Giaitoan.edu.vn xin giới thiệu Đề thi học kì 2 Toán 7 - Đề số 13 - Chân trời sáng tạo, một tài liệu ôn tập quan trọng dành cho học sinh lớp 7. Đề thi này được biên soạn theo chương trình Chân trời sáng tạo, giúp các em làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải toán.
Với nội dung bám sát chương trình học, đề thi này sẽ là công cụ hữu ích giúp các em tự đánh giá năng lực và chuẩn bị tốt nhất cho kỳ thi sắp tới.
Với \(a,b,c,d \in Z;\,\,b,d \ne 0;{\rm{b}} \ne \pm {\rm{d }}\). Kết luận nào sau đây là đúng?
Cho 3.4 = 6.2. Khẳng định nào sau đây đúng?
Có bao nhiêu đơn thức trong các biểu thức sau:\(2x\);\(8 + 4x\);\(5{x^6}\);\(5xy\);\(\frac{1}{{3x - 1}}\)?
Bậc của đa thức \(3{x^3} - 5{x^2} + 17x - 29\) là
Đa thức nào là đa thức một biến?
Tích của hai đơn thức \(7{x^2}\) và \(3x\) là
Một hộp phấn màu có nhiều màu: màu cam, màu vàng, màu đỏ, màu hồng, màu xanh. Hỏi nếu rút bất kỳ một cây bút màu thì có thể xảy ra mấy kết quả?
2.
5.
Bạn Lan gieo một con xúc xắc 8 lần liên tiếp thì thấy mặt \(4\) chấm xuất hiện \(3\) lần. Xác suất xuất hiện mặt \(4\) chấm là
Cho hình vẽ bên, với \(G\) là trọng tâm của \(\Delta ABC.\) Tỉ số của \(GD\)và\(AD\)là
Cho hình vẽ, chọn câu đúng?
Tam giác ABC có AB = AC và \(\widehat A = 2\widehat B\) có dạng đặc biệt nào?
Cho \(\Delta ABC\) và \(\Delta DEF\) có \(\widehat A = \widehat D = {90^0}\), BC = EF. \(\Delta ABC = \Delta DEF\) theo trường hợp cạnh huyền – góc nhọn nếu bổ sung thêm điều kiện:
Để ủng hộ các bạn vùng bão lũ Miền Trung học sinh ba lớp 7A, 7B, 7C của trường THCS A tham gia ủng hộ vở viết. Biết rằng số vở viết ủng hộ được của mỗi lớp lần lượt tỉ lệ với các số 2; 3; 4 và tổng số vở viết ủng hộ được của ba lớp là 360. Hỏi mỗi lớp ủng hộ được bao nhiêu quyển vở?
Cho \(A\left( x \right) = 4{x^2} + 4x + 1\).
a) Xác định bậc, hạng tử tự do, hạng tử cao nhất của đa thức.
b) Tìm B(x) biết \(A\left( x \right) + B\left( x \right) = 5{x^2} + 5x + 1\).
c) Tính \(A\left( x \right):\left( {2x + 1} \right)\).
Cho \(\Delta MNP\) vuông tại M có MN < MP, kẻ đường phân giác NI của góc MNP (I thuộc MP). Kẻ IK vuông góc với NP tại K.
a) Chứng minh \(\Delta IMN = \Delta IKN\)
b) Chứng minh \({\rm{MI }} < {\rm{ IP}}\).
c) Gọi Q là giao điểm của đường thẳng IK và đường thẳng MN, đường thẳng \(NI\)cắt QP tại D. Chứng minh \(ND \bot QP\) và \(\Delta QIP\) cân tại I.
Cho đa thức A (x) = \({x^2} + 2x + 2\). Chứng minh đa thức không có nghiệm.
Với \(a,b,c,d \in Z;\,\,b,d \ne 0;{\rm{b}} \ne \pm {\rm{d }}\). Kết luận nào sau đây là đúng?
Đáp án : C
Dựa vào kiến thức về tính chất dãy tỉ số bằng nhau.
Ta có: \(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\) nên C đúng.
Đáp án C.
Cho 3.4 = 6.2. Khẳng định nào sau đây đúng?
Đáp án : A
Dựa vào tính chất tỉ lệ thức:
Nếu ad = bc và \(a,b,c,d \ne 0\) thì ta có các tỉ lệ thức:
\(\frac{a}{b} = \frac{c}{d};\frac{a}{c} = \frac{b}{d};\frac{d}{b} = \frac{c}{a};\frac{d}{c} = \frac{b}{a}\).
Với 3.4 = 6.2 ta có các tỉ lệ thức sau:
\(\frac{3}{2} = \frac{6}{4};\frac{3}{6} = \frac{2}{4};\frac{2}{3} = \frac{4}{6};\frac{6}{3} = \frac{4}{2}\).
Đáp án A.
Có bao nhiêu đơn thức trong các biểu thức sau:\(2x\);\(8 + 4x\);\(5{x^6}\);\(5xy\);\(\frac{1}{{3x - 1}}\)?
Đáp án : A
Đơn thức là biểu thức đại số có dạng tích của một số thức với một lũy thừa của một biến.
Trong các biểu thức trên, các đơn thức là: \(2x\); \(5{x^6}\);\(5xy\).
Vậy có 3 đơn thức.
Đáp án A.
Bậc của đa thức \(3{x^3} - 5{x^2} + 17x - 29\) là
Đáp án : D
Bậc của hạng tử có bậc cao nhất là bậc của đa thức.
Bậc của đa thức \(3{x^3} - 5{x^2} + 17x - 29\) là 3 vì \(3{x^3}\) có bậc lớn nhất (bậc là 3)
Đáp án D.
Đa thức nào là đa thức một biến?
Đáp án : B
Đa thức một biến là tổng của những đơn thức của cùng một biến.
Đa thức \({x^3} - 6{x^2} + 9\) là đa thức một biến với biến là x.
Đáp án B.
Tích của hai đơn thức \(7{x^2}\) và \(3x\) là
Đáp án : B
Để nhân hai đơn thức ta nhân hay hệ số với nhau và nhân hai lũy thừa của biến với nhau.
Ta có: \(7{x^2}.3x = 21{x^3}\).
Đáp án B.
Một hộp phấn màu có nhiều màu: màu cam, màu vàng, màu đỏ, màu hồng, màu xanh. Hỏi nếu rút bất kỳ một cây bút màu thì có thể xảy ra mấy kết quả?
2.
5.
Đáp án : D
Liệt kê các kết quả có thể xảy ra.
Khi rút bất kì một cây bút màu thì có 5 kết quả có thể xảy ra, đó là: màu cam, màu vàng, màu đỏ, màu hồng, màu xanh.
Đáp án D.
Bạn Lan gieo một con xúc xắc 8 lần liên tiếp thì thấy mặt \(4\) chấm xuất hiện \(3\) lần. Xác suất xuất hiện mặt \(4\) chấm là
Đáp án : B
Xác suất xuất hiện mặt 4 chấm bằng tỉ số giữa số lần xuất hiện mặt 4 chấm với tổng số lần gieo xúc xắc.
Xác suất xuất hiện mặt \(4\) chấm là: \(\frac{3}{8}\).
Đáp án B.
Cho hình vẽ bên, với \(G\) là trọng tâm của \(\Delta ABC.\) Tỉ số của \(GD\)và\(AD\)là
Đáp án : A
Dựa vào tính chất của trọng tâm.
Vì D là trung điểm của BC nên AD là đường trung tuyến của tam giác ABC.
G là trọng tâm của \(\Delta ABC\) nên \(AG = \frac{2}{3}AD\) hay \(\frac{{AG}}{{AD}} = \frac{2}{3}\).
Do đó: \(\frac{{GD}}{{AD}} = \frac{{AD - AG}}{{AD}} = 1 - \frac{{AG}}{{AD}} = 1 - \frac{2}{3} = \frac{1}{3}\).
Đáp án A.
Cho hình vẽ, chọn câu đúng?
Đáp án : A
Dựa vào kiến thức đường vuông góc và đường xiên.
Đường vuông góc kẻ từ \(A\) đến \(MQ\) là \(AI\) nên A đúng.
Đáp án A.
Tam giác ABC có AB = AC và \(\widehat A = 2\widehat B\) có dạng đặc biệt nào?
Đáp án : D
Chứng minh tam giác ABC cân tại A.
Dựa vào định lí tổng ba góc của một tam giác bằng \({180^0}\) để tính các góc của tam giác ABC.
Xét tam giác ABC có AB = AC nên tam giác ABC cân tại A. (1)
Suy ra \(\widehat B = \widehat C\).
Áp dụng định lí tổng ba góc của một tam giác bằng \({180^0}\) vào tam giác ABC, ta có:
\(\widehat A + \widehat B + \widehat C = {180^o}\).
Mà \(\widehat A = 2\widehat B\), \(\widehat B = \widehat C\) nên \(2\widehat B + \widehat B + \widehat B = {180^o}\)
\(4\widehat B = {180^0}\) suy ra \(\widehat B = {180^0}:4 = {45^0}\)
Suy ra \(\widehat A = {2.45^0} = {90^0}\) nên tam giác ABC vuông tại A. (2)
Từ (1) và (2) suy ra tam giác ABC vuông cân tại A.
Đáp án D.
Cho \(\Delta ABC\) và \(\Delta DEF\) có \(\widehat A = \widehat D = {90^0}\), BC = EF. \(\Delta ABC = \Delta DEF\) theo trường hợp cạnh huyền – góc nhọn nếu bổ sung thêm điều kiện:
Đáp án : B
Dựa vào trường hợp bằng nhau cạnh huyền – góc nhọn của hai tam giác.
Để \(\Delta ABC = \Delta DEF\) theo trường hợp cạnh huyền góc nhọn thì BC = EF và \(\widehat B = \widehat E\) hoặc \(\widehat C = \widehat F\).
Vậy ta chọn đáp án B.
Đáp án B.
Để ủng hộ các bạn vùng bão lũ Miền Trung học sinh ba lớp 7A, 7B, 7C của trường THCS A tham gia ủng hộ vở viết. Biết rằng số vở viết ủng hộ được của mỗi lớp lần lượt tỉ lệ với các số 2; 3; 4 và tổng số vở viết ủng hộ được của ba lớp là 360. Hỏi mỗi lớp ủng hộ được bao nhiêu quyển vở?
Gọi số quyển vở ba lớp ủng hộ được lần lượt là a,b,c ( \(a,b,c \in N*\)).
Viết các biểu thức theo a, b, c.
Áp dụng tính chất dãy tỉ số bằng nhau để tìm a, b, c.
Gọi số quyển vở ba lớp ủng hộ được lần lượt là a,b,c ( \(a,b,c \in N*\)).
Theo đề bài ta có: \(\frac{a}{2} = \frac{b}{3} = \frac{c}{4}\) và \(a + b + c = 360\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{2} = \frac{b}{3} = \frac{c}{4}{\rm{ = }}\frac{{a + b + c}}{9} = \frac{{360}}{9} = 40\)
\( \Rightarrow \left\{ \begin{array}{l}\\\\\end{array} \right.\)\(\begin{array}{*{20}{l}}{a{\rm{ }} = 40.2{\rm{ }} = {\rm{ }}80}\\{b{\rm{ }} = {\rm{ 40}}.3{\rm{ }} = {\rm{ 120}}}\\{c{\rm{ }} = {\rm{ 40}}.4{\rm{ }} = {\rm{ 160}}}\end{array}\)
Vậy số quyển vở ba lớp 7A, 7B, 7C ủng hộ được lần lượt là 80, 120, 160.
Cho \(A\left( x \right) = 4{x^2} + 4x + 1\).
a) Xác định bậc, hạng tử tự do, hạng tử cao nhất của đa thức.
b) Tìm B(x) biết \(A\left( x \right) + B\left( x \right) = 5{x^2} + 5x + 1\).
c) Tính \(A\left( x \right):\left( {2x + 1} \right)\).
a) Dựa vào kiến thức về bậc, hạng tử tự do, hạng tử cao nhất để trả lời.
b) Áp dụng quy tắc cộng, trừ đa thức một biến để tìm B(x).
c) Áp dụng quy tắc chia đa thức để tính.
a) Bậc của đa thức là 2.
Hạng tử tự do là 1.
Hạng tử cao nhất của đa thức là 4.
b) Ta có: \(A\left( x \right) + B\left( x \right) = 5{x^2} + 5x + 1\)
\(\begin{array}{l}B\left( x \right) = \left( {5{x^2} + 5x + 1} \right) - \left( {4{x^2} + 4x + 1} \right)\\ = 5{x^2} + 5x + 1 - 4{x^2} - 4x - 1\\ = \left( {5{x^2} - 4{x^2}} \right) + \left( {5x - 4x} \right) + \left( {1 - 1} \right)\\ = {x^2} + x\end{array}\)
Vậy \(B\left( x \right){\rm{ }} = {x^2} + x\)
c) Ta có: \(A\left( x \right):\left( {2x + 1} \right) = \left( {4{x^2} + 4x + 1} \right):\left( {2x + 1} \right)\)
Vậy \(A\left( x \right):\left( {2x + 1} \right) = 2x + 1\)
Cho \(\Delta MNP\) vuông tại M có MN < MP, kẻ đường phân giác NI của góc MNP (I thuộc MP). Kẻ IK vuông góc với NP tại K.
a) Chứng minh \(\Delta IMN = \Delta IKN\)
b) Chứng minh \({\rm{MI }} < {\rm{ IP}}\).
c) Gọi Q là giao điểm của đường thẳng IK và đường thẳng MN, đường thẳng \(NI\)cắt QP tại D. Chứng minh \(ND \bot QP\) và \(\Delta QIP\) cân tại I.
a) Chứng minh \(\Delta IMN = \Delta IKN\)(cạnh huyền - góc nhọn)
b) Chứng minh \(IM = IK\), IP > IK nên IP > IM.
c) Chứng minh I là trực tâm của tam giác QNP nên \(ND \bot QP\).
Chứng minh \(\Delta NQP\) cân tại \(N\) nên DQ = DP.
\(\Delta QIP\) có \(ID\) vừa là đường cao, vừa là đường trung tuyến nên \(\Delta QIP\) cân tại \(I\)
a) Xét \(\Delta IMN\) và \(\Delta IKN\) có:
\(\widehat {IMN} = \widehat {IKN} = {90^0}\)
NI chung
\(\widehat {MNI} = \widehat {KNI}\) (NI là đường phân giác NI của góc MNP)
suy ra \(\Delta IMN = \Delta IKN\)(cạnh huyền - góc nhọn)
b) Vì \(\Delta IMN = \Delta IKN\) nên IM = IK (hai cạnh tương ứng) (1)
Vì \(\Delta IKP\) vuông tại K nên IP > IK (2)
Từ (1) và (2) suy ra IP > IM
c) Xét \(\Delta NQP\) có đường cao QK và PM cắt nhau tại I nên I là trực tâm của tam giác NQP.
Do đó \(ND \bot QP\)
Vì \(\Delta NQP\) có ND vừa là đường cao vừa là đường phân giác nên \(\Delta NQP\) cân tại N.
Suy ra ND là đường trung tuyến của tam giác NQP hay QD = DP.
Xét \(\Delta QIP\) có ID vừa là đường cao vừa là đường trung tuyến nên \(\Delta QIP\) cân tại I.
Cho đa thức A (x) = \({x^2} + 2x + 2\). Chứng minh đa thức không có nghiệm.
Phân tích đa thức A(x) để chứng minh A(x) > 0 với mọi x.
Do đó A(x) không có nghiệm.
Ta có:
\(\begin{array}{l}A(x) = {x^2} + 2x + 2\\ = {x^2} + x + x + 1 + 1 \\ = ({x^2} + x) + (x + 1) + 1 \\ = x(x + 1) + (x + 1) + 1\\ = (x + 1)(x + 1) + 1\end{array}\)
\( = {(x + 1)^2} + 1 > 0\) với mọi x.
Vậy đa thức A (x) = \({x^2} + 2x + 2\) không có nghiệm.
Kỳ thi học kì 2 Toán 7 là một bước quan trọng trong quá trình học tập của các em học sinh. Để giúp các em ôn tập và làm quen với cấu trúc đề thi, giaitoan.edu.vn xin giới thiệu Đề thi học kì 2 Toán 7 - Đề số 13 - Chân trời sáng tạo. Bài viết này sẽ phân tích chi tiết nội dung đề thi, cung cấp hướng dẫn giải các bài toán và chia sẻ những bí quyết làm bài hiệu quả.
Đề thi học kì 2 Toán 7 - Chân trời sáng tạo thường bao gồm các dạng bài tập sau:
Đề thi số 13 bao gồm các chủ đề chính sau:
Bài 1: Tính giá trị của biểu thức A = (1/2 + 1/3) * 6/5
Hướng dẫn: Thực hiện các phép tính trong ngoặc trước, sau đó thực hiện phép nhân.
A = (3/6 + 2/6) * 6/5 = 5/6 * 6/5 = 1
Bài 2: Giải phương trình 2x + 3 = 7
Hướng dẫn: Chuyển số hạng tự do sang vế phải, sau đó chia cả hai vế cho hệ số của x.
2x = 7 - 3 = 4
x = 4/2 = 2
Ngoài Đề thi học kì 2 Toán 7 - Đề số 13 - Chân trời sáng tạo, các em có thể tham khảo thêm các tài liệu ôn tập sau:
Đề thi học kì 2 Toán 7 - Đề số 13 - Chân trời sáng tạo là một tài liệu ôn tập quan trọng giúp các em học sinh lớp 7 chuẩn bị tốt nhất cho kỳ thi sắp tới. Hy vọng với những phân tích chi tiết và hướng dẫn giải trong bài viết này, các em sẽ tự tin hơn và đạt kết quả tốt nhất trong kỳ thi.