đúng. Đồng thời suy ra \(HA = HB\) nên C cũng đúng.

      Chỉ có B sai.

      Câu 8 :

      Biểu đồ hình quạt tròn ở hình bên biểu diễn kết quả thống kê (tính theo tỉ số phần trăm) chọn môn thể thao ưa thích nhất trong bốn môn: Bóng đá, Cầu lông, Bóng bàn, Bóng chuyền của học sinh khối 7 ở trường A. Mỗi học sinh chỉ được chọn một môn thể thao khi được hỏi ý kiến. Hỏi số học sinh chọn môn Bóng đá và Cầu lông.

      Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 1 4

      • A.
        40%.
      • B.
        65%.
      • C.
        55%.
      • D.
        45%.

      Đáp án : B

      Phương pháp giải :

      Quan sát biểu đồ để xác định số phần trăm học sinh chọn môn Bóng đá và Cầu lông.

      Lời giải chi tiết :

      Số học sinh chọn môn Bóng đá chiếm 40%, số học sinh chọn môn Cầu lông chiếm 25% nên tổng số học sinh chọn môn Bóng đá và Cầu lông chiếm: 40% + 25% = 65% tổng số học sinh.

      Câu 9 :

      Trong các số sau, số nào biểu diễn số thập phân vô hạn tuần hoàn?

      • A.
        \(\frac{1}{{10}}\).
      • B.
        \(\frac{2}{5}\).
      • C.
        \(\frac{7}{6}\).
      • D.
        \(\sqrt {13} \).

      Đáp án : C

      Phương pháp giải :

      Các phân số tối giản với mẫu số dương mà mẫu có ước nguyên tố khác 2 và 5 đều viết được dưới dạng số thập phân vô hạn tuần hoàn.

      Lời giải chi tiết :

      \(\frac{1}{{10}}\) và \(\frac{2}{5}\) có mẫu chỉ có ước nguyên tố là 2 và 5 nên không biểu diễn số thập phân vô hạn tuần hoàn.

      \(\frac{7}{6}\) mẫu số có ước là 2 và 3 nên biểu diễn số thập phân vô hạn tuần hoàn.

      \(\sqrt {13} \) không viết được dưới dạng phân số nên không phải số thập phân vô hạn tuần hoàn.

      Câu 10 :

      Quan sát hình vẽ bên dưới, tia phân giác của góc xOy là:

      Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 1 5

      • A.
        Ox.
      • B.
        Oy.
      • C.
        Ot.
      • D.
        không có.

      Đáp án : C

      Phương pháp giải :

      Dựa vào tính chất tia phân giác của một góc: \(Ot\) là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOt} = \widehat {tOy} = \frac{1}{2}\widehat {xOy}\).

      Lời giải chi tiết :

      Vì \(\widehat {xOt} = \widehat {tOy}\) và Ot nằm trong góc xOy nên Ot là tia phân giác của góc xOy.

      Câu 11 :

      Cho hình vẽ bên, biết a // b. Số đo là bao nhiêu?

      Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 1 6

      • A.
        600.
      • B.
        650.
      • C.
        1150.
      • D.
        1000.

      Đáp án : B

      Phương pháp giải :

      Dựa vào tính chất của hai đường thẳng song song: Hai đường thẳng song song với nhau thì hai góc so le trong bằng nhau.

      Lời giải chi tiết :

      Vì a // b nên \(\widehat {{N_1}} = \widehat {NMa} = {65^0}\) (2 góc so le trong).

      Câu 12 :

      Hình vẽ nào sau đây không có hai đường thẳng song song?

      Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 1 7

      • A.
        Hình 1.
      • B.
        Hình 2.
      • C.
        Hình 3.
      • D.
        Hình 4.

      Đáp án : B

      Phương pháp giải :

      Dựa vào dấu hiệu nhận biết hai đường thẳng song song.

      Lời giải chi tiết :

      Hình 1 có hai góc so le trong bằng nhau (= 450) nên hình 1 có hai đường thẳng song song.

      Hình 2 hai góc so le trong không bằng nhau nên hình 2 không có hai đường thẳng song song.

      Hình 3 có hai góc đồng vị bằng nhau (= 600) nên hình 3 có hai đường thẳng song song.

      Hình 4 có hai góc đồng vị bằng nhau (= 900) nên hình 4 có hai đường thẳng song song.

      II. Tự luận
      Câu 1 :

      a) Tính: \(\frac{7}{{10}} \cdot \frac{{15}}{{19}} + \frac{7}{{10}} \cdot \frac{4}{{19}}\).

      b) Tìm x, biết: \(0,8 - \left( {{\rm{x + }}\frac{3}{5}} \right) = \frac{1}{2}\).

      Phương pháp giải :

      a) Nhóm nhân tử chung để tính.

      b) Sử dụng quy tắc chuyển vế để tìm x.

      Lời giải chi tiết :

      a) \(\frac{7}{{10}} \cdot \frac{{15}}{{19}} + \frac{7}{{10}} \cdot \frac{4}{{19}}\)

      \(\begin{array}{l} = \frac{7}{{10}}\left( {\frac{{15}}{{19}} + \frac{4}{{19}}} \right)\\ = \frac{7}{{10}}.1\\ = \frac{7}{{10}}\end{array}\)

      b) \(0,8 - \left( {{\rm{x + }}\frac{3}{5}} \right) = \frac{1}{2}\)

      \(\begin{array}{l}\frac{4}{5} - \left( {{\rm{x + }}\frac{3}{5}} \right) = \frac{1}{2}\\x + \frac{3}{5} = \frac{4}{5} - \frac{1}{2}\\x + \frac{3}{5} = \frac{3}{{10}}\\x = \frac{3}{{10}} - \frac{3}{5}\\x = \frac{{ - 3}}{{10}}\end{array}\)

      Vậy \(x = \frac{{ - 3}}{{10}}\).

      Câu 2 :

      Viết giả thiết, kết luận của định lí: “Nếu hai đường thẳng a và b phân biệt cùng vuông góc với một đường thẳng c thì a và b song song với nhau”.

      Phương pháp giải :

      Khi giả thiết được phát biểu dưới dạng: “Nếu … thì”, phần giữa từ “nếu” và từ “thì” là giả thiết của định lí, phần sau từ “thì” là kết luận của định lí.

      Lời giải chi tiết :

      - Giả thiết: hai đường thẳng a và b phân biệt cùng vuông góc với một đường thẳng c

      - Kết luận: a và b song song với nhau.

      Câu 3 :

      Tính các căn bậc hai số học của các số sau (kết quả làm tròn đến hàng phần trăm)

      a) \(\sqrt {31} \)

      b) \(\sqrt {123} \)

      c) \( - 200\sqrt 5 \)

      Phương pháp giải :

      Sử dụng kiến thức về căn bậc hai số học: Căn bậc hai số học của số a không âm là số x không âm sao cho \({x^2} = a\).

      Lời giải chi tiết :

      a) \(\sqrt {31} = 5,567764363... \approx 5,57\).

      b) \(\sqrt {123} = 11,09053651... \approx 11,09\).

      c) \( - 200\sqrt 5 = - 447,2135955... \approx - 447,21\).

      Câu 4 :

      Quan sát hình vẽ sau.

      Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 1 8

      Giải thích vì sao BC song song với EF?

      Phương pháp giải :

      Dựa vào dấu hiệu nhận biết hai đường thẳng song song.

      Lời giải chi tiết :

      Ta có : \(\widehat {AEF} = \widehat {ABC} = {48^0}\) Mà hai góc này ở vị trí đồng vị \( \Rightarrow \) BC // EF.

      Câu 5 :

      Cho \(\Delta ABC\)vuông ở \(C\), có \(\widehat A = {60^o}\), tia phân giác của góc \(BAC\) cắt \(BC\) ở \(E\), kẻ \(EK\) vuông góc với \(AB\) (\(K\) thuộc \(AB\)), kẻ \(BD\) vuông góc với \(AE\) (\(D\) thuộc \(AE\))

      Chứng minh:

      a) \(AK{\rm{ }} = {\rm{ }}KB\);

      b) \(AD{\rm{ }} = {\rm{ }}BC\)

      Phương pháp giải :

      Sử dụng tính chất tam giác cân và dấu hiệu nhận biết hai tam giác bằng nhau suy ra các cạnh tương ứng bằng nhau.

      Lời giải chi tiết :

      Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 1 9

      a) Ta có:

      \(\widehat {EAB} = \frac{1}{2}\widehat {.BAC} = \frac{1}{2}{.60^{\rm{o}}} = {30^{\rm{o}}}\)(\(AE\) là phân giác của góc \(BAC\))

      \(\widehat {ABC} = {90^{\rm{o}}} - \widehat {BAC} = {90^{\rm{o}}} - {60^{\rm{o}}} = {30^o}\)(Vì \(\Delta ABC\) vuông tại \(C\))

      Suy ra \(\widehat {EAB} = \widehat {ABC}\)

      \( \Rightarrow \Delta EAB\) cân tại \(E\)

      Vậy \(EA{\rm{ }} = {\rm{ }}EB\)

      * Xét \(\;\Delta EAK\)và \(\Delta EBK\)có:

      \(\widehat {EKA} = \widehat {EKB} = {90^o}\)

      \(EA{\rm{ }} = {\rm{ }}EB\) (chứng minh trên)

      \(\widehat {EAB} = \widehat {ABC} = {30^o}\)

      Suy ra \(\Delta EAK = \Delta EBK\)(cạnh huyền – góc nhọn)

      Vậy \(KA = KB\;\)(2 cạnh tương ứng)

      b) Xét \(\Delta CAB\) và \(\Delta DBA\)có:

      \(\widehat {ACB} = \widehat {BDA} = {90^o}\)

      \(AB\) chung

      \(\widehat {ABC} = \widehat {BAD} = {30^o}\)

      Suy ra \(\Delta CAB = \Delta DBA\)(cạnh huyền – góc nhọn)

      Vậy\(BC = AD\) (2 cạnh tương ứng)

      Câu 6 :

      Số học sinh yêu thích các môn thể thao: đá bóng, đá cầu, cầu lông, bơi và môn thể thao khác của một trường THCS được biểu diễn qua biểu đồ hình quạt tròn dưới đây. Tính số phần trăm học sinh yêu thích môn thể thao khác?

      Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 1 10

      Phương pháp giải :

      Vì tổng số phần trăm học sinh là 100% nên số phần trăm học sinh yêu thích môn thể thao khác bằng 100% - số phần trăm học sinh thích các môn thể thao còn lại (đá bóng, đá cầu, cầu lông, bơi).

      Lời giải chi tiết :

      Số phần trăm học sinh yêu thích các môn thể thao khác là:

      100% – (20% + 15% + 30% + 25%) = 10% (số học sinh trường)

      Câu 7 :

      Tính đến ngày 01/04/2019 Việt Nam là quốc gia đông dân thứ ba trong khu vực Đông Nam Á. Tổng số dân của Việt Nam là 96 208 984 người, trong đó dân số nam là 47 881 061 người và dân số nữ là 48 327 923 người. Hãy làm tròn các số liệu về dân số nam và dân số nữ nêu trên đến hàng nghìn.

      Phương pháp giải :

      Sử dụng cách làm tròn số.

      Lời giải chi tiết :

      - Dân số nam: 47 881 061 $\approx $ 47 881 000 người.

      - Dân số nữ: 48 327 923 $\approx $ 48 328 000 người.

      Câu 8 :

      Kết quả tìm hiểu về mức độ yêu thích đối với việc đọc sách trong thư viện của các bạn nam lớp 7C tại một trường Trung học cơ sở được cho bởi bảng thống kê sau:

      Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức 1 11

      a) Hãy phân loại các dữ liệu trong bảng thống kê trên dựa vào tiêu chí định tính và định lượng.

      b) Biết lớp 7C có 50 học sinh. Hỏi dữ liệu trên có đại diện được cho mức độ yêu thích đối với việc đọc sách trong thư viện của các bạn học sinh lớp 7C hay không? Vì sao?

      Phương pháp giải :

      a) Dữ liệu định tính là dữ liệu không phải là số.

      Dữ liệu định lượng là dữ liệu số.

      b) Nếu tổng số bạn nam tham gia khảo sát bằng số học sinh lớp 7C thì dữ liệu trên đại diện được mức độ yêu thích đối với việc đọc sách trong thư viện của các bạn học sinh lớp 7C.

      Lời giải chi tiết :

      a)

      - Dữ liệu định tính là: sở thích (không thích, thích, rất thích, không quan tâm)

      - Dữ liệu định lượng là: số bạn nam (5; 7; 6; 4)

      b) Số bạn nam tham gia khảo sát là: 5 + 7 + 6 + 4 = 22 (học sinh). Vì số học sinh lớp 7C là 50 học sinh nên dữ liệu trên chưa có đại diện được cho mức độ yêu thích đối với việc đọc sách trong thư viện của các bạn học sinh lớp 7C vì đối tượng khảo sát còn thiếu các bạn nữ.

      Câu 9 :

      Một người luyện tập chạy bộ từ nhà đến một công viên ở cách đó 874,8 m đường bộ với tốc độ là 97,2 (m/phút). Khi đến công viên, người này đã ở đây trong 10 phút để chơi cầu lông cùng nhóm bạn. Sau đó người này đã chạy bộ theo đường cũ từ công viên về nhà và dừng lại tại một quán cà phê cách nhà 360 m đường bộ. Biết rằng tổng thời gian từ lúc bắt đầu chạy bộ từ nhà cho đến khi dừng ở quán cà phê là 34,6 phút và quán này nằm trên đoạn đường từ nhà đến công viên. Hỏi khi chạy bộ từ công viên đến quán cà phê, tốc độ của người đó là bao nhiêu? (đơn vị đo là m/phút)

      Phương pháp giải :

      - Tính thời gian người đó chạy bộ từ nhà đến công viên.

      - Thời gian chạy bộ từ công viên đến quán cà phê.

      - Tính tốc độ của người đó từ công viên đến quán cà phê.

      Lời giải chi tiết :

      Thời gian người đó chạy từ nhà đến công viên là: 874,8: 97,2 = 9 (phút)

      Thời gian người đó chạy từ công viên đến quán cà phê là: 34,6 – (9 + 10) = 15,6 (phút)

      Quãng đường người đó chạy bộ từ công viên đến quán cà phê là: 874,8 – 360 = 514,8 (m)

      Tốc độ chạy bộ của người đó từ công viên đến quán cà phê là: 514,8 : 15,6 = 33 (m/phút)

      Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức tại chuyên mục toán bài tập lớp 7 trên soạn toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

      Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức: Tổng quan và Hướng dẫn Giải Chi Tiết

      Đề thi học kì 1 Toán 7 - Đề số 13 chương trình Kết nối tri thức là một bài kiểm tra quan trọng, đánh giá mức độ nắm vững kiến thức và kỹ năng giải toán của học sinh sau nửa học kỳ đầu tiên. Đề thi bao gồm các dạng bài tập khác nhau, tập trung vào các chủ đề chính như số hữu tỉ, số thực, biểu thức đại số, phương trình bậc nhất một ẩn, bất đẳng thức và các ứng dụng thực tế.

      Cấu trúc Đề thi

      Đề thi thường được chia thành các phần sau:

      • Phần trắc nghiệm: Kiểm tra khả năng hiểu và vận dụng kiến thức cơ bản.
      • Phần tự luận: Yêu cầu học sinh trình bày lời giải chi tiết, thể hiện khả năng phân tích và giải quyết vấn đề.

      Nội dung chi tiết các dạng bài tập thường gặp

      1. Số hữu tỉ và Số thực

      Các bài tập về số hữu tỉ và số thực thường yêu cầu học sinh:

      • Biểu diễn số hữu tỉ và số thực trên trục số.
      • So sánh và sắp xếp các số hữu tỉ và số thực.
      • Thực hiện các phép toán cộng, trừ, nhân, chia trên số hữu tỉ và số thực.

      2. Biểu thức đại số

      Các bài tập về biểu thức đại số thường yêu cầu học sinh:

      • Thu gọn biểu thức đại số.
      • Tính giá trị của biểu thức đại số tại một giá trị cụ thể của biến.
      • Phân tích đa thức thành nhân tử.

      3. Phương trình bậc nhất một ẩn

      Các bài tập về phương trình bậc nhất một ẩn thường yêu cầu học sinh:

      • Giải phương trình bậc nhất một ẩn.
      • Áp dụng phương trình bậc nhất một ẩn để giải quyết các bài toán thực tế.

      4. Bất đẳng thức

      Các bài tập về bất đẳng thức thường yêu cầu học sinh:

      • Giải bất đẳng thức bậc nhất một ẩn.
      • Biểu diễn tập nghiệm của bất đẳng thức trên trục số.

      Hướng dẫn giải một số bài tập tiêu biểu

      Ví dụ 1: Giải phương trình 2x + 3 = 7

      Lời giải:

      1. Chuyển 3 sang vế phải: 2x = 7 - 3
      2. Rút gọn: 2x = 4
      3. Chia cả hai vế cho 2: x = 2

      Kết luận: Phương trình có nghiệm x = 2

      Ví dụ 2: Tìm tập nghiệm của bất đẳng thức 3x - 1 > 5

      Lời giải:

      1. Chuyển -1 sang vế phải: 3x > 5 + 1
      2. Rút gọn: 3x > 6
      3. Chia cả hai vế cho 3: x > 2

      Kết luận: Tập nghiệm của bất đẳng thức là x > 2

      Lưu ý khi làm bài thi

      • Đọc kỹ đề bài trước khi làm.
      • Viết rõ ràng, mạch lạc.
      • Kiểm tra lại bài làm sau khi hoàn thành.
      • Sử dụng máy tính bỏ túi khi cần thiết.

      Tài liệu ôn tập hữu ích

      Để chuẩn bị tốt nhất cho kỳ thi học kì 1, các em có thể tham khảo các tài liệu sau:

      • Sách giáo khoa Toán 7 - Kết nối tri thức
      • Sách bài tập Toán 7 - Kết nối tri thức
      • Các đề thi thử học kì 1 Toán 7
      • Các video bài giảng online về Toán 7

      Kết luận

      Đề thi học kì 1 Toán 7 - Đề số 13 - Kết nối tri thức là cơ hội để các em thể hiện những kiến thức và kỹ năng đã học. Hãy ôn tập kỹ lưỡng và tự tin làm bài để đạt kết quả tốt nhất. Chúc các em thành công!

      Tài liệu, đề thi và đáp án Toán 7