Chào mừng các em học sinh lớp 7 đến với đề thi học kì 2 môn Toán - Đề số 12, chương trình Kết nối tri thức.
Đề thi này được thiết kế để giúp các em ôn tập và đánh giá kiến thức đã học trong học kì 2, chuẩn bị tốt nhất cho kỳ thi sắp tới.
Trong các phát biểu sau, phát biểu nào đúng?
Giá trị x thoả mãn tỉ lệ thức: \(\frac{6}{x} = \frac{{ - 10}}{5}\)
Trong các công thức sau, công thức nào phát biểu: “Đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ 2”?
Biểu thức đại số biểu diễn công thức tính diện tích hình thang có 2 đáy độ dài a, b; chiều cao h ( a, b, h có cùng đơn vị đo độ dài)
Hệ số tự do của đa thức \( - {x^7} + 5{x^5} - 12x - 22\) là
Giá trị của đa thức \(g\left( x \right) = {x^8}{\rm{ + }}{x^4} + {x^2} + 1\) tại \(x = - 1\)bằng
Trong các biến cố sau, biến cố nào là biến cố ngẫu nhiên?
Gieo một đồng xu cân đối, đồng chất 1 lần. Xác suất của biến cố “Đồng xu xuất hiện mặt ngửa” là
Cho \(\Delta ABC\) vuông tại A có \(\widehat B = {65^0}.\) Chọn khẳng định đúng.
Cho tam giác \(ABC\) có AM là đường trung tuyến, trọng tâm \(G\). Khẳng định nào sau đây đúng?
Bộ ba số nào là độ dài ba cạnh của một tam giác?
Số mặt của hình hộp chữ nhật là
a) Tính giá trị của biểu thức \(A = (2x + y)(2x - y)\) tại \(x = - 2,\;y = \frac{1}{3}.\)
b) Tìm tất cả các giá trị của \(x\) thoả mãn \(x(3x - 2) - 3{x^2} = \frac{3}{4}.\)
Học sinh của ba lớp 7A, 7B, 7C làm 40 tấm thiệp để chúc mừng các thầy cô nhân ngày 20-11, biết số học sinh của ba lớp 7A, 7B, 7C theo thứ tự là 45; 42; 33. Hỏi trong ba lớp trên mỗi lớp làm bao nhiêu tấm thiệp, biết số học sinh tỉ lệ với số thiệp cần làm.
Cho hai đa thức \(A\left( x \right) = 5{x^4} - 7{x^2} - 3x - 6{x^2} + 11x - 30\) và \(B\left( x \right) = - 11{x^3} + 5x - 10 + 13{x^4} - 2 + 20{x^3} - 34x\)
a) Thu gọn hai đa thức \(A\left( x \right)\) và \(B\left( x \right)\) và sắp xếp theo lũy thừa giảm dần của biến.
b) Tính \(A\left( x \right) - B\left( x \right)\).
Cho tam giác ABC cân tại A. Kẻ \(BH \bot AC;CK \bot AB\) (\(H \in AC;\,\)\(K \in AB\)).
a) Chứng minh tam giác AKH là tam giác cân
b) Gọi I là giao của BH và CK; AI cắt BC tại M. Chứng minh rằng IM là phân giác của \(\widehat {BIC}\).
c) Chứng minh: \(HK\,{\rm{//}}\,BC\).
Tìm tất cả các số nguyên dương \(x,y,z\) thỏa mãn:
\(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\)và \(200 < {y^2} + {z^2} < 450\).
Trong các phát biểu sau, phát biểu nào đúng?
Đáp án : B
Dựa vào kiến thức về tỉ lệ thức.
Ta có:
\(\frac{1}{2} = \frac{2}{4} \ne \frac{{ - 2}}{4}\) nên A sai.
\(\frac{1}{2} = \frac{5}{{10}}\) nên B đúng.
\(\frac{1}{2} = \frac{2}{4} \ne \frac{3}{4}\) nên C sai.
\(\frac{1}{2} = \frac{{ - 3}}{{ - 6}} \ne \frac{{ - 2}}{{ - 6}}\) nên D sai.
Đáp án B.
Giá trị x thoả mãn tỉ lệ thức: \(\frac{6}{x} = \frac{{ - 10}}{5}\)
Đáp án : B
Dựa vào kiến thức về tỉ lệ thức: Nếu \(\frac{a}{b} = \frac{c}{d}\) thì \(ad = bc\).
Ta có: \(\frac{6}{x} = \frac{{ - 10}}{5}\) nên
\(\begin{array}{l}6.5 = \left( { - 10} \right).x\\x = \frac{{6.5}}{{ - 10}}\\x = - 3\end{array}\)
Đáp án B.
Trong các công thức sau, công thức nào phát biểu: “Đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ 2”?
Đáp án : A
Sử dụng kiến thức về hai đại lượng tỉ lệ thuận: Nếu đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ là a thì ta có công thức \(y = ax\)
Đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ 2 nên y = 2x.
Đáp án A.
Biểu thức đại số biểu diễn công thức tính diện tích hình thang có 2 đáy độ dài a, b; chiều cao h ( a, b, h có cùng đơn vị đo độ dài)
Đáp án : D
Sử dụng công thức tính diện tích hình thang để viết biểu thức.
Biểu thức đại số biểu diễn công thức tính diện tích hình thang có 2 đáy độ dài a, b; chiều cao h ( a, b, h có cùng đơn vị đo độ dài) là: \(\frac{{\left( {a + b} \right).h}}{2}\).
Đáp án D.
Hệ số tự do của đa thức \( - {x^7} + 5{x^5} - 12x - 22\) là
Đáp án : A
Hệ số của hạng tử bậc 0 gọi là hệ số tự do của đa thức đó.
Hệ số tự do của đa thức \( - {x^7} + 5{x^5} - 12x - 22\) là – 22.
Đáp án A.
Giá trị của đa thức \(g\left( x \right) = {x^8}{\rm{ + }}{x^4} + {x^2} + 1\) tại \(x = - 1\)bằng
Đáp án : D
Thay \(x = - 1\) vào đa thức để tính giá trị.
Thay \(x = - 1\) vào đa thức g(x) ta được:
\(g\left( x \right) = {\left( { - 1} \right)^8}{\rm{ + }}{\left( { - 1} \right)^4} + {\left( { - 1} \right)^2} + 1 = 1 + 1 + 1 + 1 = 4\)
Đáp án D.
Trong các biến cố sau, biến cố nào là biến cố ngẫu nhiên?
Đáp án : D
Dựa vào kiến thức về các loại biến cố.
Biến cố “Gieo hai con xúc xắc 1 lần, tổng số chấm xuất hiện trên hai con xúc xắc là 7” là biến cố ngẫu nhiên.
Đáp án D.
Gieo một đồng xu cân đối, đồng chất 1 lần. Xác suất của biến cố “Đồng xu xuất hiện mặt ngửa” là
Đáp án : C
Dựa vào kiến thức về xác suất của các biến cố đồng khả năng.
Do đồng xu cân đối nên biến cố “Đồng xu xuất hiện mặt ngửa” và “Đồng xu xuất hiện mặt sấp” là đồng khả năng nên xác suất của 2 biến cố này bằng nhau và bằng \(\frac{1}{2}\).
Đáp án C.
Cho \(\Delta ABC\) vuông tại A có \(\widehat B = {65^0}.\) Chọn khẳng định đúng.
Đáp án : B
Dựa vào mối quan hệ giữa góc và cạnh đối nhau trong một tam giác và định lí tổng ba góc của một tam giác bằng \({180^0}\).
Tam giác ABC vuông tại A có \(\widehat B = {65^0}\) nên
\(\widehat C = {180^0} - \widehat A - \widehat B = {180^0} - {90^0} - {65^0} = {25^0}\).
Vì \(\widehat A > \widehat B > \widehat C\left( {{{90}^0} > {{65}^0} > {{25}^0}} \right)\) nên \(BC > AC > AB\).
Đáp án B.
Cho tam giác \(ABC\) có AM là đường trung tuyến, trọng tâm \(G\). Khẳng định nào sau đây đúng?
Đáp án : B
Dựa vào kiến thức về trọng tâm của tam giác.
Vì G là trọng tâm của tam giác ABC nên \(AG = \frac{2}{3}AM\) suy ra \(GM = AM - AG = AM - \frac{2}{3}AM = \frac{1}{3}AM\).
Suy ra \(\frac{{GM}}{{AG}} = \frac{{\frac{1}{3}AM}}{{\frac{2}{3}AM}} = \frac{1}{2}\) hay \(AG = 2GM\).
Đáp án B.
Bộ ba số nào là độ dài ba cạnh của một tam giác?
Đáp án : C
Dựa vào quan hệ giữa các cạnh của một tam giác.
Ta có:
4 + 5 = 9 < 10, ba độ dài \(4cm,\;5cm,\;10cm\) không thỏa mãn một bất đẳng thức tam giác nên không là độ dài ba cạnh của một tam giác.
5 + 5 = 10 < 12, ba độ dài \(5cm,\;5cm,\;12cm\) không thỏa mãn một bất đẳng thức tam giác nên không là độ dài ba cạnh của một tam giác.
11 > 20 – 11 = 9, ba độ dài \(11cm,\;11cm,\;20cm\) thỏa mãn điều kiện của bất đẳng thức tam giác nên đây có thể là độ dài ba cạnh của một tam giác.
11 = 20 – 9, ba độ dài \(9cm,\;20cm,\;11cm\) không thỏa mãn một bất đẳng thức tam giác nên không là độ dài ba cạnh của một tam giác.
Đáp án C.
Số mặt của hình hộp chữ nhật là
Đáp án : B
Dựa vào kiến thức về hình hộp chữ nhật.
Hình hộp chữ nhật có 6 mặt.
Đáp án B.
a) Tính giá trị của biểu thức \(A = (2x + y)(2x - y)\) tại \(x = - 2,\;y = \frac{1}{3}.\)
b) Tìm tất cả các giá trị của \(x\) thoả mãn \(x(3x - 2) - 3{x^2} = \frac{3}{4}.\)
a) Thay \(x = - 2,\;y = \frac{1}{3}\) vào A để tính giá trị biểu thức.
b) Sử dụng các phép tính với đa thức một biến để tìm giá trị của x.
a) Tại \(x = - 2,\;y = \frac{1}{3}\) ta có
\(\begin{array}{l}A = \left[ {2 \cdot ( - 2) + \frac{1}{3}} \right]\left[ {2 \cdot ( - 2) - \frac{1}{3}} \right]\\ = \left( { - 4 + \frac{1}{3}} \right)\left( { - 4 - \frac{1}{3}} \right)\\ = \frac{{ - 11}}{3}.\frac{{ - 13}}{3}\\ = \frac{{143}}{9}.\end{array}\)
b) \(x(3x - 2) - 3{x^2} = \frac{3}{4}\)
\(\begin{array}{l}3{x^2} - 2x - 3{x^2} = \frac{3}{4}\\ - 2x = \frac{3}{4}\\x = \frac{{ - 3}}{8}.\end{array}\)
Vậy \(x = \frac{{ - 3}}{8}\).
Học sinh của ba lớp 7A, 7B, 7C làm 40 tấm thiệp để chúc mừng các thầy cô nhân ngày 20-11, biết số học sinh của ba lớp 7A, 7B, 7C theo thứ tự là 45; 42; 33. Hỏi trong ba lớp trên mỗi lớp làm bao nhiêu tấm thiệp, biết số học sinh tỉ lệ với số thiệp cần làm.
Gọi số tấm thiệp của ba lớp 7A, 7B, 7C lần lượt là \(x,y,z\left( {x,y,z \in {\mathbb{N}^ * }} \right)\)
Viết phương trình dựa vào đề bài.
Áp dụng tính chất dãy tỉ số bằng nhau để tìm x, y, z.
Gọi số tấm thiệp của ba lớp 7A, 7B, 7C lần lượt là \(x,y,z\left( {x,y,z \in {\mathbb{N}^ * }} \right)\)
Vì có 40 tấm thiệp nên x + y + z = 40
Vì số học sinh tỉ lệ với số thiệp cần làm nên ta có \(\frac{x}{{45}} = \frac{y}{{42}} = \frac{z}{{33}}\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{{45}} = \frac{y}{{42}} = \frac{z}{{33}} = \frac{{x + y + z}}{{45 + 42 + 33}} = \frac{{40}}{{120}} = \frac{1}{3}\)
suy ra \( x = \frac{1}{3}.45 = 15; y = \frac{1}{3}.42 = 14; z = \frac{1}{3}.33 = 11\)
Vậy số tấm thiệp của ba lớp 7A, 7B, 7C lần lượt là 15; 14; 11.
Cho hai đa thức \(A\left( x \right) = 5{x^4} - 7{x^2} - 3x - 6{x^2} + 11x - 30\) và \(B\left( x \right) = - 11{x^3} + 5x - 10 + 13{x^4} - 2 + 20{x^3} - 34x\)
a) Thu gọn hai đa thức \(A\left( x \right)\) và \(B\left( x \right)\) và sắp xếp theo lũy thừa giảm dần của biến.
b) Tính \(A\left( x \right) - B\left( x \right)\).
Thực hiện tính toán với đa thức một biến.
a) \(A\left( x \right) = 5{x^4} - 7{x^2} - 3x - 6{x^2} + 11x - 30\)
\(\begin{array}{l} = 5{x^4} + \left( { - 7{x^2} - 6{x^2}} \right) + \left( { - 3x + 11x} \right) - 30\\ = 5{x^4} - 13{x^2} + 8x - 30\end{array}\)
\(B\left( x \right) = - 11{x^3} + 5x - 10 + 13{x^4} - 2 + 20{x^3} - 34x\)
\(\begin{array}{l} = 13{x^4} + \left( { - 11{x^3} + 20{x^3}} \right) + \left( {5x - 34x} \right) + \left( { - 10 - 2} \right)\\ = 13{x^4} + 9{x^3} - 29x - 12\end{array}\)
b) \(A\left( x \right) - B\left( x \right) = \left( {5{x^4} - 13{x^2} + 8x - 30} \right) - \left( {13{x^4} + 9{x^3} - 29x - 12} \right)\)
\(\begin{array}{l} = 5{x^4} - 13{x^2} + 8x - 30 - 13{x^4} - 9{x^3} + 29x + 12\\ = \left( {5{x^4} - 13{x^4}} \right) - 9{x^3} - 13{x^2} + \left( {8x + 29x} \right) + \left( { - 30 + 12} \right)\\ = -8{x^4} - 9{x^3} - 13{x^2} + 37x - 18\end{array}\)
Cho tam giác ABC cân tại A. Kẻ \(BH \bot AC;CK \bot AB\) (\(H \in AC;\,\)\(K \in AB\)).
a) Chứng minh tam giác AKH là tam giác cân
b) Gọi I là giao của BH và CK; AI cắt BC tại M. Chứng minh rằng IM là phân giác của \(\widehat {BIC}\).
c) Chứng minh: \(HK\,{\rm{//}}\,BC\).
a) Chứng minh \(\Delta ABH = \Delta ACK\) theo trường hợp cạnh huyền – góc nhọn. suy ra AH = AK nên tam giác AKH là tam giác cân.
b) Chứng minh \(\widehat {{P_1}} = \widehat {{N_1}}\) nên \(\Delta AKI = \Delta AHI\) theo trường hợp cạnh huyền – cạnh góc vuông suy ra \(\widehat {AIK} = \widehat {AIH}\)
Từ đó ta có \(\widehat {CIM} = \widehat {BIM}\) nên IM là phân giác của góc BIC
c) Từ tam giác cân ABC và AHK ta có \(\widehat {ABC} = \frac{{180^\circ - \widehat A}}{2}\), \(\widehat {AKH} = \frac{{180^\circ - \widehat A}}{2}\) nên \(\widehat {ABC} = \widehat {AKH}\).
Mà hai góc này ở vị trí đồng vị nên HK // BC.
a) Xét \(\Delta ABH\) và \(\Delta ACK\) có:
\(\widehat {AHB} = \widehat {AKC} = 90^\circ \) (vì \(BH \bot AC;CK \bot AB\))
AB = AC (\(\Delta ABC\) cân);
góc A chung;
Do đó: \(\Delta ABH = \Delta ACK\) (cạnh huyền – góc nhọn).
\( \Rightarrow AH = AK \Rightarrow \Delta AHK\) cân tại A (đpcm).
b) Xét \(\Delta AKI\) và \(\Delta AHI\) có: \(\widehat {AKI} = \widehat {AHI} = 90^\circ \) (vì \(BH \bot AC;CK \bot AB\))
AK = AH (\(\Delta AHK\) cân tại A);
cạnh AI chung;
Do đó: \(\Delta AKI = \Delta AHI\) (cạnh huyền – cạnh góc vuông).
\( \Rightarrow \widehat {AIK} = \widehat {AIH}\).
Mà: \(\widehat {AIK} = \widehat {CIM};\widehat {AIH} = \widehat {BIM}\) (2 góc đối đỉnh).
Do đó: \(\widehat {CIM} = \widehat {BIM}\)\( \Rightarrow IM\)là phân giác của góc BIC (đpcm).
c) \(\Delta ABC\) cân tại A nên: \(\widehat {ABC} = \frac{{180^\circ - \widehat A}}{2}\) .
\(\Delta AHK\) cân tại A nên: \(\widehat {AKH} = \frac{{180^\circ - \widehat A}}{2}\) .
Suy ra \(\widehat {ABC} = \widehat {AKH}\).
Mà 2 góc này ở vị trí đồng vị.
Do đó: KH // BC (đpcm).
Tìm tất cả các số nguyên dương \(x,y,z\) thỏa mãn:
\(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\)và \(200 < {y^2} + {z^2} < 450\).
Biến đổi \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\) thành \(\frac{{6z - 12x}}{9} = \frac{{12x - 8y}}{{16}} = \frac{{8y - 6z}}{4}\).
Áp dụng tính chất dãy tỉ số bằng nhau để suy ra \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2} = 0\)
Từ đó ta có \(6z = 12x = 8y\).
Đặt \(6z = 12x = 8y = 24k\left( {k > 0} \right) \Rightarrow \left( {x;y;z} \right) = \left( {2k;3k;4k} \right)\)
Tìm k dựa vào \(200 < {y^2} + {z^2} < 450\)
Từ đó tính được x, y, z.
Ta có \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\) nên
\(\begin{array}{l}\frac{{3\left( {z - 4x} \right)}}{{3.3}} = \frac{{4\left( {3x - 2y} \right)}}{{4.4}} = \frac{{2\left( {4y - 3z} \right)}}{{2.2}}\\\frac{{6z - 12x}}{9} = \frac{{12x - 8y}}{{16}} = \frac{{8y - 6z}}{4}\end{array}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{{6z - 12x}}{9} = \frac{{12x - 8y}}{{16}} = \frac{{8y - 6z}}{4} = \frac{{6z - 12x + 12x - 8y + 8y - 6z}}{{9 + 16 + 4}} = \frac{0}{{29}} = 0\)
Do đó \(\left\{ \begin{array}{l}6z - 12x = 0\\12x - 8y = 0\\8y - 6z = 0\end{array} \right.\) hay \(6z = 12x = 8y\).
Đặt \(6z = 12x = 8y = 24k\left( {k > 0} \right)\) ta được \(\left( {x;y;z} \right) = \left( {2k;3k;4k} \right)\)
Theo giả thiết \(200 < {y^2} + {z^2} < 450\)
nên \(200 < (3k)^2 + (4k)^2 < 450\)
\(200 < 9{k^2} + 16{k^2} < 450\)
suy ra \(200 < 25{k^2} < 450\)
\(8 < k^2 < 18\)
Do đó \(k \in \left\{ {3;4} \right\}\)
Từ đó tìm được \(\left( {x;y;z} \right) \in \left\{ {\left( {6;9;12} \right);\left( {8;12;16} \right)} \right\}\)
Kỳ thi học kì 2 Toán 7 là một bước quan trọng trong quá trình học tập của các em. Việc nắm vững kiến thức và kỹ năng giải bài tập là yếu tố then chốt để đạt kết quả tốt. Đề thi học kì 2 Toán 7 - Đề số 12 - Kết nối tri thức được xây dựng dựa trên cấu trúc đề thi chính thức, bao gồm các dạng bài tập thường gặp và có độ khó phù hợp với trình độ của học sinh.
Đề thi này bao gồm các phần chính sau:
Đề thi tập trung vào các chủ đề chính sau:
Để giải đề thi hiệu quả, các em cần:
Câu 1: (Trắc nghiệm) Giá trị của biểu thức 2x + 3y khi x = 1 và y = -1 là:
A. 1
B. -1
C. 0
D. 2
Giải: Thay x = 1 và y = -1 vào biểu thức 2x + 3y, ta được: 2(1) + 3(-1) = 2 - 3 = -1. Vậy đáp án đúng là B.
Để nâng cao khả năng giải đề, các em nên luyện tập thêm với các đề thi khác và tham khảo các tài liệu ôn tập. Giaitoan.edu.vn cung cấp nhiều đề thi và bài tập đa dạng, giúp các em ôn tập hiệu quả và tự tin bước vào kỳ thi.
Việc ôn tập thường xuyên và có hệ thống là yếu tố quan trọng để nắm vững kiến thức và kỹ năng giải bài tập. Các em nên dành thời gian ôn tập lại các kiến thức đã học, giải các bài tập trong sách giáo khoa và các đề thi thử. Đừng ngần ngại hỏi thầy cô hoặc bạn bè nếu gặp khó khăn trong quá trình học tập.
Hãy giữ tâm lý thoải mái và tự tin khi làm bài thi. Đọc kỹ đề bài, lập kế hoạch giải và trình bày lời giải một cách rõ ràng. Chúc các em đạt kết quả tốt nhất trong kỳ thi học kì 2!
Chủ đề | Mức độ quan trọng |
---|---|
Số hữu tỉ | Cao |
Biểu thức đại số | Cao |
Phương trình bậc nhất một ẩn | Trung bình |
Bất phương trình bậc nhất một ẩn | Trung bình |
Hình học | Trung bình |