Giaitoan.edu.vn xin giới thiệu Đề thi giữa kì 2 Toán 7 Chân trời sáng tạo - Đề số 8, được biên soạn theo chuẩn chương trình học mới nhất. Đề thi này là tài liệu ôn tập lý tưởng giúp học sinh làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải toán.
Đề thi bao gồm các dạng bài tập đa dạng, từ trắc nghiệm đến tự luận, bao phủ toàn bộ kiến thức trọng tâm của chương trình học kì 2. Kèm theo đề thi là đáp án chi tiết, giúp học sinh tự đánh giá kết quả và tìm ra những điểm cần cải thiện.
Nếu2.b = 5.c và b, c ≠ 0 thì:
Với \(a,b,c,d \in Z;{\rm{ }}b,d \ne 0\) kết luận nào sau đây là đúng?
Cho y là đại lượng tỉ lệ thuận với x theo hệ số tỉ lệ k, ta có:
Cho biết x và y là hai đại lượng tỉ lệ nghịch và khi x = 4 thì y = -15. Hệ số tỉ lệ của y đối với x là:
Cho y = 10x thì ta nói
Cho tam giác ABC có độ dài ba cạnh là ba số nguyên. Biết AB = 3 cm; AC = 7 cm. Khi đó độ dài cạnh BC không thể bằng
Cho \(\Delta ABC\) cân tại B. Khi đó:
Cho \(\Delta ABC\) vuông tại A và \(\hat B = {60^0}\). Khi đó:
Cho \(\Delta MNP\) có MN < MP < NP. Trong các khẳng định sau, câu nào đúng?
Cho hình vẽ sau, hỏi cách viết kí hiệu nào đúng?
Cho hình vẽ bên, khoảng cách từ điểm B đến đường thẳng AD là độ dài đoạn thẳng nào?
Cho hình vẽ. So sánh BA, BC, BD, ta được:
Cho hai đại lượng x và y tỉ lệ thuận với nhau và khi x = 5 thì y = -4.
a) Tìm hệ số tỉ lệ k trong công thức \(y = kx\).
b) Biểu diễn y theo x.
c) Tính giá trị của y khi x = -10; x = 2.
Cho tam giác ABC có số đo các góc A, B, C lần lượt ti lệ với các số 2; 4; 6.
a) Tính số đo các góc của tam giác ABC.
b) Sắp xếp các cạnh của tam giác ABC theo thứ tự từ bé đến lớn.
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt AC tại D. Từ D kẻ DH vuông góc với BC.
a) So sánh BA và BC.
b) Chứng minh DA = DH.
c) So sánh DC và DA.
Ba đội cùng chuyển một khối lượng gạch như nhau. Thời gian để đội thứ nhất, đội thứ hai và đội thứ ba làm xong công việc lần lượt là 2 giờ, 3 giờ, 4 giờ. Tính số người tham gia làm việc của mỗi đội, biết rằng số người của đội thứ ba ít hơn số người của đội thứ hai là 5 người.
Nếu2.b = 5.c và b, c ≠ 0 thì:
Đáp án : B
Dựa vào tính chất của tỉ lệ thức: Nếu \(ad = bc\left( {a,b,c,d \ne 0} \right)\) thì ta có các tỉ lệ thức:
\(\frac{a}{b} = \frac{c}{d};\frac{a}{c} = \frac{b}{d};\frac{d}{b} = \frac{c}{a};\frac{d}{c} = \frac{b}{a}\)
Nếu \(2.b = 5.c\) thì ta có các tỉ lệ thức:
\(\frac{2}{c} = \frac{5}{b};\frac{2}{5} = \frac{c}{b};\frac{c}{2} = \frac{b}{5};\frac{5}{2} = \frac{b}{c}\) nên B đúng.
Với \(a,b,c,d \in Z;{\rm{ }}b,d \ne 0\) kết luận nào sau đây là đúng?
Đáp án : C
Dựa vào tính chất dãy tỉ số bằng nhau.
Với \(a,b,c,d \in Z;{\rm{ }}b,d \ne 0\) ta có:
\(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\).
Cho y là đại lượng tỉ lệ thuận với x theo hệ số tỉ lệ k, ta có:
Đáp án : A
Dựa vào kiến thức về hai đại lượng tỉ lệ thuận.
y là đại lượng tỉ lệ thuận với x theo hệ số tỉ lệ k nên ta có công thức \(y = kx\).
Cho biết x và y là hai đại lượng tỉ lệ nghịch và khi x = 4 thì y = -15. Hệ số tỉ lệ của y đối với x là:
Đáp án : B
Dựa vào kiến thức về hai đại lượng tỉ lệ nghịch.
x và y là hai đại lượng tỉ lệ nghịch và khi x = 4 thì y = -15 nên hệ số tỉ lệ của y đối với x là:
k = 4.(-15) = -60.
Cho y = 10x thì ta nói
Đáp án : C
Dựa vào kiến thức về hai đại lượng tỉ lệ thuận và tỉ lệ nghịch.
Nếu đại lượng y liên hệ với đại lượng x theo công thức y = 10x thì ta nói y tỉ lệ thuận với x theo hệ số tỉ lệ 10.
Cho tam giác ABC có độ dài ba cạnh là ba số nguyên. Biết AB = 3 cm; AC = 7 cm. Khi đó độ dài cạnh BC không thể bằng
Đáp án : A
Dựa vào quan hệ giữa ba cạnh của một tam giác.
Vì 3 + 4 = 7 nên 3cm; 4cm; 7cm không thể là ba cạnh của tam giác ABC hay BC không thể bằng 4cm.
Cho \(\Delta ABC\) cân tại B. Khi đó:
Đáp án : B
Dựa vào tính chất của tam giác cân.
Tam giác ABC cân tại B nên \(\widehat A = \widehat C\).
Cho \(\Delta ABC\) vuông tại A và \(\hat B = {60^0}\). Khi đó:
Đáp án : C
Dựa vào định lí tổng ba góc của một tam giác.
Xét tam giác ABC vuông tại A nên \(\widehat A = {90^0}\) có: \(\widehat A + \widehat B + \widehat C = {180^0}\) suy ra \(\widehat C = {180^0} - {90^0} - {60^0} = {30^0}\).
Cho \(\Delta MNP\) có MN < MP < NP. Trong các khẳng định sau, câu nào đúng?
Đáp án : C
Dựa vào quan hệ giữa góc và cạnh đối diện trong tam giác.
\(\Delta MNP\) có MN < MP < NP nên \(\widehat P < \widehat N < \widehat M\).
Cho hình vẽ sau, hỏi cách viết kí hiệu nào đúng?
Đáp án : D
Dựa vào các đỉnh tương ứng của hai tam giác bằng nhau.
Xét tam giác ABE và tam giác CDF có:
\(\begin{array}{l}AB = CD\\\widehat {BAE} = \widehat {DCF}\\AE = CF\end{array}\)
\(\Delta ABE = \Delta CDF\) (c.g.c)
Cho hình vẽ bên, khoảng cách từ điểm B đến đường thẳng AD là độ dài đoạn thẳng nào?
Đáp án : A
Đoạn thẳng ngắn nhất trong các đoạn thẳng kẻ từ B đến AD là khoảng cách từ điểm B đến đường thẳng AD.
Độ dài đoạn thẳng AB là khoảng cách từ điểm B đến đường thẳng AD.
Cho hình vẽ. So sánh BA, BC, BD, ta được:
Đáp án : C
Dựa vào quan hệ giữa đường xiên và hình chiếu.
Vì AB < AD, C nằm giữa A và D nên AC < AD.
Do đó AB < BC < BD. (quan hệ giữa đường xiên và hình chiếu)
Cho hai đại lượng x và y tỉ lệ thuận với nhau và khi x = 5 thì y = -4.
a) Tìm hệ số tỉ lệ k trong công thức \(y = kx\).
b) Biểu diễn y theo x.
c) Tính giá trị của y khi x = -10; x = 2.
a) Dựa vào kiến thức về hai đại lượng tỉ lệ thuận để tìm k.
b) Viết công thức biểu diễn y theo x với k vừa tìm được.
c) Thay giá trị của x vào công thức biểu diễn để tìm y
a) Vì hai đại lượng x và y tỉ lệ thuận với nhau và khi x = 5 thì y = -4 nên ta có:
\( - 4 = k.5\) suy ra \(k = \frac{{ - 4}}{5}\).
b) Công thức biểu diễn y theo x là: \(y = \frac{{ - 4}}{5}x\).
c) Thay x = -10 vào công thức ta được: \(y = \frac{{ - 4}}{5}.\left( { - 10} \right) = 8\).
Thay x = 2 vào công thức ta được: \(y = \frac{{ - 4}}{5}.2 = \frac{{ - 8}}{5}\).
Cho tam giác ABC có số đo các góc A, B, C lần lượt ti lệ với các số 2; 4; 6.
a) Tính số đo các góc của tam giác ABC.
b) Sắp xếp các cạnh của tam giác ABC theo thứ tự từ bé đến lớn.
a) Áp dụng tính chất của dãy tỉ số bằng nhau để tìm số đo các góc của tam giác ABC.
b) Dựa vào quan hệ giữa góc và cạnh đối diện trong một tam giác.
a) Ta có tam giác ABC có số đo của các góc A, B,C lần lượt tỉ lệ với các số 2; 4; 6 nên ta có:
\(\frac{{\widehat A}}{2} = \frac{{\widehat B}}{4} = \frac{{\widehat C}}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{{\widehat A}}{2} = \frac{{\widehat B}}{4} = \frac{{\widehat C}}{6} = \frac{{\widehat A + \widehat B + \widehat C}}{{2 + 4 + 6}} = \frac{{{{180}^0}}}{{12}} = {15^0}\)
Suy ra
\(\begin{array}{l}\widehat A = {15^0}.2 = {30^0}\\\widehat B = {15^0}.4 = {60^0}\\\widehat C = {15^0}.6 = {90^0}\end{array}\)
Vậy số đo của góc A, B, C lần lượt là \({30^0};{60^0};{90^0}\).
b) Xét \(\Delta ABC\) có \(\widehat A < \widehat B < \widehat C\left( {{{30}^0} < {{60}^0} < {{90}^0}} \right)\) nên \(BC < AC < AB\).
Vậy các cạnh của tam giác ABC theo thứ tự từ bé đến lớn là BC, AC, AB.
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt AC tại D. Từ D kẻ DH vuông góc với BC.
a) So sánh BA và BC.
b) Chứng minh DA = DH.
c) So sánh DC và DA.
a) Dựa vào quan hệ giữa đường vuông góc và đường xiên.
b) Chứng minh \(\Delta ABD = \Delta HBD\) nên DA = DH.
c) So sánh DC và DH dựa vào quan hệ giữa các cạnh trong tam giác, mà DH = DA nên so sánh được DC và DA.
a) Xét tam giác ABC vuông tại A nên BA là đường vuông góc kẻ từ B đến AC, BC là đường xiên kẻ từ B đến AC nên BA < BC. (quan hệ giữa đường vuông góc và đường xiên).
b) Xét tam giác ABD và HBD, ta có:
\(\widehat {BAD} = \widehat {BHD} = {90^0}\)
\(\widehat {{B_1}} = \widehat {{B_2}}\) (BD là tia phân giác của góc ABC)
BD chung
Suy ra \(\Delta ABD = \Delta HBD\) (cạnh huyền – góc nhọn)
Suy ra DA = DH (hai cạnh tương ứng) (đpcm)
c) Trong tam giác DHC có \(\widehat {DHC} = {90^0}\)
Suy ra DH < DC (cạnh góc vuông nhỏ hơn cạnh huyền)
Mà DA = DH (cmt)
Suy ra DA < DC.
Ba đội cùng chuyển một khối lượng gạch như nhau. Thời gian để đội thứ nhất, đội thứ hai và đội thứ ba làm xong công việc lần lượt là 2 giờ, 3 giờ, 4 giờ. Tính số người tham gia làm việc của mỗi đội, biết rằng số người của đội thứ ba ít hơn số người của đội thứ hai là 5 người.
Áp dụng tính chất của hai đại lượng tỉ lệ nghịch.
Áp dụng tính chất dãy tỉ số bằng nhau để tính x, y, z.
Gọi số công dân tham gia làm việc của đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là x, y, z. \(\left( {x,y,z \in \mathbb{N}*,y > z} \right)\)
Số công nhân của đội thứ ba ít hơn số công nhân của đội thứ hai là 5 người nên \(y - z = 5\).
Với cùng một khối lượng công việc, số công nhân tham gia làm việc và thời gian hoàn thành công việc của mỗi đội là hai đại lượng tỉ lệ nghịch với nhau.
Do đó, ta có: 2x = 3y = 4z suy ra \(\frac{x}{\frac{1}{2}} = \frac{y}{\frac{1}{3}} = \frac{z}{\frac{1}{4}}\)
Nhân với \(\frac{1}{12}\), ta được: \(\frac{x}{6} = \frac{y}{4} = \frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{6} = \frac{y}{4} = \frac{z}{3} = \frac{{y - z}}{{4 - 3}} = \frac{5}{1} = 5\)
Suy ra
\(\begin{array}{l}x = 5.6 = 30\\y = 5.4 = 20\\z = 5.3 = 15\end{array}\)
Vậy số công nhân tham gia làm việc của đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là 30, 20, 15 người.
Đề thi giữa kì 2 Toán 7 Chân trời sáng tạo - Đề số 8 đóng vai trò quan trọng trong việc đánh giá năng lực học tập của học sinh sau một nửa năm học. Đề thi này không chỉ kiểm tra kiến thức đã học mà còn rèn luyện kỹ năng vận dụng kiến thức vào giải quyết các bài toán thực tế. Bài viết này sẽ cung cấp thông tin chi tiết về cấu trúc đề thi, các dạng bài tập thường gặp và hướng dẫn giải chi tiết để giúp học sinh ôn tập hiệu quả.
Đề thi giữa kì 2 Toán 7 Chân trời sáng tạo - Đề số 8 thường bao gồm hai phần chính:
Dưới đây là một số dạng bài tập thường gặp trong đề thi giữa kì 2 Toán 7 Chân trời sáng tạo - Đề số 8:
Bài 1: Tính giá trị của biểu thức A = 3x2 - 5x + 2 tại x = -1.
Giải: Thay x = -1 vào biểu thức A, ta có:
A = 3(-1)2 - 5(-1) + 2 = 3(1) + 5 + 2 = 3 + 5 + 2 = 10.
Bài 2: Giải phương trình 2x - 3 = 5.
Giải: Chuyển -3 sang vế phải, ta có:
2x = 5 + 3 = 8.
Chia cả hai vế cho 2, ta có:
x = 8 / 2 = 4.
Đề thi giữa kì 2 Toán 7 Chân trời sáng tạo - Đề số 8 là cơ hội để học sinh đánh giá năng lực học tập và chuẩn bị cho các kỳ thi tiếp theo. Bằng cách nắm vững kiến thức lý thuyết, luyện tập thường xuyên và sử dụng các tài liệu ôn tập hiệu quả, học sinh có thể tự tin đạt kết quả tốt trong kỳ thi này.