Logo Header
  1. Môn Toán
  2. Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13

Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13

Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13

Chào mừng các em học sinh lớp 7 đến với đề thi học kì 1 môn Toán chương trình Chân trời sáng tạo - Đề số 13.

Đề thi này được biên soạn theo cấu trúc đề thi chính thức của Bộ Giáo dục và Đào tạo, giúp các em làm quen với dạng đề và rèn luyện kỹ năng giải toán.

Đề bài

    I. Trắc nghiệm
    Câu 1 :

    Căn bậc hai số học của 36 là:

    • A.
      \(\sqrt 6 \).
    • B.
      6.
    • C.
      – 6.
    • D.
      –\(\sqrt 6 \).
    Câu 2 :

    Khẳng định nào sau đây đúng?

    • A.
      \( - 1,(3)\, \notin \,\,\mathbb{R}\).
    • B.
      \(3,5\, \in \,\,{\rm{I}}\).
    • C.
      \(\pi \, \in \,\,\mathbb{R}\).
    • D.
      \(\sqrt {11} \, \notin \,\,{\rm{I}}\).
    Câu 3 :

    Cho \(\left| x \right|\) = 9 thì giá trị của x là:

    • A.
      x = 9 hoặc x = –9.
    • B.
      x = 3.
    • C.
      x = 3 hoặc x = – 3.
    • D.
      x = –9.
    Câu 4 :

    Hình hộp chữ nhật \({\rm{ABCD}}{\rm{.}}\,{\rm{A'B'C'D'}}\)có \({\rm{AD}}\,{\rm{ = }}\,7{\rm{cm}}\). Khẳng định nào sau đây đúng?

    Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 0 1

    • A.
      \({\rm{A'B'}} = 7\,{\rm{cm}}\)..
    • B.
      \({\rm{B'C'}} = 7\,{\rm{cm}}\)
    • C.
      \({\rm{CC'}} = 7{\rm{cm}}\).
    • D.
      \({\rm{BD'}} = 7{\rm{cm}}\).
    Câu 5 :

    Quan sát lăng trụ đứng tam giác ABC.DEF ở hình bên. Hỏi mặt bên ABED là hình gì?

    Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 0 2

    • A.
      Hình thoi.
    • B.
      Hình bình hành.
    • C.
      Hình thang cân.
    • D.
      Hình chữ nhật.
    Câu 6 :

    Hãy điền vào chỗ “….” để được khẳng định đúng: Qua một điểm M nằm ngoài đường thẳng a …............. đường thẳng song song với đường thẳng a.

    • A.
      chỉ có một.
    • B.
      có vô số.
    • C.
      không có.
    • D.
      có hai.
    Câu 7 :

    Quan sát lăng trụ đứng tứ giác ở hình bên. Cho biết lăng trụ đứng bên là hình gì?

    Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 0 3

    • A.
      Hình trụ đứng tam giác.
    • B.
      Hình lăng trụ đứng lục giác.
    • C.
      Hình trụ.
    • D.
      Hình lập phương.
    Câu 8 :

    Biểu đồ hình quạt tròn ở hình bên biểu diễn kết quả thống kê (tính theo tỉ số phần trăm) chọn môn thể thao ưa thích nhất trong bốn môn: Bóng đá, Cầu lông, Bóng bàn, Bóng chuyền của học sinh khối 7 ở trường A. Mỗi học sinh chỉ được chọn một môn thể thao khi được hỏi ý kiến. Hỏi số học sinh chọn môn Bóng đá và Cầu lông.

    Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 0 4

    • A.
      40%.
    • B.
      65%.
    • C.
      55%.
    • D.
      45%.
    Câu 9 :

    Trong các số sau, số nào biểu diễn số thập phân vô hạn tuần hoàn?

    • A.
      \(\frac{1}{{10}}\).
    • B.
      \(\frac{2}{5}\).
    • C.
      \(\frac{7}{6}\).
    • D.
      \(\sqrt {13} \).
    Câu 10 :

    Quan sát hình vẽ bên dưới, tia phân giác của góc xOy là:

    Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 0 5

    • A.
      Ox.
    • B.
      Oy.
    • C.
      Ot.
    • D.
      không có.
    Câu 11 :

    Cho hình vẽ bên, biết a // b. Số đo là bao nhiêu?

    Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 0 6

    • A.
      600.
    • B.
      650.
    • C.
      1150.
    • D.
      1000.
    Câu 12 :

    Hình vẽ nào sau đây không có hai đường thẳng song song?

    Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 0 7

    • A.
      Hình 1.
    • B.
      Hình 2.
    • C.
      Hình 3.
    • D.
      Hình 4.
    II. Tự luận
    Câu 1 :

    Tìm số đối của các số sau : \(\frac{{11}}{{29}}\); \( - \sqrt {97} \)

    Câu 2 :

    a) Tính: \(\frac{7}{{10}} \cdot \frac{{15}}{{19}} + \frac{7}{{10}} \cdot \frac{4}{{19}}\).

    b) Tìm x, biết: \(0,8 - \left( {{\rm{x + }}\frac{3}{5}} \right) = \frac{1}{2}\).

    Câu 3 :

    Viết giả thiết, kết luận của định lí: “Nếu hai đường thẳng a và b phân biệt cùng vuông góc với một đường thẳng c thì a và b song song với nhau”.

    Câu 4 :

    Tính các căn bậc hai số học của các số sau (kết quả làm tròn đến hàng phần trăm)

    a) \(\sqrt {31} \)

    b) \(\sqrt {123} \)

    c) \( - 200\sqrt 5 \)

    Câu 5 :

    Quan sát hình vẽ sau.

    Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 0 8

    Giải thích vì sao BC song song với EF?

    Câu 6 :

    Hãy nêu dữ liệu chưa hợp lí trong mỗi bảng thống kê sau:

    a)

    Lớp

    Sĩ số

    Số học sinh đăng ký tham quan ngoại khóa

    7A

    45

    35

    7B

    50

    42

    7C

    48

    50

    7D

    47

    30

    Tổng

    190

    157

    1. b)

    Tỉ số phần trăm các loại xe trong nhà xe của chung cư A

    Loại xe

    Tỉ số phần trăm

    Xe đạp

    15%

    Xe gắn máy

    65%

    Xe điện

    15%

    Ô tô

    8%

    Tổng

    103%

    Câu 7 :

    Số học sinh yêu thích các môn thể thao: đá bóng, đá cầu, cầu lông, bơi và môn thể thao khác của một trường THCS được biểu diễn qua biểu đồ hình quạt tròn dưới đây. Tính số phần trăm học sinh yêu thích môn thể thao khác?

    Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 0 9

    Câu 8 :

    Tính đến ngày 01/04/2019 Việt Nam là quốc gia đông dân thứ ba trong khu vực Đông Nam Á. Tổng số dân của Việt Nam là 96 208 984 người, trong đó dân số nam là 47 881 061 người và dân số nữ là 48 327 923 người. Hãy làm tròn các số liệu về dân số nam và dân số nữ nêu trên đến hàng nghìn.

    Câu 9 :

    Kết quả tìm hiểu về mức độ yêu thích đối với việc đọc sách trong thư viện của các bạn nam lớp 7C tại một trường Trung học cơ sở được cho bởi bảng thống kê sau:

    Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 0 10

    a) Hãy phân loại các dữ liệu trong bảng thống kê trên dựa vào tiêu chí định tính và định lượng.

    b) Biết lớp 7C có 50 học sinh. Hỏi dữ liệu trên có đại diện được cho mức độ yêu thích đối với việc đọc sách trong thư viện của các bạn học sinh lớp 7C hay không? Vì sao?

    Câu 10 :

    Một người luyện tập chạy bộ từ nhà đến một công viên ở cách đó 874,8 m đường bộ với tốc độ là 97,2 (m/phút). Khi đến công viên, người này đã ở đây trong 10 phút để chơi cầu lông cùng nhóm bạn. Sau đó người này đã chạy bộ theo đường cũ từ công viên về nhà và dừng lại tại một quán cà phê cách nhà 360 m đường bộ. Biết rằng tổng thời gian từ lúc bắt đầu chạy bộ từ nhà cho đến khi dừng ở quán cà phê là 34,6 phút và quán này nằm trên đoạn đường từ nhà đến công viên. Hỏi khi chạy bộ từ công viên đến quán cà phê, tốc độ của người đó là bao nhiêu? (đơn vị đo là m/phút)

    Lời giải và đáp án

      I. Trắc nghiệm
      Câu 1 :

      Căn bậc hai số học của 36 là:

      • A.
        \(\sqrt 6 \).
      • B.
        6.
      • C.
        – 6.
      • D.
        –\(\sqrt 6 \).

      Đáp án : B

      Phương pháp giải :

      Sử dụng kiến thức về căn bậc hai số học: Căn bậc hai số học của số a không âm là số x không âm sao cho \({x^2} = a\).

      Lời giải chi tiết :

      Căn bậc hai số học của 36 là \(\sqrt {36} = 6\).

      Câu 2 :

      Khẳng định nào sau đây đúng?

      • A.
        \( - 1,(3)\, \notin \,\,\mathbb{R}\).
      • B.
        \(3,5\, \in \,\,{\rm{I}}\).
      • C.
        \(\pi \, \in \,\,\mathbb{R}\).
      • D.
        \(\sqrt {11} \, \notin \,\,{\rm{I}}\).

      Đáp án : C

      Phương pháp giải :

      \(\mathbb{R}\) là tập hợp các số thực.

      \(I\) là tập hợp các số vô tỉ.

      Lời giải chi tiết :

      \( - 1,\left( 3 \right)\) là số thực nên A sai.

      \(3,5 = \frac{{35}}{{10}} = \frac{7}{2}\) là số hữu tỉ nên không phải là số vô tỉ, do đó \(3,5 \notin \,{\rm{I}}\) nên B sai.

      \(\pi = 3,14...\) là số thực, \(\pi \, \in \,\,\mathbb{R}\) nên C đúng.

      \(\sqrt {11} \) là số vô tỉ nên D sai.

      Câu 3 :

      Cho \(\left| x \right|\) = 9 thì giá trị của x là:

      • A.
        x = 9 hoặc x = –9.
      • B.
        x = 3.
      • C.
        x = 3 hoặc x = – 3.
      • D.
        x = –9.

      Đáp án : A

      Phương pháp giải :

      Dựa vào kiến thức về dấu giá trị tuyệt đối.

      Lời giải chi tiết :

      Ta có: \(\left| x \right| = 9\) thì x = 9 hoặc x = –9.

      Câu 4 :

      Hình hộp chữ nhật \({\rm{ABCD}}{\rm{.}}\,{\rm{A'B'C'D'}}\)có \({\rm{AD}}\,{\rm{ = }}\,7{\rm{cm}}\). Khẳng định nào sau đây đúng?

      Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 1 1

      • A.
        \({\rm{A'B'}} = 7\,{\rm{cm}}\)..
      • B.
        \({\rm{B'C'}} = 7\,{\rm{cm}}\)
      • C.
        \({\rm{CC'}} = 7{\rm{cm}}\).
      • D.
        \({\rm{BD'}} = 7{\rm{cm}}\).

      Đáp án : B

      Phương pháp giải :

      Dựa vào kiến thức về hình hộp chữ nhật.

      Lời giải chi tiết :

      Ta có: AD = A’D’ = B’C’ = BC = 7cm nên B đúng.

      Câu 5 :

      Quan sát lăng trụ đứng tam giác ABC.DEF ở hình bên. Hỏi mặt bên ABED là hình gì?

      Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 1 2

      • A.
        Hình thoi.
      • B.
        Hình bình hành.
      • C.
        Hình thang cân.
      • D.
        Hình chữ nhật.

      Đáp án : D

      Phương pháp giải :

      Hình lăng trụ đứng tam giác là hình hai mặt đáy là hình tam giác song song với nhau, ba mặt bên là các hình chữ nhật, các cạnh bên song song và bằng nhau.

      Lời giải chi tiết :

      Hình lăng trụ đứng tam giác ABC.DEF có các cạnh bên là các hình chữ nhật nên chọn đáp án D.

      Câu 6 :

      Hãy điền vào chỗ “….” để được khẳng định đúng: Qua một điểm M nằm ngoài đường thẳng a …............. đường thẳng song song với đường thẳng a.

      • A.
        chỉ có một.
      • B.
        có vô số.
      • C.
        không có.
      • D.
        có hai.

      Đáp án : A

      Phương pháp giải :

      Dựa vào kiến thức về các đường thẳng song song.

      Lời giải chi tiết :

      Qua một điểm M nằm ngoài đường thẳng a chỉ có một đường thẳng song song với đường thẳng a.

      Câu 7 :

      Quan sát lăng trụ đứng tứ giác ở hình bên. Cho biết lăng trụ đứng bên là hình gì?

      Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 1 3

      • A.
        Hình trụ đứng tam giác.
      • B.
        Hình lăng trụ đứng lục giác.
      • C.
        Hình trụ.
      • D.
        Hình lập phương.

      Đáp án : D

      Phương pháp giải :

      Dựa vào đặc điểm các hình đã học.

      Lời giải chi tiết :

      Hình lăng trụ đứng tứ giác bên có các cạnh bằng nhau và bằng 4cm nên hình bên là hình lập phương.

      Câu 8 :

      Biểu đồ hình quạt tròn ở hình bên biểu diễn kết quả thống kê (tính theo tỉ số phần trăm) chọn môn thể thao ưa thích nhất trong bốn môn: Bóng đá, Cầu lông, Bóng bàn, Bóng chuyền của học sinh khối 7 ở trường A. Mỗi học sinh chỉ được chọn một môn thể thao khi được hỏi ý kiến. Hỏi số học sinh chọn môn Bóng đá và Cầu lông.

      Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 1 4

      • A.
        40%.
      • B.
        65%.
      • C.
        55%.
      • D.
        45%.

      Đáp án : B

      Phương pháp giải :

      Quan sát biểu đồ để xác định số phần trăm học sinh chọn môn Bóng đá và Cầu lông.

      Lời giải chi tiết :

      Số học sinh chọn môn Bóng đá chiếm 40%, số học sinh chọn môn Cầu lông chiếm 25% nên tổng số học sinh chọn môn Bóng đá và Cầu lông chiếm: 40% + 25% = 65% tổng số học sinh.

      Câu 9 :

      Trong các số sau, số nào biểu diễn số thập phân vô hạn tuần hoàn?

      • A.
        \(\frac{1}{{10}}\).
      • B.
        \(\frac{2}{5}\).
      • C.
        \(\frac{7}{6}\).
      • D.
        \(\sqrt {13} \).

      Đáp án : C

      Phương pháp giải :

      Các phân số tối giản với mẫu số dương mà mẫu có ước nguyên tố khác 2 và 5 đều viết được dưới dạng số thập phân vô hạn tuần hoàn.

      Lời giải chi tiết :

      \(\frac{1}{{10}}\) và \(\frac{2}{5}\) có mẫu chỉ có ước nguyên tố là 2 và 5 nên không biểu diễn số thập phân vô hạn tuần hoàn.

      \(\frac{7}{6}\) mẫu số có ước là 2 và 3 nên biểu diễn số thập phân vô hạn tuần hoàn.

      \(\sqrt {13} \) không viết được dưới dạng phân số nên không phải số thập phân vô hạn tuần hoàn.

      Câu 10 :

      Quan sát hình vẽ bên dưới, tia phân giác của góc xOy là:

      Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 1 5

      • A.
        Ox.
      • B.
        Oy.
      • C.
        Ot.
      • D.
        không có.

      Đáp án : C

      Phương pháp giải :

      Dựa vào tính chất tia phân giác của một góc: \(Ot\) là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOt} = \widehat {tOy} = \frac{1}{2}\widehat {xOy}\).

      Lời giải chi tiết :

      Vì \(\widehat {xOt} = \widehat {tOy}\) và Ot nằm trong góc xOy nên Ot là tia phân giác của góc xOy.

      Câu 11 :

      Cho hình vẽ bên, biết a // b. Số đo là bao nhiêu?

      Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 1 6

      • A.
        600.
      • B.
        650.
      • C.
        1150.
      • D.
        1000.

      Đáp án : B

      Phương pháp giải :

      Dựa vào tính chất của hai đường thẳng song song: Hai đường thẳng song song với nhau thì hai góc so le trong bằng nhau.

      Lời giải chi tiết :

      Vì a // b nên \(\widehat {{N_1}} = \widehat {NMa} = {65^0}\) (2 góc so le trong).

      Câu 12 :

      Hình vẽ nào sau đây không có hai đường thẳng song song?

      Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 1 7

      • A.
        Hình 1.
      • B.
        Hình 2.
      • C.
        Hình 3.
      • D.
        Hình 4.

      Đáp án : B

      Phương pháp giải :

      Dựa vào dấu hiệu nhận biết hai đường thẳng song song.

      Lời giải chi tiết :

      Hình 1 có hai góc so le trong bằng nhau (= 450) nên hình 1 có hai đường thẳng song song.

      Hình 2 hai góc so le trong không bằng nhau nên hình 2 không có hai đường thẳng song song.

      Hình 3 có hai góc đồng vị bằng nhau (= 600) nên hình 3 có hai đường thẳng song song.

      Hình 4 có hai góc đồng vị bằng nhau (= 900) nên hình 4 có hai đường thẳng song song.

      II. Tự luận
      Câu 1 :

      Tìm số đối của các số sau : \(\frac{{11}}{{29}}\); \( - \sqrt {97} \)

      Phương pháp giải :

      Số đối của số a là – a.

      Lời giải chi tiết :

      - Số đối của \(\frac{{11}}{{29}}\) là \( - \,\,\frac{{11}}{{29}}\).

      - Số đối của \( - \sqrt {97} \) là \( - \left( { - \sqrt {97} } \right) = \sqrt {97} \).

      Câu 2 :

      a) Tính: \(\frac{7}{{10}} \cdot \frac{{15}}{{19}} + \frac{7}{{10}} \cdot \frac{4}{{19}}\).

      b) Tìm x, biết: \(0,8 - \left( {{\rm{x + }}\frac{3}{5}} \right) = \frac{1}{2}\).

      Phương pháp giải :

      a) Nhóm nhân tử chung để tính.

      b) Sử dụng quy tắc chuyển vế để tìm x.

      Lời giải chi tiết :

      a) \(\frac{7}{{10}} \cdot \frac{{15}}{{19}} + \frac{7}{{10}} \cdot \frac{4}{{19}}\)

      \(\begin{array}{l} = \frac{7}{{10}}\left( {\frac{{15}}{{19}} + \frac{4}{{19}}} \right)\\ = \frac{7}{{10}}.1\\ = \frac{7}{{10}}\end{array}\)

      b) \(0,8 - \left( {{\rm{x + }}\frac{3}{5}} \right) = \frac{1}{2}\)

      \(\begin{array}{l}\frac{4}{5} - \left( {{\rm{x + }}\frac{3}{5}} \right) = \frac{1}{2}\\x + \frac{3}{5} = \frac{4}{5} - \frac{1}{2}\\x + \frac{3}{5} = \frac{3}{{10}}\\x = \frac{3}{{10}} - \frac{3}{5}\\x = \frac{{ - 3}}{{10}}\end{array}\)

      Vậy \(x = \frac{{ - 3}}{{10}}\).

      Câu 3 :

      Viết giả thiết, kết luận của định lí: “Nếu hai đường thẳng a và b phân biệt cùng vuông góc với một đường thẳng c thì a và b song song với nhau”.

      Phương pháp giải :

      Khi giả thiết được phát biểu dưới dạng: “Nếu … thì”, phần giữa từ “nếu” và từ “thì” là giả thiết của định lí, phần sau từ “thì” là kết luận của định lí.

      Lời giải chi tiết :

      - Giả thiết: hai đường thẳng a và b phân biệt cùng vuông góc với một đường thẳng c

      - Kết luận: a và b song song với nhau.

      Câu 4 :

      Tính các căn bậc hai số học của các số sau (kết quả làm tròn đến hàng phần trăm)

      a) \(\sqrt {31} \)

      b) \(\sqrt {123} \)

      c) \( - 200\sqrt 5 \)

      Phương pháp giải :

      Sử dụng kiến thức về căn bậc hai số học: Căn bậc hai số học của số a không âm là số x không âm sao cho \({x^2} = a\).

      Lời giải chi tiết :

      a) \(\sqrt {31} = 5,567764363... \approx 5,57\).

      b) \(\sqrt {123} = 11,09053651... \approx 11,09\).

      c) \( - 200\sqrt 5 = - 447,2135955... \approx - 447,21\).

      Câu 5 :

      Quan sát hình vẽ sau.

      Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 1 8

      Giải thích vì sao BC song song với EF?

      Phương pháp giải :

      Dựa vào dấu hiệu nhận biết hai đường thẳng song song.

      Lời giải chi tiết :

      Ta có : \(\widehat {AEF} = \widehat {ABC} = {48^0}\) Mà hai góc này ở vị trí đồng vị \( \Rightarrow \) BC // EF.

      Câu 6 :

      Hãy nêu dữ liệu chưa hợp lí trong mỗi bảng thống kê sau:

      a)

      Lớp

      Sĩ số

      Số học sinh đăng ký tham quan ngoại khóa

      7A

      45

      35

      7B

      50

      42

      7C

      48

      50

      7D

      47

      30

      Tổng

      190

      157

      1. b)

      Tỉ số phần trăm các loại xe trong nhà xe của chung cư A

      Loại xe

      Tỉ số phần trăm

      Xe đạp

      15%

      Xe gắn máy

      65%

      Xe điện

      15%

      Ô tô

      8%

      Tổng

      103%

      Phương pháp giải :

      Quan sát bảng thống kê để xác định dữ liệu chưa hợp lí.

      Lời giải chi tiết :

      a) Bảng thống kê này chưa hợp lý vì số học sinh đăng ký tham quan ngoại khóa của lớp 7C (50 HS) nhiều hơn sĩ số lớp 7C (48 HS).

      b) Bảng thống kê này chưa hợp lý vì tổng tỉ số phần trăm các loại xe trong nhà xe chung cư A vượt quá 100% (103%).

      Câu 7 :

      Số học sinh yêu thích các môn thể thao: đá bóng, đá cầu, cầu lông, bơi và môn thể thao khác của một trường THCS được biểu diễn qua biểu đồ hình quạt tròn dưới đây. Tính số phần trăm học sinh yêu thích môn thể thao khác?

      Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 1 9

      Phương pháp giải :

      Vì tổng số phần trăm học sinh là 100% nên số phần trăm học sinh yêu thích môn thể thao khác bằng 100% - số phần trăm học sinh thích các môn thể thao còn lại (đá bóng, đá cầu, cầu lông, bơi).

      Lời giải chi tiết :

      Số phần trăm học sinh yêu thích các môn thể thao khác là:

      100% – (20% + 15% + 30% + 25%) = 10% (số học sinh trường)

      Câu 8 :

      Tính đến ngày 01/04/2019 Việt Nam là quốc gia đông dân thứ ba trong khu vực Đông Nam Á. Tổng số dân của Việt Nam là 96 208 984 người, trong đó dân số nam là 47 881 061 người và dân số nữ là 48 327 923 người. Hãy làm tròn các số liệu về dân số nam và dân số nữ nêu trên đến hàng nghìn.

      Phương pháp giải :

      Sử dụng cách làm tròn số.

      Lời giải chi tiết :

      - Dân số nam: 47 881 061 $\approx $ 47 881 000 người.

      - Dân số nữ: 48 327 923 $\approx $ 48 328 000 người.

      Câu 9 :

      Kết quả tìm hiểu về mức độ yêu thích đối với việc đọc sách trong thư viện của các bạn nam lớp 7C tại một trường Trung học cơ sở được cho bởi bảng thống kê sau:

      Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 1 10

      a) Hãy phân loại các dữ liệu trong bảng thống kê trên dựa vào tiêu chí định tính và định lượng.

      b) Biết lớp 7C có 50 học sinh. Hỏi dữ liệu trên có đại diện được cho mức độ yêu thích đối với việc đọc sách trong thư viện của các bạn học sinh lớp 7C hay không? Vì sao?

      Phương pháp giải :

      a) Dữ liệu định tính là dữ liệu không phải là số.

      Dữ liệu định lượng là dữ liệu số.

      b) Nếu tổng số bạn nam tham gia khảo sát bằng số học sinh lớp 7C thì dữ liệu trên đại diện được mức độ yêu thích đối với việc đọc sách trong thư viện của các bạn học sinh lớp 7C.

      Lời giải chi tiết :

      a)

      - Dữ liệu định tính là: sở thích (không thích, thích, rất thích, không quan tâm)

      - Dữ liệu định lượng là: số bạn nam (5; 7; 6; 4)

      b) Số bạn nam tham gia khảo sát là: 5 + 7 + 6 + 4 = 22 (học sinh). Vì số học sinh lớp 7C là 50 học sinh nên dữ liệu trên chưa có đại diện được cho mức độ yêu thích đối với việc đọc sách trong thư viện của các bạn học sinh lớp 7C vì đối tượng khảo sát còn thiếu các bạn nữ.

      Câu 10 :

      Một người luyện tập chạy bộ từ nhà đến một công viên ở cách đó 874,8 m đường bộ với tốc độ là 97,2 (m/phút). Khi đến công viên, người này đã ở đây trong 10 phút để chơi cầu lông cùng nhóm bạn. Sau đó người này đã chạy bộ theo đường cũ từ công viên về nhà và dừng lại tại một quán cà phê cách nhà 360 m đường bộ. Biết rằng tổng thời gian từ lúc bắt đầu chạy bộ từ nhà cho đến khi dừng ở quán cà phê là 34,6 phút và quán này nằm trên đoạn đường từ nhà đến công viên. Hỏi khi chạy bộ từ công viên đến quán cà phê, tốc độ của người đó là bao nhiêu? (đơn vị đo là m/phút)

      Phương pháp giải :

      - Tính thời gian người đó chạy bộ từ nhà đến công viên.

      - Thời gian chạy bộ từ công viên đến quán cà phê.

      - Tính tốc độ của người đó từ công viên đến quán cà phê.

      Lời giải chi tiết :

      Thời gian người đó chạy từ nhà đến công viên là: 874,8: 97,2 = 9 (phút)

      Thời gian người đó chạy từ công viên đến quán cà phê là: 34,6 – (9 + 10) = 15,6 (phút)

      Quãng đường người đó chạy bộ từ công viên đến quán cà phê là: 874,8 – 360 = 514,8 (m)

      Tốc độ chạy bộ của người đó từ công viên đến quán cà phê là: 514,8 : 15,6 = 33 (m/phút)

      Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 tại chuyên mục giải bài tập toán lớp 7 trên soạn toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

      Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13: Tổng quan và Hướng dẫn Giải chi tiết

      Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 là một công cụ quan trọng giúp học sinh lớp 7 ôn tập và đánh giá kiến thức đã học trong nửa học kì đầu tiên. Đề thi bao gồm các dạng bài tập khác nhau, tập trung vào các chủ đề chính như số hữu tỉ, số thực, biểu thức đại số, phương trình bậc nhất một ẩn, bất đẳng thức và các ứng dụng thực tế của toán học.

      Cấu trúc đề thi

      Đề thi thường được chia thành các phần sau:

      • Phần trắc nghiệm: Kiểm tra kiến thức cơ bản và khả năng nhận biết các khái niệm toán học.
      • Phần tự luận: Yêu cầu học sinh trình bày lời giải chi tiết cho các bài toán, thể hiện khả năng vận dụng kiến thức và kỹ năng giải toán.

      Nội dung chi tiết đề thi

      I. Số hữu tỉ và số thực

      Phần này thường bao gồm các bài tập về:

      • Nhận biết và phân loại số hữu tỉ, số thực.
      • Thực hiện các phép toán cộng, trừ, nhân, chia trên số hữu tỉ và số thực.
      • So sánh và sắp xếp các số hữu tỉ và số thực.

      II. Biểu thức đại số

      Các bài tập trong phần này thường liên quan đến:

      • Thu gọn biểu thức đại số.
      • Tính giá trị của biểu thức đại số tại một giá trị cụ thể của biến.
      • Phân tích đa thức thành nhân tử.

      III. Phương trình bậc nhất một ẩn

      Học sinh cần nắm vững các kiến thức về:

      • Khái niệm phương trình bậc nhất một ẩn.
      • Các bước giải phương trình bậc nhất một ẩn.
      • Ứng dụng phương trình bậc nhất một ẩn để giải các bài toán thực tế.

      IV. Bất đẳng thức

      Phần này tập trung vào:

      • Khái niệm bất đẳng thức.
      • Các tính chất của bất đẳng thức.
      • Giải bất đẳng thức bậc nhất một ẩn.

      Hướng dẫn giải chi tiết

      Để giải tốt đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13, học sinh cần:

      1. Nắm vững kiến thức cơ bản: Hiểu rõ các định nghĩa, tính chất và công thức toán học.
      2. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng giải toán.
      3. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán trước khi bắt đầu giải.
      4. Trình bày lời giải rõ ràng, logic: Viết các bước giải một cách chi tiết và dễ hiểu.
      5. Kiểm tra lại kết quả: Đảm bảo rằng kết quả cuối cùng là chính xác.

      Tài liệu tham khảo hữu ích

      Ngoài đề thi này, học sinh có thể tham khảo thêm các tài liệu sau:

      • Sách giáo khoa Toán 7 Chân trời sáng tạo.
      • Sách bài tập Toán 7 Chân trời sáng tạo.
      • Các trang web học toán online uy tín như giaitoan.edu.vn.
      • Các video bài giảng Toán 7 trên YouTube.

      Lời khuyên

      Hãy dành thời gian ôn tập và luyện tập đầy đủ trước khi bước vào kỳ thi. Chúc các em học sinh đạt kết quả tốt nhất!

      Ví dụ minh họa

      Bài 1: Giải phương trình 2x + 5 = 11

      Lời giải:

      2x + 5 = 11

      2x = 11 - 5

      2x = 6

      x = 6 / 2

      x = 3

      Kết luận

      Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 13 là một bài kiểm tra quan trọng để đánh giá năng lực học tập của học sinh. Việc chuẩn bị kỹ lưỡng và nắm vững kiến thức là chìa khóa để đạt được kết quả cao trong kỳ thi này.

      Tài liệu, đề thi và đáp án Toán 7