Chào mừng các em học sinh lớp 7 đến với đề thi học kì 1 môn Toán - Đề số 11, chương trình Kết nối tri thức.
Đề thi này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong học kì 1.
Giaitoan.edu.vn cung cấp đề thi và đáp án chi tiết, giúp các em tự học hiệu quả và đạt kết quả tốt nhất.
Khẳng định nào sau đây sai:
Số đối của \(\frac{5}{6}\) là:
Căn bậc hai số học của 196 là:
Số nào là số vô tỉ trong các số sau:
Cho \(\widehat {{\rm{xOy}}} = {70^0}\)và tia Ot là tia phân giác của \(\widehat {{\rm{xOy}}}\). Số đo \(\widehat {{\rm{xOt}}}\) bằng:
Cho hình vẽ bên, biết \({\widehat {\rm{O}}_1} = {60^0}\). Số đo \({\widehat {\rm{O}}_3}\) là:
Đường trung trực của một đoạn thẳng là
Cho hai tam giác \(\Delta ABC\) và \(\Delta MNP\) có \(\widehat B = \widehat P\), \(BC = PN\). Cần thêm điều kiện nào để \(\Delta ABC = \Delta MPN\) theo trường hợp góc – cạnh – góc
Trong các dữ liệu sau, dữ liệu nào không phải là dữ liệu định lượng?
Cho hình vẽ sau có \(\widehat B = {48^O},\widehat {AED} = {65^O}\). Số đo \(\widehat {BAD}\) bằng
Kết quả tìm hiểu về sở thích chơi game của một số học sinh trong một trường
THCS được ghi bởi bảng thống kê sau. Hãy cho biết nhiều học sinh lựa chọn loại nào nhất?
Biểu đồ hình quạt tròn ở hình bên biểu diễn kết quả thống kê (tính theo tỉ số phần trăm) xếp loại học lực giữa kì I của học sinh lớp 7A. Hỏi học sinh đạt loại gì là nhiều nhất?
Thực hiện phép tính:
a) \({\left( {\frac{2}{3} - 1} \right)^2} - \frac{3}{5}:\frac{9}{{10}} + {1^{2022}}\).
b) \(\frac{8}{7} \cdot \left| {\frac{{ - 3}}{5}} \right| + \frac{8}{7} \cdot \sqrt {\frac{4}{{25}}} - \frac{{\sqrt 9 }}{4}\).
Tìm x, biết:
a) \(x + 0,75 = \frac{2}{3}\).
b) \(\left| {\frac{1}{2} - x} \right| = \frac{4}{5}\).
Diện tích nước Việt Nam là 331 698 km2. Hãy làm tròn diện tích này đến hàng nghìn.
Cho \(\widehat {xOy}\) nhọn. Trên \(Ox\) lấy điểm \(A\) và trên \(Oy\) lấy điểm \(B\) sao cho \(OA = OB\). Vẽ ra phía ngoài \(\widehat {xOy}\) hai đoạn \(AM = BN\) sao cho \(AM \bot Ox\) và \(BN \bot Oy\). Chứng minh:
a. \(\Delta OMA = \Delta ONB\).
b. \(\widehat {AON\,}\)= \(\widehat {BOM}\) và \(\widehat {OMB}\)=\(\widehat {ONA}\).
Cho hình vẽ bên, biết: \(m \bot a;m \bot b;\widehat {CDb} = {110^0}\).
a) Chứng minh: a // b
b) Tính số đo: \({\widehat {\rm{D}}_1}\) và \(\widehat {{\rm{ ACD}}}\)
(Học sinh vẽ lại hình vào bài làm)
Khẳng định nào sau đây sai:
Đáp án : D
Dựa vào kiến thức về số hữu tỉ.
+) \(0,\left( {001} \right) = \frac{1}{{999}} \in \mathbb{Q}\) nên A đúng.
+) \(\frac{7}{{33}} \in \mathbb{Q}\) nên B đúng.
+) \( - {\rm{ }}2\frac{3}{5} = - \frac{{13}}{5} \in \mathbb{Q}\) nên C đúng.
+) \(\sqrt 8 \) là số vô tỉ \( \Rightarrow \sqrt 8 \notin \mathbb{Q}\) nên D sai.
Số đối của \(\frac{5}{6}\) là:
Đáp án : D
Dựa vào khái niệm số đối.
Số đối của \(\frac{5}{6}\) là \( - \frac{5}{6}\).
Căn bậc hai số học của 196 là:
Đáp án : C
Sử dụng kiến thức về căn bậc hai số học: Căn bậc hai số học của số a không âm là số x không âm sao cho \({x^2} = a\).
Căn bậc hai số học của 196 là \(\sqrt {196} = 14\).
Số nào là số vô tỉ trong các số sau:
Đáp án : C
Số vô tỉ được biểu diễn dưới dạng số thập phân vô hạn không tuần hoàn.
Ta có: \(\sqrt {\frac{1}{9}} = \frac{1}{3};0 = \frac{0}{1}\). Các số \(\frac{5}{{11}};\sqrt {\frac{1}{9}} ;0\) là số hữu tỉ nên không phải là số vô tỉ.
Vậy chỉ có \(\sqrt {12} \) là số vô tỉ.
Cho \(\widehat {{\rm{xOy}}} = {70^0}\)và tia Ot là tia phân giác của \(\widehat {{\rm{xOy}}}\). Số đo \(\widehat {{\rm{xOt}}}\) bằng:
Đáp án : A
Dựa vào kiến thức về tia phân giác.
Vì Ot là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOt} = \widehat {tOy} = \frac{1}{2}\widehat {xOy} = \frac{1}{2}{.70^0} = {35^0}\).
Cho hình vẽ bên, biết \({\widehat {\rm{O}}_1} = {60^0}\). Số đo \({\widehat {\rm{O}}_3}\) là:
Đáp án : C
Góc \({O_1}\) và góc \({O_3}\) là hai góc đối đỉnh nên \(\widehat {{O_1}} = \widehat {{O_3}}\).
Vì góc \({O_1}\) và góc \({O_3}\) là hai góc đối đỉnh nên \(\widehat {{O_1}} = \widehat {{O_3}}\). Mà \(\widehat {{O_1}} = {60^0}\) nên \(\widehat {{O_3}} = {60^0}\).
Đường trung trực của một đoạn thẳng là
Đáp án : D
Dựa vào khái niệm đường trung trực của một đoạn thẳng.
Đường trung trực của một đoạn thẳng là đường vuông góc với đoạn thẳng ấy tại trung điểm của nó
Cho hai tam giác \(\Delta ABC\) và \(\Delta MNP\) có \(\widehat B = \widehat P\), \(BC = PN\). Cần thêm điều kiện nào để \(\Delta ABC = \Delta MPN\) theo trường hợp góc – cạnh – góc
Đáp án : B
Dựa vào trường hợp bằng nhau góc – cạnh – góc.
Để \(\Delta ABC = \Delta MPN\) theo trường hợp góc – cạnh – góc mà đã có \(\widehat B = \widehat P\), \(BC = PN\) thì \(\widehat C = \widehat N\).
Trong các dữ liệu sau, dữ liệu nào không phải là dữ liệu định lượng?
Đáp án : B
Dựa vào phân loại dữ liệu: Dữ liệu được chia thành hai loại: dữ liệu định tính và dữ liệu định lượng.
Trong các dữ liệu trên, chỉ có dữ liệu quốc tích của các học sinh trong trường quốc tế không phải là dữ liệu định lượng.
Cho hình vẽ sau có \(\widehat B = {48^O},\widehat {AED} = {65^O}\). Số đo \(\widehat {BAD}\) bằng
Đáp án : D
Dựa vào tính chất tam giác cân, định lí tổng 3 góc trong một tam giác và tính chất của hai góc kề bù.
Xét tam giác ADE có \(AD = AE\) nên tam giác ADE cân tại A suy ra \(\widehat {ADE} = \widehat {AED} = {65^0}\).
Vì góc ADB và góc ADE là hai góc kề bù nên \(\widehat {ADB} + \widehat {ADE} = {180^0}\) suy ra \(\widehat {ADB} = {180^0} - {65^0} = {115^0}\).
Xét tam giác ABD, ta có:
\(\widehat {BAD} + \widehat {ADB} + \widehat B = {180^0}\) (tổng 3 góc trong một tam giác).
\( \Rightarrow \widehat {BAD} = {180^0} - \widehat B - \widehat {ADB} = {180^0} - {48^0} - {115^0} = {17^0}\).
Kết quả tìm hiểu về sở thích chơi game của một số học sinh trong một trường
THCS được ghi bởi bảng thống kê sau. Hãy cho biết nhiều học sinh lựa chọn loại nào nhất?
Đáp án : A
Quan sát bảng thống kê, lập bảng số liệu biểu thị sở thích chơi game của các học sinh đó theo số lượng để biết học sinh lựa chọn loại nào nhiều nhất.
Ta có bảng số liệu sở thích chơi game của các học sinh theo số lượng như sau:
Quan sát bảng số liệu trên, ta thấy học sinh lựa chọn “Thích” có số lượng nhiều nhất.
Biểu đồ hình quạt tròn ở hình bên biểu diễn kết quả thống kê (tính theo tỉ số phần trăm) xếp loại học lực giữa kì I của học sinh lớp 7A. Hỏi học sinh đạt loại gì là nhiều nhất?
Đáp án : B
Quan sát biểu đồ để xác định.
Quan sát biểu đồ trên, ta thấy số học sinh khá chiếm tỉ lệ nhiều nhất (40%).
Thực hiện phép tính:
a) \({\left( {\frac{2}{3} - 1} \right)^2} - \frac{3}{5}:\frac{9}{{10}} + {1^{2022}}\).
b) \(\frac{8}{7} \cdot \left| {\frac{{ - 3}}{5}} \right| + \frac{8}{7} \cdot \sqrt {\frac{4}{{25}}} - \frac{{\sqrt 9 }}{4}\).
Sử dụng các quy tắc thực hiện phép tính.
a) \({\left( {\frac{2}{3} - 1} \right)^2} - \frac{3}{5}:\frac{9}{{10}} + {1^{2022}}\)
\(\begin{array}{l} = {\left( {\frac{2}{3} - \frac{3}{3}} \right)^2} - \frac{3}{5} \cdot \frac{{10}}{9} + 1\\ = {\left( {\frac{{ - 1}}{3}} \right)^2} - \frac{2}{3} + 1\\{\rm{ = }}\frac{1}{9} - \frac{6}{9} + \frac{9}{9}\\ = \frac{4}{9}\end{array}\)
b) \(\frac{8}{7} \cdot \left| {\frac{{ - 3}}{5}} \right| + \frac{8}{7} \cdot \sqrt {\frac{4}{{25}}} - \frac{{\sqrt 9 }}{4}\)
\(\begin{array}{l} = \frac{8}{7} \cdot \frac{3}{5} + \frac{8}{7} \cdot \frac{2}{5} - \frac{3}{4}\\ = \frac{8}{7} \cdot \left( {\frac{3}{5} + \frac{2}{5}} \right) - \frac{3}{4} = \frac{8}{7} \cdot 1 - \frac{3}{4}\\ = \frac{{32}}{{28}} - \frac{{21}}{{28}} = \frac{{11}}{{28}}\end{array}\)
Tìm x, biết:
a) \(x + 0,75 = \frac{2}{3}\).
b) \(\left| {\frac{1}{2} - x} \right| = \frac{4}{5}\).
a) Dựa vào quy tắc chuyển vế để tìm x.
b) Chia hai trường hợp: \(\frac{1}{2} - x = \frac{4}{5}\) hoặc \(\frac{1}{2} - x = \frac{{ - {\rm{ }}4}}{5}\).
a) \(x + 0,75 = \frac{2}{3}\)
\(\begin{array}{l}x + \frac{3}{4} = \frac{2}{3}\\x = \frac{2}{3} - \frac{3}{4}\\x = \frac{{ - 1}}{{12}}\end{array}\)
Vậy \(x = \frac{{ - 1}}{{12}}\).
b) \(\left| {\frac{1}{2} - x} \right| = \frac{4}{5}\) thì \(\frac{1}{2} - x = \frac{4}{5}\) hoặc \(\frac{1}{2} - x = \frac{{ - {\rm{ }}4}}{5}\).
TH1. \(\frac{1}{2} - x = \frac{4}{5}\)
\(\begin{array}{l}x = \frac{1}{2} - \frac{4}{5}\\x = \frac{{ - 3}}{{10}}\end{array}\)
TH2. \(\frac{1}{2} - x = \frac{{ - {\rm{ }}4}}{5}\)
\(\begin{array}{l}x = \frac{1}{2} + \frac{4}{5}\\x = \frac{{13}}{{10}}\end{array}\)
Vậy \(x \in \left\{ {\frac{{ - 3}}{{10}};\frac{{13}}{{10}}} \right\}\).
Diện tích nước Việt Nam là 331 698 km2. Hãy làm tròn diện tích này đến hàng nghìn.
Dựa vào cách làm tròn số với độ chính xác cho trước.
Ta có: 331 698 \( \approx \) 332 000.
Vậy diện tích nước Việt Nam được làm tròn đến hàng nghìn là khoảng 332 000 km2.
Cho \(\widehat {xOy}\) nhọn. Trên \(Ox\) lấy điểm \(A\) và trên \(Oy\) lấy điểm \(B\) sao cho \(OA = OB\). Vẽ ra phía ngoài \(\widehat {xOy}\) hai đoạn \(AM = BN\) sao cho \(AM \bot Ox\) và \(BN \bot Oy\). Chứng minh:
a. \(\Delta OMA = \Delta ONB\).
b. \(\widehat {AON\,}\)= \(\widehat {BOM}\) và \(\widehat {OMB}\)=\(\widehat {ONA}\).
a. \(\Delta OMA = \Delta ONB\left( {c - g - c} \right)\)
b. Theo a suy ra \(\widehat {AOM}\)=\(\widehat {BON}\)
Suy ra \(\widehat {AOM}\)+\(\widehat {AOB}\)=\(\widehat {AOB}\)+\(\widehat {BON}\)
Suy ra \(\widehat {AON\,}\)=\(\widehat {BOM}\)
Chứng minh \(\Delta OMB = \Delta ONA\left( {c - g - c} \right)\)
Suy ra \(\widehat {OMB}\)=\(\widehat {ONA}\)
a. \(\Delta OMA = \Delta ONB\left( {c - g - c} \right)\)
b. Theo a suy ra \(\widehat {AOM}\)=\(\widehat {BON}\)
Suy ra \(\widehat {AOM}\)+\(\widehat {AOB}\)=\(\widehat {AOB}\)+\(\widehat {BON}\)
Suy ra \(\widehat {AON\,}\)=\(\widehat {BOM}\)
Chứng minh \(\Delta OMB = \Delta ONA\left( {c - g - c} \right)\)
Suy ra \(\widehat {OMB}\)=\(\widehat {ONA}\)
Cho hình vẽ bên, biết: \(m \bot a;m \bot b;\widehat {CDb} = {110^0}\).
a) Chứng minh: a // b
b) Tính số đo: \({\widehat {\rm{D}}_1}\) và \(\widehat {{\rm{ ACD}}}\)
(Học sinh vẽ lại hình vào bài làm)
a) Chứng minh a và b cùng vuông góc với m nên song song với nhau.
b) Dựa vào kiến thức về hai góc đối, hai đường thẳng song song để tính số đo \({\widehat {\rm{D}}_1}\) và \(\widehat {{\rm{ ACD}}}\).
a) Vì \(m \bot a;m \bot b\) (gt) nên a // b (đpcm).
b) Ta có: \(\widehat {{D_1}} = \widehat {{D_3}} = {110^0}\) (hai góc đối đỉnh).
Ta có: a // b (cmt) suy ra:\({\rm{ }}{\widehat {\rm{C}}_2} = {\widehat {\rm{D}}_3} = {110^0}\)(2 góc so le trong)
Ta có:\({\rm{ }}{\widehat {\rm{C}}_2} + {\widehat {\rm{C}}_1} = {180^0}\) (2 góc kề bù)
\(\begin{array}{l}{110^0} + {\widehat {\rm{C}}_1} = {180^0}\\{\widehat {\rm{C}}_1} = {180^0} - {110^0} = {70^0}\end{array}\)
Vậy \(\widehat {{D_1}} = {110^0};\widehat {{C_1}} = {70^0}\).
Đề thi học kì 1 Toán 7 - Đề số 11 chương trình Kết nối tri thức là một bài kiểm tra quan trọng giúp học sinh đánh giá mức độ nắm vững kiến thức đã học trong nửa học kì đầu tiên. Đề thi bao gồm các dạng bài tập khác nhau, từ trắc nghiệm đến tự luận, tập trung vào các chủ đề chính như số hữu tỉ, số thực, biểu thức đại số, phương trình bậc nhất một ẩn, bất đẳng thức và các ứng dụng thực tế của Toán học.
Thông thường, đề thi học kì 1 Toán 7 - Đề số 11 - Kết nối tri thức sẽ được chia thành các phần sau:
Các bài tập về số hữu tỉ và số thực thường yêu cầu học sinh:
Các bài tập về biểu thức đại số thường yêu cầu học sinh:
Các bài tập về phương trình bậc nhất một ẩn thường yêu cầu học sinh:
Các bài tập về bất đẳng thức thường yêu cầu học sinh:
Ví dụ 1: Giải phương trình 2x + 5 = 11
Lời giải:
Ví dụ 2: Tìm giá trị của biểu thức A = 3x2 - 2x + 1 khi x = -1
Lời giải:
A = 3(-1)2 - 2(-1) + 1 = 3(1) + 2 + 1 = 3 + 2 + 1 = 6
Ngoài đề thi này, các em có thể tham khảo thêm các tài liệu sau để ôn tập và nâng cao kiến thức:
Giaitoan.edu.vn hy vọng đề thi này sẽ giúp các em học sinh lớp 7 ôn tập và đạt kết quả tốt nhất trong kỳ thi học kì 1. Chúc các em thành công!