Logo Header
  1. Môn Toán
  2. Đề thi học kì 2 Toán 7 - Đề số 11 - Chân trời sáng tạo

Đề thi học kì 2 Toán 7 - Đề số 11 - Chân trời sáng tạo

Đề thi học kì 2 Toán 7 - Đề số 11 - Chân trời sáng tạo

Chào mừng các em học sinh lớp 7 đến với đề thi học kì 2 môn Toán, đề số 11, chương trình Chân trời sáng tạo.

Đề thi này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong học kì.

Hãy làm bài một cách cẩn thận và tự tin để đạt kết quả tốt nhất nhé!

Đề bài

    I. Trắc nghiệm
    Câu 1 :

    Hai đại lượng x, y trong công thức nào tỉ lệ nghịch với nhau:

    • A.
      \(y = 5 + x\).
    • B.
      \(x = \frac{5}{y}\).
    • C.
      \(y = 5x\).
    • D.
      \(x = 5y\).
    Câu 2 :

    Gieo một con xúc xắc được chế tạo cân đối. Biến cố “Số chấm xuất hiện trên con xúc xắc là 5” là biến cố:

    • A.
      Chắc chắn
    • B.
      Không thể
    • C.
      Ngẫu nhiên
    • D.
      Không chắc chắn
    Câu 3 :

    Chọn ngẫu nhiên 1 số trong 4 số sau: 7; 8; 26; 101. Xác xuất để chọn được số chia hết cho 5 là:

    • A.
      0
    • B.
      1
    • C.
      2
    • D.
      4
    Câu 4 :

    Cho hai đa thức f(x) = 5x4 + x3 – x2 + 1 và g(x) = –5x4 – x2 + 2.

    Tính h(x) = f(x) + g(x) và tìm bậc của h(x). Ta được:

    • A.
      h(x)= x3 – 1 và bậc của h(x) là 3
    • B.
      h(x)= x3 – 2x2 +3 và bậc của h(x) là 3
    • C.
      h(x)= x4 +3 và bậc của h(x) là 4
    • D.
      h(x)= x3 – 2x2 +3 và bậc của h(x) là 5
    Câu 5 :

    Sắp xếp đa thức 6x3 + 5x4 – 8x6 – 3x2 + 4 theo lũy thừa giảm dần của biến ta được:

    • A.
      6x3 + 5x4 – 8x6 – 3x2 + 4
    • B.
      –8x6 + 5x4 –3x2 + 4 + 6x3
    • C.
      –8x6 + 5x4 +6x3 + 4 –3x2
    • D.
      –8x6 + 5x4 +6x3 –3x2 + 4
    Câu 6 :

    Cho ΔABC có AC > BC > AB. Trong các khẳng định sau, câu nào đúng?

    • A.
      \(\widehat A > \widehat B > \widehat C\)
    • B.
      \(\widehat C > \widehat A > \widehat B\)
    • C.
      \(\widehat C < \widehat A < \widehat B\)
    • D.
      \(\widehat A < \widehat B < \widehat C\)
    Câu 7 :

    Hãy chọn cụm từ thích hợp điền vào chỗ trống: "Trong hai đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó thì đường xiên nào có hình chiếu nhỏ hơn thì ..."

    • A.
      lớn hơn
    • B.
      ngắn nhất
    • C.
      nhỏ hơn
    • D.
      bằng nhau
    Câu 8 :

    Cho ΔABC có: \(\widehat A = 3{5^0}\). Đường trung trực của AC cắt AB ở D. Biết CD là tia phân giác của \(\widehat {ACB} \). Số đo các góc \(\widehat {ABC}; \widehat {ACB} \)là:

    • A.
      \(\widehat {ABC} = 7{2^0}; \widehat {ACB} = 7{3^0}\)
    • B.
      \(\widehat {ABC} = 7{3^0}; \widehat {ACB} = 7{2^0}\)
    • C.
      \(\widehat {ABC} = 7{5^0}; \widehat {ACB} = 7{0^0}\)
    • D.
      \(\widehat {ABC} = 7{0^0}; \widehat {ACB} = 7{5^0}\)
    Câu 9 :

    Cho hình vẽ sau.

    Đề thi học kì 2 Toán 7 - Đề số 11 - Chân trời sáng tạo 0 1

    Biết MG = 3cm. Độ dài đoạn thẳng MR bằng:

    • A.
      4,5 cm
    • B.
      2 cm
    • C.
      3 cm
    • D.
      1 cm
    Câu 10 :

    Cho tam giác MNP có NP = 1cm, MP = 7cm. Độ dài cạnh MN là một số nguyên (cm). Độ dài cạnh MN là:

    • A.
      8cm.
    • B.
      5cm.
    • C.
      6cm.
    • D.
      7cm.
    Câu 11 :

    Cho tam giác ABC có AB = AC. Trên các cạnh AB và AC lấy các điểm D, E sao cho \(AD = AE\). Gọi K là giao điểm của BE và CD. Chọn câu sai

    • A.
      BE = CD.
    • B.
      BK = KC.
    • C.
      BD = CE.
    • D.
      DK = KC.
    Câu 12 :

    Giao điểm của ba đường trung trực của tam giác

    • A.
      cách đều 3 cạnh của tam giác.
    • B.
      được gọi là trực tâm của tam giác.
    • C.
      cách đều 3 đỉnh của tam giác.
    • D.
      cách đỉnh một đoạn bằng \(\frac{2}{3}\) độ dài đường trung tuyến đi qua đỉnh đó.
    II. Tự luận
    Câu 1 :

    Tìm x trong các tỉ lệ thức sau:

    a) x : 27 = –2 : 3,6

    b) \(\frac{{2x + 1}}{{-27}} = \frac{{- 3}}{{2x + 1}}\)

    Câu 2 :

    Cho đa thức \(Q(x) = - 3{x^4} + 4{x^3} + 2{x^2} + \frac{2}{3} - 3x - 2{x^4} - 4{x^3} + 8{x^4} + 1 + 3x\)

    a) Thu gọn và sắp xếp theo lũy thừa giảm dần của biến.

    b) Chứng tỏ Q(x) không có nghiệm.

    Câu 3 :

    Chọn ngẫu nhiên một số trong bốn số 11;12;13 và 14. Tìm xác suất để:

    a) Chọn được số chia hết cho 5

    b) Chọn được số có hai chữ số

    c) Chọn được số nguyên tố

    d) Chọn được số chia hết cho 6

    Câu 4 :

    Cho \(\Delta MNP\)cân tại M \(\left( {\widehat M < {{90}^0}} \right)\). Kẻ NH \( \bot \)MP \(\left( {H \in MP} \right)\), PK \( \bot \)MN \(\left( {K \in MN} \right)\). NH và PK cắt nhau tại E.

    a) Chứng minh \(\Delta NHP = \Delta PKN\)

    b) Chứng minh \(\Delta \)ENP cân.

    c) Chứng minh ME là đường phân giác của góc NMP.

    Câu 5 :

    Cho đa thức bậc hai P(x) = ax2 + bx + c. Trong đó: a,b và c là những số với a ≠ 0. Cho biết a + b + c = 0. Giải thích tại sao x = 1 là một nghiệm của P(x)

    Câu 6 :

    Cho x; y; z tỉ lệ thuận với 3; 4; 5. Tính giá trị của biểu thức

     \(A = 2024\left( {x - y} \right)\left( {y - z} \right) - 506{\left( {\frac{{x + y + z}}{6}} \right)^2}\)

    Lời giải và đáp án

      I. Trắc nghiệm
      Câu 1 :

      Hai đại lượng x, y trong công thức nào tỉ lệ nghịch với nhau:

      • A.
        \(y = 5 + x\).
      • B.
        \(x = \frac{5}{y}\).
      • C.
        \(y = 5x\).
      • D.
        \(x = 5y\).

      Đáp án : B

      Phương pháp giải :

      Dựa vào kiến thức về hai đại lượng tỉ lệ nghịch.

      Lời giải chi tiết :

      Vì x và y tỉ lệ nghịch với nhau nên ta có \(x.y = 5\) hay \(x = \frac{5}{y}\).

      Đáp án B.

      Câu 2 :

      Gieo một con xúc xắc được chế tạo cân đối. Biến cố “Số chấm xuất hiện trên con xúc xắc là 5” là biến cố:

      • A.
        Chắc chắn
      • B.
        Không thể
      • C.
        Ngẫu nhiên
      • D.
        Không chắc chắn

      Đáp án : C

      Phương pháp giải :

      Dựa vào kiến thức về biến cố.

      Lời giải chi tiết :

      Biến cố “Số chấm xuất hiện trên con xúc xắc là 5” là biến cố ngẫu nhiên.

      Đáp án C.

      Câu 3 :

      Chọn ngẫu nhiên 1 số trong 4 số sau: 7; 8; 26; 101. Xác xuất để chọn được số chia hết cho 5 là:

      • A.
        0
      • B.
        1
      • C.
        2
      • D.
        4

      Đáp án : A

      Phương pháp giải :

      Xác định khả năng xuất hiện của biến cố.

      Lời giải chi tiết :

      Trong 4 số trên, không có số nào chia hết cho 5. Do đó xác suất để chọn được số chia hết cho 5 là 0.

      Đáp án A.

      Câu 4 :

      Cho hai đa thức f(x) = 5x4 + x3 – x2 + 1 và g(x) = –5x4 – x2 + 2.

      Tính h(x) = f(x) + g(x) và tìm bậc của h(x). Ta được:

      • A.
        h(x)= x3 – 1 và bậc của h(x) là 3
      • B.
        h(x)= x3 – 2x2 +3 và bậc của h(x) là 3
      • C.
        h(x)= x4 +3 và bậc của h(x) là 4
      • D.
        h(x)= x3 – 2x2 +3 và bậc của h(x) là 5

      Đáp án : B

      Phương pháp giải :

      Sử dụng quy tắc cộng hai đa thức

      Lời giải chi tiết :

      h(x) = f(x) + g(x) 

      = (5x4 + x3 – x2 + 1) + (–5x4 – x2 + 2)

      = 5x4 + x3 – x2 + 1 – 5x4 – x2 + 2

      = (5x4 – 5x4) + x3 + (- x2 – x2) + (1 + 2)

      = x3 – 2x2 + 3

      Bậc của h(x) là 3.

      Đáp án B.

      Câu 5 :

      Sắp xếp đa thức 6x3 + 5x4 – 8x6 – 3x2 + 4 theo lũy thừa giảm dần của biến ta được:

      • A.
        6x3 + 5x4 – 8x6 – 3x2 + 4
      • B.
        –8x6 + 5x4 –3x2 + 4 + 6x3
      • C.
        –8x6 + 5x4 +6x3 + 4 –3x2
      • D.
        –8x6 + 5x4 +6x3 –3x2 + 4

      Đáp án : D

      Phương pháp giải :

      Dựa vào kiến thức về đa thức một biến.

      Lời giải chi tiết :

      6x3 + 5x4 – 8x6 – 3x2 + 4 = - 8x6 + 5x4 + 6x3 – 3x2 + 4

      Đáp án D.

      Câu 6 :

      Cho ΔABC có AC > BC > AB. Trong các khẳng định sau, câu nào đúng?

      • A.
        \(\widehat A > \widehat B > \widehat C\)
      • B.
        \(\widehat C > \widehat A > \widehat B\)
      • C.
        \(\widehat C < \widehat A < \widehat B\)
      • D.
        \(\widehat A < \widehat B < \widehat C\)

      Đáp án : C

      Phương pháp giải :

      Dựa vào quan hệ giữa góc và cạnh đối diện trong tam giác.

      Lời giải chi tiết :

      Vì AC > BC > AB nên \(\widehat B > \widehat A > \widehat C\) hay \(\widehat C < \widehat A < \widehat B\).

      Đáp án C.

      Câu 7 :

      Hãy chọn cụm từ thích hợp điền vào chỗ trống: "Trong hai đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó thì đường xiên nào có hình chiếu nhỏ hơn thì ..."

      • A.
        lớn hơn
      • B.
        ngắn nhất
      • C.
        nhỏ hơn
      • D.
        bằng nhau

      Đáp án : C

      Phương pháp giải :

      Dựa vào kiến thức về đường xiên.

      Lời giải chi tiết :

      "Trong hai đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó thì đường xiên nào có hình chiếu nhỏ hơn thì nhỏ hơn".

      Đáp án C.

      Câu 8 :

      Cho ΔABC có: \(\widehat A = 3{5^0}\). Đường trung trực của AC cắt AB ở D. Biết CD là tia phân giác của \(\widehat {ACB} \). Số đo các góc \(\widehat {ABC}; \widehat {ACB} \)là:

      • A.
        \(\widehat {ABC} = 7{2^0}; \widehat {ACB} = 7{3^0}\)
      • B.
        \(\widehat {ABC} = 7{3^0}; \widehat {ACB} = 7{2^0}\)
      • C.
        \(\widehat {ABC} = 7{5^0}; \widehat {ACB} = 7{0^0}\)
      • D.
        \(\widehat {ABC} = 7{0^0}; \widehat {ACB} = 7{5^0}\)

      Đáp án : C

      Phương pháp giải :

      Dựa vào đặc điểm của đường trung trực.

      Sử dụng định lí tổng ba góc của một tam giác bằng \({180^0}\)

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 7 - Đề số 11 - Chân trời sáng tạo 1 1

      Đường trung trực của AC đi qua điểm D nên tam giác ADC cân tại D.

      Do đó \(\widehat {DAC} = \widehat {DCA} = {35^0}\).

      Mà CD là tia phân giác của \(\widehat {ACB}\) nên \(\widehat {ACB} = 2\widehat {DCA} = {2.35^0} = {70^0}\)

      Từ đó suy ra:

      \(\begin{array}{l}\widehat {ABC} = {180^0} - \widehat {BAC} - \widehat {BCA}\\ = {180^0} - {35^0} - {70^0} = {75^0}\end{array}\)

      Vậy \(\widehat {ABC} = 7{5^0}; \widehat {ACB} = 7{0^0}\).

      Đáp án C.

      Câu 9 :

      Cho hình vẽ sau.

      Đề thi học kì 2 Toán 7 - Đề số 11 - Chân trời sáng tạo 1 2

      Biết MG = 3cm. Độ dài đoạn thẳng MR bằng:

      • A.
        4,5 cm
      • B.
        2 cm
      • C.
        3 cm
      • D.
        1 cm

      Đáp án : A

      Phương pháp giải :

      Chứng minh MR là đường trung tuyến nên G là trọng tâm của tam giác để tính MR.

      Lời giải chi tiết :

      Vì S là trung điểm của MP và R là trung điểm của NP nên MR và NS là hai đường trung tuyến của tam giác MNP.

      MR và NS cắt nhau tại G nên G là trọng tâm của tam giác MNP.

      Do đó \(MG = \frac{2}{3}MR\) suy ra \(MR = MG:\frac{2}{3} = 3:\frac{2}{3} = \frac{9}{2} = 4,5\left( {cm} \right)\)

      Đáp án A.

      Câu 10 :

      Cho tam giác MNP có NP = 1cm, MP = 7cm. Độ dài cạnh MN là một số nguyên (cm). Độ dài cạnh MN là:

      • A.
        8cm.
      • B.
        5cm.
      • C.
        6cm.
      • D.
        7cm.

      Đáp án : D

      Phương pháp giải :

      Dựa vào bất đẳng thức tam giác để tính độ dài MN.

      Lời giải chi tiết :

      Vì NP, MP và MN là độ dài 3 cạnh của một tam giác nên ta có:

      \(\begin{array}{l}MP - NP < MN < MP + NP\\7 - 1 < MN < 7 + 1\\6 < MN < 8\end{array}\)

      Mà MN là số nguyên nên MN chỉ có thể bằng 7cm.

      Đáp án D.

      Câu 11 :

      Cho tam giác ABC có AB = AC. Trên các cạnh AB và AC lấy các điểm D, E sao cho \(AD = AE\). Gọi K là giao điểm của BE và CD. Chọn câu sai

      • A.
        BE = CD.
      • B.
        BK = KC.
      • C.
        BD = CE.
      • D.
        DK = KC.

      Đáp án : D

      Phương pháp giải :

      Chứng minh các \(\Delta ABE = \Delta ACD\) và \(\Delta BKC\) cân để kiểm tra.

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 7 - Đề số 11 - Chân trời sáng tạo 1 3

      Xét tam giác ABE và ACD có:

      AB = AC (gt)

      \(\widehat {BAC}\) chung

      AE = AD (gt)

      suy ra \(\Delta ABE = \Delta ACD\left( {c.g.c} \right)\)

      suy ra BE = CD (hai cạnh tương ứng nên A đúng.

      và \(\widehat {ABE} = \widehat {ACD}\) (hai góc tương ứng)

      Mà \(\widehat {ABC} = \widehat {ACB}\) (tam giác ABC cân tại A vì AB = AC)

      Suy ra \(\widehat {KBC} = \widehat {KCB}\) nên \(\Delta BKC\) cân tại K.

      Do đó BK = CK nên B đúng.

      Vì AB = AC, AD = AE nên AB – AD = AC – AE hay BD = CE nên C đúng.

      Ta chưa đủ điều kiện có DK = KC nên đáp án D sai.

      Đáp án D.

      Câu 12 :

      Giao điểm của ba đường trung trực của tam giác

      • A.
        cách đều 3 cạnh của tam giác.
      • B.
        được gọi là trực tâm của tam giác.
      • C.
        cách đều 3 đỉnh của tam giác.
      • D.
        cách đỉnh một đoạn bằng \(\frac{2}{3}\) độ dài đường trung tuyến đi qua đỉnh đó.

      Đáp án : C

      Phương pháp giải :

      Dựa vào kiến thức giao điểm của ba đường trung trực.

      Lời giải chi tiết :

      Giao điểm của ba đường trung trực của tam giác cách đều ba đỉnh của tam giác nên C đúng.

      Đáp án C.

      II. Tự luận
      Câu 1 :

      Tìm x trong các tỉ lệ thức sau:

      a) x : 27 = –2 : 3,6

      b) \(\frac{{2x + 1}}{{-27}} = \frac{{- 3}}{{2x + 1}}\)

      Phương pháp giải :

      Dựa vào kiến thức về tỉ lệ thức:

      + Nếu \(\frac{a}{b} = \frac{c}{d}\) thì \(ad = bc\).

      + Nếu \(ad = bc\) (với \(a,b,c,d \ne 0\)) thì ta có các tỉ lệ thức:

      \(\frac{a}{b} = \frac{c}{d};\frac{a}{c} = \frac{b}{d};\frac{b}{a} = \frac{d}{c};\frac{c}{a} = \frac{d}{b}\).

      Lời giải chi tiết :

      a) \(x:27 = -2:3,6\)

      \(\begin{array}{l}\frac{x}{{27}} = \frac{{- 5}}{9}\\x = \frac{{- 5.27}}{9}\\x = -15\end{array}\)

      Vậy \(x = -15\).

      b) \(\frac{{2x + 1}}{{-27}} = \frac{{- 3}}{{2x + 1}}\)

      \(\begin{array}{l}{\left( {2x + 1} \right)^2} = 81\\{\left( {2x + 1} \right)^2} = {9^2}\\\left[ \begin{array}{l}2x + 1 = 9\\2x + 1 = -9\end{array} \right.\\\left[ \begin{array}{l}2x = 8\\2x = -10\end{array} \right.\\\left[ \begin{array}{l}x = 4\\x = -5\end{array} \right.\end{array}\)

      Vậy \(x = 4\) hoặc \(x = - 5\).

      Câu 2 :

      Cho đa thức \(Q(x) = - 3{x^4} + 4{x^3} + 2{x^2} + \frac{2}{3} - 3x - 2{x^4} - 4{x^3} + 8{x^4} + 1 + 3x\)

      a) Thu gọn và sắp xếp theo lũy thừa giảm dần của biến.

      b) Chứng tỏ Q(x) không có nghiệm.

      Phương pháp giải :

      a) Sử dụng quy tắc thu gọn đa thức một biến.

      b) Chứng minh Q(x) không thể bằng 0.

      Lời giải chi tiết :

      a)

      \(\begin{array}{l}Q(x) = - 3{x^4} + 4{x^3} + 2{x^2} + \frac{2}{3} - 3x - 2{x^4} - 4{x^3} + 8{x^4} + 1 + 3x\\ = \left( { - 3{x^4} - 2{x^4} + 8{x^4}} \right) + \left( {4{x^3} - 4{x^3}} \right) + 2{x^2} + \left( {3x - 3x} \right) + \left( {\frac{2}{3} + 1} \right)\\ = 3{x^4} + 2{x^2} + \frac{5}{3}\end{array}\)

      b) Ta có:

      \({x^4} \ge 0\) với mọi giá trị \(x\)

      \(3{x^4} \ge 0\) với mọi giá trị \(x\)

      \({x^2} \ge 0\) với mọi giá trị \(x\)

      \((2{x^2} \ge 0\) với mọi giá trị \(x\)

      \(Q(x) = 3{x^4} + 2{x^2} + \frac{5}{3} \ge \frac{5}{3}\) với mọi giá trị \(x\)

      Vậy \(Q\left( x \right)\) không có nghiệm

      Câu 3 :

      Chọn ngẫu nhiên một số trong bốn số 11;12;13 và 14. Tìm xác suất để:

      a) Chọn được số chia hết cho 5

      b) Chọn được số có hai chữ số

      c) Chọn được số nguyên tố

      d) Chọn được số chia hết cho 6

      Phương pháp giải :

      Kiểm tra khả năng xảy ra của biến cố.

      Lời giải chi tiết :

      a) Không có số nào chia hết cho 5 nên xác suất để chọn được số chia hết cho 5 là 0.

      b) Cả 4 số đều là số có hai chữ số nên xác suất để chọn được số có hai chữ số là 1.

      c) Có hai số (11; 13) là số nguyên tố nên xác suất để chọn được số nguyên tố là \(\frac{2}{4} = \frac{1}{2}\).

      d) Có một số (12) chia hết cho 6 nên xác suất để chọn được số chia hết cho 6 là \(\frac{1}{4}\).

      Câu 4 :

      Cho \(\Delta MNP\)cân tại M \(\left( {\widehat M < {{90}^0}} \right)\). Kẻ NH \( \bot \)MP \(\left( {H \in MP} \right)\), PK \( \bot \)MN \(\left( {K \in MN} \right)\). NH và PK cắt nhau tại E.

      a) Chứng minh \(\Delta NHP = \Delta PKN\)

      b) Chứng minh \(\Delta \)ENP cân.

      c) Chứng minh ME là đường phân giác của góc NMP.

      Phương pháp giải :

      a) Chứng minh \(\Delta NHP = \Delta PKN\) theo trường hợp cạnh huyền – góc nhọn.

      b) Chứng minh \(\widehat {{P_1}} = \widehat {{N_1}}\) nên \(\Delta ENP\) cân.

      c) Chứng minh MK = MH.

      Chứng minh \(\Delta MEK = \Delta MEH\) (cạnh huyền – cạnh góc vuông) suy ra \(\widehat {{M_1}} = \widehat {{M_2}}\).

      Do đó ME là đường phân giác của góc NMP.

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 7 - Đề số 11 - Chân trời sáng tạo 1 4

      a) Xét \(\Delta NHP\) và \(\Delta PKN\) vuông tại H và K có:

      \(\widehat {NPH} = \widehat {PNK}\) (vì \(\Delta MNP\) cân tại M)

      \(NP\) chung

      Suy ra \(\Delta NHP = \Delta PKN\) (cạnh huyền – góc nhọn) (đpcm)

      b) Vì \(\Delta NHP = \Delta PKN\)nên \(\widehat {{N_1}} = \widehat {{P_1}}\).

      Do đó \(\Delta ENP\) cân tại E (đpcm)

      c) Ta có:

      \(MK = MN - NK\) (vì K thuộc MN)

      \(MH = MP - HP\) (vì H thuộc MP)

      Mà \(MN = MP\) (vì \(\Delta MNP\) cân tại M)

      \(NK = PH\) (vì \(\Delta NHP = \Delta PKN\))

      suy ra \(MK = MH\).

      Xét \(\Delta MEK\) và \(\Delta MEH\) vuông tại K và H có:

      ME là cạnh chung

      MK = MH (cmt)

      Suy ra \(\Delta MEK = \Delta MEH\) (ch – cgv)

      Suy ra \(\widehat {{M_1}} = \widehat {{M_2}}\) suy ra ME là tia phân giác của góc NMP (đpcm)

      Câu 5 :

      Cho đa thức bậc hai P(x) = ax2 + bx + c. Trong đó: a,b và c là những số với a ≠ 0. Cho biết a + b + c = 0. Giải thích tại sao x = 1 là một nghiệm của P(x)

      Phương pháp giải :

      Thay x = 1 vào đa thức P(x) để giải thích.

      Lời giải chi tiết :

      Thay x = 1 vào đa thức P(x), ta có:

      P(1) = a.12 + b.1 + c = a + b + c

      Mà a + b + c = 0

      Do đó, P(1) = 0.

      Như vậy x = 1 là một nghiệm của P(x)

      Câu 6 :

      Cho x; y; z tỉ lệ thuận với 3; 4; 5. Tính giá trị của biểu thức

       \(A = 2024\left( {x - y} \right)\left( {y - z} \right) - 506{\left( {\frac{{x + y + z}}{6}} \right)^2}\)

      Phương pháp giải :

      Viết tỉ lệ thức của x; y; z.

      Đặt tỉ lệ đó bằng k, biểu diễn x; y; z theo k.

      Thay vào A, tính giá trị của A theo k.

      Lời giải chi tiết :

      Vì x; y; z tỉ lệ thuận với 3; 4; 5 nên \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\).

      Đặt \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = k\) ta được:

      \(x = 3k;y = 4k;z = 5k\).

      Khi đó,

      \(\begin{array}{l}A = 2024\left( {3k - 4k} \right)\left( {4k - 5k} \right) - 506{\left( {\frac{{3k + 4k + 5k}}{6}} \right)^2}\\ = 2024\left( { - k} \right)\left( { - k} \right) - 506{\left( {2k} \right)^2}\\ = 2024{k^2} - 2024{k^2}\\ = 0\end{array}\)

      Vậy A = 0.

      Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Đề thi học kì 2 Toán 7 - Đề số 11 - Chân trời sáng tạo tại chuyên mục giải toán 7 trên toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

      Đề thi học kì 2 Toán 7 - Đề số 11 - Chân trời sáng tạo: Tổng quan và Hướng dẫn Giải Chi Tiết

      Đề thi học kì 2 Toán 7 - Đề số 11, chương trình Chân trời sáng tạo, là một bài kiểm tra quan trọng giúp học sinh đánh giá mức độ nắm vững kiến thức và kỹ năng đã học trong suốt học kì. Đề thi bao gồm nhiều dạng bài tập khác nhau, từ trắc nghiệm đến tự luận, đòi hỏi học sinh phải có sự hiểu biết sâu sắc về các khái niệm và công thức toán học.

      Cấu trúc Đề thi

      Đề thi thường được chia thành các phần chính sau:

      • Phần trắc nghiệm: Kiểm tra khả năng nhận biết và vận dụng kiến thức cơ bản.
      • Phần tự luận: Đòi hỏi học sinh phải trình bày lời giải chi tiết và logic.
      • Phần bài tập ứng dụng: Kiểm tra khả năng áp dụng kiến thức vào giải quyết các vấn đề thực tế.

      Các Chủ đề Chính trong Đề thi

      Đề thi học kì 2 Toán 7 - Đề số 11 thường tập trung vào các chủ đề sau:

      1. Số hữu tỉ: Các phép toán với số hữu tỉ, so sánh số hữu tỉ, giá trị tuyệt đối của số hữu tỉ.
      2. Biểu thức đại số: Thu gọn biểu thức, cộng trừ đa thức, nhân đa thức, chia đa thức.
      3. Phương trình bậc nhất một ẩn: Giải phương trình bậc nhất một ẩn, ứng dụng phương trình bậc nhất một ẩn vào giải toán.
      4. Bất đẳng thức: Giải bất đẳng thức bậc nhất một ẩn, ứng dụng bất đẳng thức vào giải toán.
      5. Hình học: Các tính chất của tam giác, các trường hợp bằng nhau của tam giác, các tính chất của đường thẳng song song và đường thẳng vuông góc.

      Hướng dẫn Giải một số Dạng Bài Tập thường gặp

      Dạng 1: Giải phương trình bậc nhất một ẩn

      Để giải phương trình bậc nhất một ẩn, ta thực hiện các bước sau:

      1. Quy đồng mẫu số (nếu có).
      2. Chuyển vế các hạng tử chứa ẩn sang một vế và các hạng tử không chứa ẩn sang vế còn lại.
      3. Thu gọn hai vế.
      4. Chia cả hai vế cho hệ số của ẩn để tìm ra nghiệm.

      Dạng 2: Chứng minh hai tam giác bằng nhau

      Để chứng minh hai tam giác bằng nhau, ta sử dụng các trường hợp bằng nhau của tam giác:

      • Trường hợp 1: Cạnh - Cạnh - Cạnh (c-c-c)
      • Trường hợp 2: Cạnh - Góc - Cạnh (c-g-c)
      • Trường hợp 3: Góc - Cạnh - Góc (g-c-g)

      Lưu ý khi làm bài thi

      • Đọc kỹ đề bài trước khi làm.
      • Viết rõ ràng, mạch lạc.
      • Kiểm tra lại bài làm sau khi hoàn thành.
      • Sử dụng máy tính bỏ túi khi cần thiết.

      Tài liệu ôn tập hữu ích

      Để chuẩn bị tốt nhất cho kỳ thi học kì 2, các em có thể tham khảo các tài liệu sau:

      • Sách giáo khoa Toán 7 - Chân trời sáng tạo
      • Sách bài tập Toán 7 - Chân trời sáng tạo
      • Các đề thi thử học kì 2 Toán 7
      • Các video bài giảng trực tuyến về Toán 7

      Kết luận

      Đề thi học kì 2 Toán 7 - Đề số 11 - Chân trời sáng tạo là một cơ hội để các em thể hiện những kiến thức và kỹ năng đã học. Hãy tự tin và cố gắng hết mình để đạt kết quả tốt nhất nhé!

      Tài liệu, đề thi và đáp án Toán 7