Logo Header
  1. Môn Toán
  2. Đề thi học kì 2 Toán 7 - Đề số 12 - Kết nối tri thức

Đề thi học kì 2 Toán 7 - Đề số 12 - Kết nối tri thức

Đề thi học kì 2 Toán 7 - Đề số 12 - Kết nối tri thức

Chào mừng các em học sinh lớp 7 đến với đề thi học kì 2 môn Toán - Đề số 12, chương trình Kết nối tri thức.

Đề thi này được thiết kế để giúp các em ôn tập và đánh giá kiến thức đã học trong học kì 2, chuẩn bị tốt nhất cho kỳ thi sắp tới.

Đề bài

    I. Trắc nghiệm
    Câu 1 :

    Trong các phát biểu sau, phát biểu nào đúng?

    • A.
      \(\frac{1}{2} = \frac{{ - 2}}{4}\).
    • B.
      \(\frac{1}{2} = \frac{5}{{10}}\).
    • C.
      \(\frac{1}{2} = \frac{3}{4}\).
    • D.
      \(\frac{1}{2} = \frac{{ - 2}}{{ - 6}}\).
    Câu 2 :

    Giá trị x thoả mãn tỉ lệ thức: \(\frac{6}{x} = \frac{{ - 10}}{5}\)

    • A.
      \( - 30.\)
    • B.
      \( - 3.\)
    • C.
      \(3 \cdot \)
    • D.
      \(30.\)
    Câu 3 :

    Trong các công thức sau, công thức nào phát biểu: “Đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ 2”?

    • A.
      \(y = 2x.\)
    • B.
      \(y = \frac{2}{x}.\)
    • C.
      \(y = x + 2.\)
    • D.
      \(y = {x^2}.\)
    Câu 4 :

    Biểu thức đại số biểu diễn công thức tính diện tích hình thang có 2 đáy độ dài a, b; chiều cao h ( a, b, h có cùng đơn vị đo độ dài)

    • A.
      \(ab.\)
    • B.
      \(ah.\)
    • C.
      \((a + b)h.\)
    • D.
      \(\frac{{(a + b)h}}{2}.\)
    Câu 5 :

    Hệ số tự do của đa thức \( - {x^7} + 5{x^5} - 12x - 22\) là

    • A.
      \( - 22.\)
    • B.
      \( - 1.\)
    • C.
      \(5.\)
    • D.
      \(22.\)
    Câu 6 :

    Giá trị của đa thức \(g\left( x \right) = {x^8}{\rm{ + }}{x^4} + {x^2} + 1\) tại \(x = - 1\)bằng

    • A.
      \( - 4.\)
    • B.
      \( - 3.\)
    • C.
      \(3.\)
    • D.
      \(4.\)
    Câu 7 :

    Trong các biến cố sau, biến cố nào là biến cố ngẫu nhiên?

    • A.
      Trong điều kiện thường nước sôi ở \({100^o}C.\)
    • B.
      Tháng tư có 30 ngày.
    • C.
      Gieo một con xúc xắc 1 lần, số chấm xuất hiện trên mặt con xúc xắc là 7.
    • D.
      Gieo hai con xúc xắc 1 lần, tổng số chấm xuất hiện trên hai con xúc xắc là 7.
    Câu 8 :

    Gieo một đồng xu cân đối, đồng chất 1 lần. Xác suất của biến cố “Đồng xu xuất hiện mặt ngửa” là

    • A.
      \(\frac{1}{4}.\)
    • B.
      \(\frac{1}{3}.\)
    • C.
      \(\frac{1}{2}.\)
    • D.
      \(1.\)
    Câu 9 :

    Cho \(\Delta ABC\) vuông tại A có \(\widehat B = {65^0}.\) Chọn khẳng định đúng.

    • A.
      \(AB < BC < AC.\)
    • B.
      \(BC > AC > AB.\)
    • C.
      \(BC < AC < AB.\)
    • D.
      \(AC < AB < BC.\)
    Câu 10 :

    Cho tam giác \(ABC\) có AM là đường trung tuyến, trọng tâm \(G\). Khẳng định nào sau đây đúng?

    • A.
      \(AM = 3AG.\)
    • B.
      \(AG = 2GM.\)
    • C.
      \(3AM = 2AG.\)
    • D.
      \(AG = \frac{1}{2}GM.\)
    Câu 11 :

    Bộ ba số nào là độ dài ba cạnh của một tam giác?

    • A.
      \(4cm,\;5cm,\;10cm.\)
    • B.
      \(5cm,\;5cm,\;12cm.\)
    • C.
      \(11cm,\;11cm,\;20cm.\)
    • D.
      \(9cm,\;20cm,\;11cm.\)
    Câu 12 :

    Số mặt của hình hộp chữ nhật là

    • A.
      \(4.\)
    • B.
      \(6.\)
    • C.
      \(8.\)
    • D.
      \(10.\)
    II. Tự luận
    Câu 1 :

    a) Tính giá trị của biểu thức \(A = (2x + y)(2x - y)\) tại \(x = - 2,\;y = \frac{1}{3}.\)

    b) Tìm tất cả các giá trị của \(x\) thoả mãn \(x(3x - 2) - 3{x^2} = \frac{3}{4}.\)

    Câu 2 :

    Học sinh của ba lớp 7A, 7B, 7C làm 40 tấm thiệp để chúc mừng các thầy cô nhân ngày 20-11, biết số học sinh của ba lớp 7A, 7B, 7C theo thứ tự là 45; 42; 33. Hỏi trong ba lớp trên mỗi lớp làm bao nhiêu tấm thiệp, biết số học sinh tỉ lệ với số thiệp cần làm.

    Câu 3 :

    Cho hai đa thức \(A\left( x \right) = 5{x^4} - 7{x^2} - 3x - 6{x^2} + 11x - 30\) và \(B\left( x \right) = - 11{x^3} + 5x - 10 + 13{x^4} - 2 + 20{x^3} - 34x\)

    a) Thu gọn hai đa thức \(A\left( x \right)\) và \(B\left( x \right)\) và sắp xếp theo lũy thừa giảm dần của biến.

    b) Tính \(A\left( x \right) - B\left( x \right)\).

    Câu 4 :

    Cho tam giác ABC cân tại A. Kẻ \(BH \bot AC;CK \bot AB\) (\(H \in AC;\,\)\(K \in AB\)).

    a) Chứng minh tam giác AKH là tam giác cân

    b) Gọi I là giao của BHCK; AI cắt BC tại M. Chứng minh rằng IM là phân giác của \(\widehat {BIC}\).

    c) Chứng minh: \(HK\,{\rm{//}}\,BC\).

    Câu 5 :

    Tìm tất cả các số nguyên dương \(x,y,z\) thỏa mãn:

    \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\)và \(200 < {y^2} + {z^2} < 450\).

    Lời giải và đáp án

      I. Trắc nghiệm
      Câu 1 :

      Trong các phát biểu sau, phát biểu nào đúng?

      • A.
        \(\frac{1}{2} = \frac{{ - 2}}{4}\).
      • B.
        \(\frac{1}{2} = \frac{5}{{10}}\).
      • C.
        \(\frac{1}{2} = \frac{3}{4}\).
      • D.
        \(\frac{1}{2} = \frac{{ - 2}}{{ - 6}}\).

      Đáp án : B

      Phương pháp giải :

      Dựa vào kiến thức về tỉ lệ thức.

      Lời giải chi tiết :

      Ta có:

      \(\frac{1}{2} = \frac{2}{4} \ne \frac{{ - 2}}{4}\) nên A sai.

      \(\frac{1}{2} = \frac{5}{{10}}\) nên B đúng.

      \(\frac{1}{2} = \frac{2}{4} \ne \frac{3}{4}\) nên C sai.

      \(\frac{1}{2} = \frac{{ - 3}}{{ - 6}} \ne \frac{{ - 2}}{{ - 6}}\) nên D sai.

      Đáp án B.

      Câu 2 :

      Giá trị x thoả mãn tỉ lệ thức: \(\frac{6}{x} = \frac{{ - 10}}{5}\)

      • A.
        \( - 30.\)
      • B.
        \( - 3.\)
      • C.
        \(3 \cdot \)
      • D.
        \(30.\)

      Đáp án : B

      Phương pháp giải :

      Dựa vào kiến thức về tỉ lệ thức: Nếu \(\frac{a}{b} = \frac{c}{d}\) thì \(ad = bc\).

      Lời giải chi tiết :

      Ta có: \(\frac{6}{x} = \frac{{ - 10}}{5}\) nên

      \(\begin{array}{l}6.5 = \left( { - 10} \right).x\\x = \frac{{6.5}}{{ - 10}}\\x = - 3\end{array}\)

      Đáp án B.

      Câu 3 :

      Trong các công thức sau, công thức nào phát biểu: “Đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ 2”?

      • A.
        \(y = 2x.\)
      • B.
        \(y = \frac{2}{x}.\)
      • C.
        \(y = x + 2.\)
      • D.
        \(y = {x^2}.\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng kiến thức về hai đại lượng tỉ lệ thuận: Nếu đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ là a thì ta có công thức \(y = ax\)

      Lời giải chi tiết :

      Đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ 2 nên y = 2x.

      Đáp án A.

      Câu 4 :

      Biểu thức đại số biểu diễn công thức tính diện tích hình thang có 2 đáy độ dài a, b; chiều cao h ( a, b, h có cùng đơn vị đo độ dài)

      • A.
        \(ab.\)
      • B.
        \(ah.\)
      • C.
        \((a + b)h.\)
      • D.
        \(\frac{{(a + b)h}}{2}.\)

      Đáp án : D

      Phương pháp giải :

      Sử dụng công thức tính diện tích hình thang để viết biểu thức.

      Lời giải chi tiết :

      Biểu thức đại số biểu diễn công thức tính diện tích hình thang có 2 đáy độ dài a, b; chiều cao h ( a, b, h có cùng đơn vị đo độ dài) là: \(\frac{{\left( {a + b} \right).h}}{2}\).

      Đáp án D.

      Câu 5 :

      Hệ số tự do của đa thức \( - {x^7} + 5{x^5} - 12x - 22\) là

      • A.
        \( - 22.\)
      • B.
        \( - 1.\)
      • C.
        \(5.\)
      • D.
        \(22.\)

      Đáp án : A

      Phương pháp giải :

      Hệ số của hạng tử bậc 0 gọi là hệ số tự do của đa thức đó.

      Lời giải chi tiết :

      Hệ số tự do của đa thức \( - {x^7} + 5{x^5} - 12x - 22\) là – 22.

      Đáp án A.

      Câu 6 :

      Giá trị của đa thức \(g\left( x \right) = {x^8}{\rm{ + }}{x^4} + {x^2} + 1\) tại \(x = - 1\)bằng

      • A.
        \( - 4.\)
      • B.
        \( - 3.\)
      • C.
        \(3.\)
      • D.
        \(4.\)

      Đáp án : D

      Phương pháp giải :

      Thay \(x = - 1\) vào đa thức để tính giá trị.

      Lời giải chi tiết :

      Thay \(x = - 1\) vào đa thức g(x) ta được:

      \(g\left( x \right) = {\left( { - 1} \right)^8}{\rm{ + }}{\left( { - 1} \right)^4} + {\left( { - 1} \right)^2} + 1 = 1 + 1 + 1 + 1 = 4\)

      Đáp án D.

      Câu 7 :

      Trong các biến cố sau, biến cố nào là biến cố ngẫu nhiên?

      • A.
        Trong điều kiện thường nước sôi ở \({100^o}C.\)
      • B.
        Tháng tư có 30 ngày.
      • C.
        Gieo một con xúc xắc 1 lần, số chấm xuất hiện trên mặt con xúc xắc là 7.
      • D.
        Gieo hai con xúc xắc 1 lần, tổng số chấm xuất hiện trên hai con xúc xắc là 7.

      Đáp án : D

      Phương pháp giải :

      Dựa vào kiến thức về các loại biến cố.

      Lời giải chi tiết :

      Biến cố “Gieo hai con xúc xắc 1 lần, tổng số chấm xuất hiện trên hai con xúc xắc là 7” là biến cố ngẫu nhiên.

      Đáp án D.

      Câu 8 :

      Gieo một đồng xu cân đối, đồng chất 1 lần. Xác suất của biến cố “Đồng xu xuất hiện mặt ngửa” là

      • A.
        \(\frac{1}{4}.\)
      • B.
        \(\frac{1}{3}.\)
      • C.
        \(\frac{1}{2}.\)
      • D.
        \(1.\)

      Đáp án : C

      Phương pháp giải :

      Dựa vào kiến thức về xác suất của các biến cố đồng khả năng.

      Lời giải chi tiết :

      Do đồng xu cân đối nên biến cố “Đồng xu xuất hiện mặt ngửa” và “Đồng xu xuất hiện mặt sấp” là đồng khả năng nên xác suất của 2 biến cố này bằng nhau và bằng \(\frac{1}{2}\).

      Đáp án C.

      Câu 9 :

      Cho \(\Delta ABC\) vuông tại A có \(\widehat B = {65^0}.\) Chọn khẳng định đúng.

      • A.
        \(AB < BC < AC.\)
      • B.
        \(BC > AC > AB.\)
      • C.
        \(BC < AC < AB.\)
      • D.
        \(AC < AB < BC.\)

      Đáp án : B

      Phương pháp giải :

      Dựa vào mối quan hệ giữa góc và cạnh đối nhau trong một tam giác và định lí tổng ba góc của một tam giác bằng \({180^0}\).

      Lời giải chi tiết :

      Tam giác ABC vuông tại A có \(\widehat B = {65^0}\) nên

      \(\widehat C = {180^0} - \widehat A - \widehat B = {180^0} - {90^0} - {65^0} = {25^0}\).

      Vì \(\widehat A > \widehat B > \widehat C\left( {{{90}^0} > {{65}^0} > {{25}^0}} \right)\) nên \(BC > AC > AB\).

      Đáp án B.

      Câu 10 :

      Cho tam giác \(ABC\) có AM là đường trung tuyến, trọng tâm \(G\). Khẳng định nào sau đây đúng?

      • A.
        \(AM = 3AG.\)
      • B.
        \(AG = 2GM.\)
      • C.
        \(3AM = 2AG.\)
      • D.
        \(AG = \frac{1}{2}GM.\)

      Đáp án : B

      Phương pháp giải :

      Dựa vào kiến thức về trọng tâm của tam giác.

      Lời giải chi tiết :

      Vì G là trọng tâm của tam giác ABC nên \(AG = \frac{2}{3}AM\) suy ra \(GM = AM - AG = AM - \frac{2}{3}AM = \frac{1}{3}AM\).

      Suy ra \(\frac{{GM}}{{AG}} = \frac{{\frac{1}{3}AM}}{{\frac{2}{3}AM}} = \frac{1}{2}\) hay \(AG = 2GM\).

      Đáp án B.

      Câu 11 :

      Bộ ba số nào là độ dài ba cạnh của một tam giác?

      • A.
        \(4cm,\;5cm,\;10cm.\)
      • B.
        \(5cm,\;5cm,\;12cm.\)
      • C.
        \(11cm,\;11cm,\;20cm.\)
      • D.
        \(9cm,\;20cm,\;11cm.\)

      Đáp án : C

      Phương pháp giải :

      Dựa vào quan hệ giữa các cạnh của một tam giác.

      Lời giải chi tiết :

      Ta có:

      4 + 5 = 9 < 10, ba độ dài \(4cm,\;5cm,\;10cm\) không thỏa mãn một bất đẳng thức tam giác nên không là độ dài ba cạnh của một tam giác.

      5 + 5 = 10 < 12, ba độ dài \(5cm,\;5cm,\;12cm\) không thỏa mãn một bất đẳng thức tam giác nên không là độ dài ba cạnh của một tam giác.

      11 > 20 – 11 = 9, ba độ dài \(11cm,\;11cm,\;20cm\) thỏa mãn điều kiện của bất đẳng thức tam giác nên đây có thể là độ dài ba cạnh của một tam giác.

      11 = 20 – 9, ba độ dài \(9cm,\;20cm,\;11cm\) không thỏa mãn một bất đẳng thức tam giác nên không là độ dài ba cạnh của một tam giác.

      Đáp án C.

      Câu 12 :

      Số mặt của hình hộp chữ nhật là

      • A.
        \(4.\)
      • B.
        \(6.\)
      • C.
        \(8.\)
      • D.
        \(10.\)

      Đáp án : B

      Phương pháp giải :

      Dựa vào kiến thức về hình hộp chữ nhật.

      Lời giải chi tiết :

      Hình hộp chữ nhật có 6 mặt.

      Đáp án B.

      II. Tự luận
      Câu 1 :

      a) Tính giá trị của biểu thức \(A = (2x + y)(2x - y)\) tại \(x = - 2,\;y = \frac{1}{3}.\)

      b) Tìm tất cả các giá trị của \(x\) thoả mãn \(x(3x - 2) - 3{x^2} = \frac{3}{4}.\)

      Phương pháp giải :

      a) Thay \(x = - 2,\;y = \frac{1}{3}\) vào A để tính giá trị biểu thức.

      b) Sử dụng các phép tính với đa thức một biến để tìm giá trị của x.

      Lời giải chi tiết :

      a) Tại \(x = - 2,\;y = \frac{1}{3}\) ta có

      \(\begin{array}{l}A = \left[ {2 \cdot ( - 2) + \frac{1}{3}} \right]\left[ {2 \cdot ( - 2) - \frac{1}{3}} \right]\\ = \left( { - 4 + \frac{1}{3}} \right)\left( { - 4 - \frac{1}{3}} \right)\\ = \frac{{ - 11}}{3}.\frac{{ - 13}}{3}\\ = \frac{{143}}{9}.\end{array}\)

      b) \(x(3x - 2) - 3{x^2} = \frac{3}{4}\)

      \(\begin{array}{l}3{x^2} - 2x - 3{x^2} = \frac{3}{4}\\ - 2x = \frac{3}{4}\\x = \frac{{ - 3}}{8}.\end{array}\)

      Vậy \(x = \frac{{ - 3}}{8}\).

      Câu 2 :

      Học sinh của ba lớp 7A, 7B, 7C làm 40 tấm thiệp để chúc mừng các thầy cô nhân ngày 20-11, biết số học sinh của ba lớp 7A, 7B, 7C theo thứ tự là 45; 42; 33. Hỏi trong ba lớp trên mỗi lớp làm bao nhiêu tấm thiệp, biết số học sinh tỉ lệ với số thiệp cần làm.

      Phương pháp giải :

      Gọi số tấm thiệp của ba lớp 7A, 7B, 7C lần lượt là \(x,y,z\left( {x,y,z \in {\mathbb{N}^ * }} \right)\)

      Viết phương trình dựa vào đề bài.

      Áp dụng tính chất dãy tỉ số bằng nhau để tìm x, y, z.

      Lời giải chi tiết :

      Gọi số tấm thiệp của ba lớp 7A, 7B, 7C lần lượt là \(x,y,z\left( {x,y,z \in {\mathbb{N}^ * }} \right)\)

      Vì có 40 tấm thiệp nên x + y + z = 40

       Vì số học sinh tỉ lệ với số thiệp cần làm nên ta có \(\frac{x}{{45}} = \frac{y}{{42}} = \frac{z}{{33}}\).

      Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      \(\frac{x}{{45}} = \frac{y}{{42}} = \frac{z}{{33}} = \frac{{x + y + z}}{{45 + 42 + 33}} = \frac{{40}}{{120}} = \frac{1}{3}\)

      suy ra \( x = \frac{1}{3}.45 = 15; y = \frac{1}{3}.42 = 14; z = \frac{1}{3}.33 = 11\)

      Vậy số tấm thiệp của ba lớp 7A, 7B, 7C lần lượt là 15; 14; 11.

      Câu 3 :

      Cho hai đa thức \(A\left( x \right) = 5{x^4} - 7{x^2} - 3x - 6{x^2} + 11x - 30\) và \(B\left( x \right) = - 11{x^3} + 5x - 10 + 13{x^4} - 2 + 20{x^3} - 34x\)

      a) Thu gọn hai đa thức \(A\left( x \right)\) và \(B\left( x \right)\) và sắp xếp theo lũy thừa giảm dần của biến.

      b) Tính \(A\left( x \right) - B\left( x \right)\).

      Phương pháp giải :

      Thực hiện tính toán với đa thức một biến.

      Lời giải chi tiết :

      a) \(A\left( x \right) = 5{x^4} - 7{x^2} - 3x - 6{x^2} + 11x - 30\)

      \(\begin{array}{l} = 5{x^4} + \left( { - 7{x^2} - 6{x^2}} \right) + \left( { - 3x + 11x} \right) - 30\\ = 5{x^4} - 13{x^2} + 8x - 30\end{array}\)

      \(B\left( x \right) = - 11{x^3} + 5x - 10 + 13{x^4} - 2 + 20{x^3} - 34x\)

      \(\begin{array}{l} = 13{x^4} + \left( { - 11{x^3} + 20{x^3}} \right) + \left( {5x - 34x} \right) + \left( { - 10 - 2} \right)\\ = 13{x^4} + 9{x^3} - 29x - 12\end{array}\)

      b) \(A\left( x \right) - B\left( x \right) = \left( {5{x^4} - 13{x^2} + 8x - 30} \right) - \left( {13{x^4} + 9{x^3} - 29x - 12} \right)\)

      \(\begin{array}{l} = 5{x^4} - 13{x^2} + 8x - 30 - 13{x^4} - 9{x^3} + 29x + 12\\ = \left( {5{x^4} - 13{x^4}} \right) - 9{x^3} - 13{x^2} + \left( {8x + 29x} \right) + \left( { - 30 + 12} \right)\\ = -8{x^4} - 9{x^3} - 13{x^2} + 37x - 18\end{array}\)

      Câu 4 :

      Cho tam giác ABC cân tại A. Kẻ \(BH \bot AC;CK \bot AB\) (\(H \in AC;\,\)\(K \in AB\)).

      a) Chứng minh tam giác AKH là tam giác cân

      b) Gọi I là giao của BHCK; AI cắt BC tại M. Chứng minh rằng IM là phân giác của \(\widehat {BIC}\).

      c) Chứng minh: \(HK\,{\rm{//}}\,BC\).

      Phương pháp giải :

      a) Chứng minh \(\Delta ABH = \Delta ACK\) theo trường hợp cạnh huyền – góc nhọn. suy ra AH = AK nên tam giác AKH là tam giác cân.

      b) Chứng minh \(\widehat {{P_1}} = \widehat {{N_1}}\) nên \(\Delta AKI = \Delta AHI\) theo trường hợp cạnh huyền – cạnh góc vuông suy ra \(\widehat {AIK} = \widehat {AIH}\)

      Từ đó ta có \(\widehat {CIM} = \widehat {BIM}\) nên IM là phân giác của góc BIC

      c) Từ tam giác cân ABC và AHK ta có \(\widehat {ABC} = \frac{{180^\circ - \widehat A}}{2}\), \(\widehat {AKH} = \frac{{180^\circ - \widehat A}}{2}\) nên \(\widehat {ABC} = \widehat {AKH}\).

      Mà hai góc này ở vị trí đồng vị nên HK // BC.

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 7 - Đề số 12 - Kết nối tri thức 1 1

      a) Xét \(\Delta ABH\) và \(\Delta ACK\) có:

      \(\widehat {AHB} = \widehat {AKC} = 90^\circ \) (vì \(BH \bot AC;CK \bot AB\))

      AB = AC (\(\Delta ABC\) cân);

      góc A chung;

      Do đó: \(\Delta ABH = \Delta ACK\) (cạnh huyền – góc nhọn).

      \( \Rightarrow AH = AK \Rightarrow \Delta AHK\) cân tại A (đpcm).

      b) Xét \(\Delta AKI\) và \(\Delta AHI\) có: \(\widehat {AKI} = \widehat {AHI} = 90^\circ \) (vì \(BH \bot AC;CK \bot AB\))

      AK = AH (\(\Delta AHK\) cân tại A);

      cạnh AI chung;

      Do đó: \(\Delta AKI = \Delta AHI\) (cạnh huyền – cạnh góc vuông).

      \( \Rightarrow \widehat {AIK} = \widehat {AIH}\).

      Mà: \(\widehat {AIK} = \widehat {CIM};\widehat {AIH} = \widehat {BIM}\) (2 góc đối đỉnh).

      Do đó: \(\widehat {CIM} = \widehat {BIM}\)\( \Rightarrow IM\)là phân giác của góc BIC (đpcm).

      c) \(\Delta ABC\) cân tại A nên: \(\widehat {ABC} = \frac{{180^\circ - \widehat A}}{2}\) .

      \(\Delta AHK\) cân tại A nên: \(\widehat {AKH} = \frac{{180^\circ - \widehat A}}{2}\) .

      Suy ra \(\widehat {ABC} = \widehat {AKH}\).

      Mà 2 góc này ở vị trí đồng vị.

      Do đó: KH // BC (đpcm).

      Câu 5 :

      Tìm tất cả các số nguyên dương \(x,y,z\) thỏa mãn:

      \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\)và \(200 < {y^2} + {z^2} < 450\).

      Phương pháp giải :

      Biến đổi \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\) thành \(\frac{{6z - 12x}}{9} = \frac{{12x - 8y}}{{16}} = \frac{{8y - 6z}}{4}\).

      Áp dụng tính chất dãy tỉ số bằng nhau để suy ra \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2} = 0\)

      Từ đó ta có \(6z = 12x = 8y\).

      Đặt \(6z = 12x = 8y = 24k\left( {k > 0} \right) \Rightarrow \left( {x;y;z} \right) = \left( {2k;3k;4k} \right)\)

      Tìm k dựa vào \(200 < {y^2} + {z^2} < 450\)

      Từ đó tính được x, y, z.

      Lời giải chi tiết :

      Ta có \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\) nên

      \(\begin{array}{l}\frac{{3\left( {z - 4x} \right)}}{{3.3}} = \frac{{4\left( {3x - 2y} \right)}}{{4.4}} = \frac{{2\left( {4y - 3z} \right)}}{{2.2}}\\\frac{{6z - 12x}}{9} = \frac{{12x - 8y}}{{16}} = \frac{{8y - 6z}}{4}\end{array}\)

      Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

      \(\frac{{6z - 12x}}{9} = \frac{{12x - 8y}}{{16}} = \frac{{8y - 6z}}{4} = \frac{{6z - 12x + 12x - 8y + 8y - 6z}}{{9 + 16 + 4}} = \frac{0}{{29}} = 0\)

      Do đó \(\left\{ \begin{array}{l}6z - 12x = 0\\12x - 8y = 0\\8y - 6z = 0\end{array} \right.\) hay \(6z = 12x = 8y\).

      Đặt \(6z = 12x = 8y = 24k\left( {k > 0} \right)\) ta được \(\left( {x;y;z} \right) = \left( {2k;3k;4k} \right)\)

      Theo giả thiết \(200 < {y^2} + {z^2} < 450\)

      nên \(200 < (3k)^2 + (4k)^2 < 450\)

      \(200 < 9{k^2} + 16{k^2} < 450\)

      suy ra \(200 < 25{k^2} < 450\)

      \(8 < k^2 < 18\)

      Do đó \(k \in \left\{ {3;4} \right\}\)

      Từ đó tìm được \(\left( {x;y;z} \right) \in \left\{ {\left( {6;9;12} \right);\left( {8;12;16} \right)} \right\}\)

      Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Đề thi học kì 2 Toán 7 - Đề số 12 - Kết nối tri thức tại chuyên mục bài tập toán lớp 7 trên toán học. Với bộ bài tập toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

      Đề thi học kì 2 Toán 7 - Đề số 12 - Kết nối tri thức: Tổng quan và Hướng dẫn Giải Chi Tiết

      Kỳ thi học kì 2 Toán 7 là một bước quan trọng trong quá trình học tập của các em. Việc nắm vững kiến thức và kỹ năng giải bài tập là yếu tố then chốt để đạt kết quả tốt. Đề thi học kì 2 Toán 7 - Đề số 12 - Kết nối tri thức được xây dựng dựa trên cấu trúc đề thi chính thức, bao gồm các dạng bài tập thường gặp và có độ khó phù hợp với trình độ của học sinh.

      Cấu trúc Đề thi học kì 2 Toán 7 - Đề số 12 - Kết nối tri thức

      Đề thi này bao gồm các phần chính sau:

      • Phần trắc nghiệm: Kiểm tra kiến thức cơ bản và khả năng vận dụng các khái niệm toán học.
      • Phần tự luận: Đòi hỏi học sinh phải trình bày lời giải chi tiết và rõ ràng, thể hiện khả năng tư duy logic và giải quyết vấn đề.

      Nội dung Đề thi học kì 2 Toán 7 - Đề số 12 - Kết nối tri thức

      Đề thi tập trung vào các chủ đề chính sau:

      • Số hữu tỉ: Các phép toán với số hữu tỉ, so sánh số hữu tỉ, giá trị tuyệt đối của số hữu tỉ.
      • Biểu thức đại số: Thu gọn biểu thức, cộng trừ đa thức, nhân đa thức, chia đa thức.
      • Phương trình bậc nhất một ẩn: Giải phương trình bậc nhất một ẩn, ứng dụng phương trình bậc nhất một ẩn vào giải bài toán.
      • Bất phương trình bậc nhất một ẩn: Giải bất phương trình bậc nhất một ẩn, ứng dụng bất phương trình bậc nhất một ẩn vào giải bài toán.
      • Hình học: Các tính chất của tam giác, các trường hợp bằng nhau của tam giác, các tính chất của đường thẳng song song và đường thẳng vuông góc.

      Hướng dẫn Giải Đề thi học kì 2 Toán 7 - Đề số 12 - Kết nối tri thức

      Để giải đề thi hiệu quả, các em cần:

      1. Đọc kỹ đề bài: Hiểu rõ yêu cầu của từng câu hỏi trước khi bắt đầu giải.
      2. Lập kế hoạch giải: Xác định các bước cần thực hiện để giải quyết bài toán.
      3. Trình bày lời giải rõ ràng: Viết các bước giải một cách logic và dễ hiểu.
      4. Kiểm tra lại kết quả: Đảm bảo rằng kết quả cuối cùng là chính xác.

      Ví dụ minh họa

      Câu 1: (Trắc nghiệm) Giá trị của biểu thức 2x + 3y khi x = 1 và y = -1 là:

      A. 1

      B. -1

      C. 0

      D. 2

      Giải: Thay x = 1 và y = -1 vào biểu thức 2x + 3y, ta được: 2(1) + 3(-1) = 2 - 3 = -1. Vậy đáp án đúng là B.

      Luyện tập thêm

      Để nâng cao khả năng giải đề, các em nên luyện tập thêm với các đề thi khác và tham khảo các tài liệu ôn tập. Giaitoan.edu.vn cung cấp nhiều đề thi và bài tập đa dạng, giúp các em ôn tập hiệu quả và tự tin bước vào kỳ thi.

      Tầm quan trọng của việc ôn tập

      Việc ôn tập thường xuyên và có hệ thống là yếu tố quan trọng để nắm vững kiến thức và kỹ năng giải bài tập. Các em nên dành thời gian ôn tập lại các kiến thức đã học, giải các bài tập trong sách giáo khoa và các đề thi thử. Đừng ngần ngại hỏi thầy cô hoặc bạn bè nếu gặp khó khăn trong quá trình học tập.

      Lời khuyên

      Hãy giữ tâm lý thoải mái và tự tin khi làm bài thi. Đọc kỹ đề bài, lập kế hoạch giải và trình bày lời giải một cách rõ ràng. Chúc các em đạt kết quả tốt nhất trong kỳ thi học kì 2!

      Chủ đềMức độ quan trọng
      Số hữu tỉCao
      Biểu thức đại sốCao
      Phương trình bậc nhất một ẩnTrung bình
      Bất phương trình bậc nhất một ẩnTrung bình
      Hình họcTrung bình

      Tài liệu, đề thi và đáp án Toán 7