Chào mừng các em học sinh đến với đề thi học kì 1 Toán 7 - Đề số 4 chương trình Chân trời sáng tạo. Đề thi này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong học kì.
Giaitoan.edu.vn cung cấp đề thi kèm đáp án chi tiết, giúp các em tự học và kiểm tra kết quả một cách hiệu quả. Chúc các em đạt kết quả tốt nhất!
Phần I: Trắc nghiệm (3 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.
I. Phần trắc nghiệm (3 điểm)
Câu | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Đáp án | A | C | A | C | C | B | C | D | C | A | C | A |
Câu 1
Phương pháp:
Tập hợp các số tự nhiên: N = {0;1;2;3;…}
Tập hợp các số nguyên: Z = {-3;-2;-1;0;1;2;3;….}
Tập hợp các số hữu tỉ \(Q = \left\{ {\dfrac{a}{b}|a,b \in Z,b \ne 0} \right\}\)
Cách giải:
\(\dfrac{3}{7} \in \mathbb{Q}\) nên A đúng.
\(\dfrac{1}{2} \notin \mathbb{Z}\) nên B sai
\(\dfrac{{ - 9}}{5} \in \mathbb{Q}\) nên C sai
\( - 6 \notin \mathbb{N}\) nên D sai.
Chọn A.
Câu 2
Phương pháp:
Tập hợp các số hữu tỉ \(Q = \left\{ {\dfrac{a}{b}|a,b \in Z,b \ne 0} \right\}\)
Cách giải:
Tập hợp các số hữu tỉ kí hiệu là Q
Chọn C.
Câu 3
Phương pháp:
Hai số đối nhau nếu chúng có tổng là 0.
Số đối của số a là số -a.
Cách giải:
Số đối của \(\dfrac{{ - 2}}{3}\) là \(\dfrac{2}{3}\)
Chọn A.
Câu 4
Phương pháp:
Xác định 1 đơn vị được chia thành bao nhiêu phần.
Các số nằm bên trái gốc O là các số âm.
Cách giải:
Điểm B nằm bên trái gốc O và cách gốc O một khoảng bằng \(\dfrac{1}{3}\) nên điểm B biểu diễn số hữu tỉ \(\dfrac{{ - 1}}{3}\).
Chọn C.
Câu 5
Phương pháp:
Các phép tính với lũy thừa
Cách giải:
\({x^{18}}:{x^6} = {x^{18 - 6}} = {x^{12}}\left( {x \ne 0} \right)\) nên A đúng
\({x^4}.{x^8} = {x^{4 + 8}} = {x^{12}}\) nên B đúng
\({x^2}.{x^6} = {x^{2 + 6}} = {x^8}\) nên C sai.
\({({x^3})^4} = {x^{3.4}} = {x^{12}}\) nên D đúng.
Chọn C.
Câu 6
Phương pháp:
Nhận biết số thập phân hữu hạn
Cách giải:
\(\dfrac{4}{6} = 0,66...6\) là số thập phân vô hạn tuần hoàn với chu kì 6.
\(\dfrac{3}{4} = 0,75\) là số thập phân hữu hạn.
\(\dfrac{{20}}{{15}} = 1,333....3\) là số thập phân vô hạn tuần hoàn với chu kì 3.
\(\dfrac{5}{4} = 1,25\) là số thập phân hữu hạn
Vậy các số thập phân hữu hạn là \(\dfrac{3}{4} = 0,75\) và \(\dfrac{5}{4} = 1,25\)
Chọn B.
Câu 7
Phương pháp:
Đặc điểm của hình hộp chữ nhật
Cách giải:
Hình hộp chữ nhật có 6 mặt.
Chọn C.
Câu 8
Phương pháp:
Thể tích hình hộp chữ nhật có kích thước a, b, c là: V = a.b.c
Cách giải:
Thể tích hình lăng trụ ABCD.A’B’C’D’ là: V = 4.2.3 = 24 (cm3).
Chọn D.
Câu 9
Phương pháp:
Diện tích xung quanh của hình hộp chữ nhật có chiều rộng a, chiều dài b, chiều cao c là: Sxq = 2.(a+b).c
Cách giải:
Diện tích xung quanh hình hộp chữ nhật là: Sxq = 2.(2+4).3 = 36 (cm2).
Chọn C.
Câu 10
Phương pháp:
Tiên đề Euclid.
Cách giải:
Qua một điểm M nằm ngoài đường thẳng a, có duy nhất một đường thẳng đi qua M và song song với a.
Chọn A.
Câu 11
Phương pháp:
Hai góc được gọi là đối đỉnh nếu 2 góc có cạnh của góc này là tia đối của cạnh của góc kia.
Cách giải:
Ta thấy \(\widehat {{O_1}};\widehat {{O_3}}\)là hai góc đối nhau; \(\widehat {{O_2}};\widehat {{O_4}}\)là hai góc đối nhau.
Chọn C.
Câu 12
Phương pháp:
Nếu Om là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOm} = \widehat {yOm} = \dfrac{1}{2}.\widehat {xOy}\)
Cách giải:
Vì Oy là tia phân giác của \(\widehat {xOz}\) nên \(\widehat {xOy} = \widehat {yOz} = 20^\circ \)
Chọn A.
II. Phần tự luận (7 điểm)
Câu 1
Phương pháp:
Thực hiện phép tính theo thứ tự thực hiện phép tính.
Tính căn bậc hai số học của một số.
Cách giải:
a) \(\sqrt 9 - \dfrac{2}{3} = 3 - \dfrac{2}{3} = \dfrac{9}{3} - \dfrac{2}{3} = \dfrac{7}{3}\)
b) \( - 5 + \sqrt {25} + {2023^0} = - 5 + 5 + 1 = 1\)
c) \({\left( {\dfrac{1}{4}} \right)^2} \cdot {\left( {\dfrac{1}{2}} \right)^5}:2 = {\left[ {{{\left( {\dfrac{1}{2}} \right)}^2}} \right]^2}.{\left( {\dfrac{1}{2}} \right)^5}.\dfrac{1}{2} = {\left( {\dfrac{1}{2}} \right)^4}.{\left( {\dfrac{1}{2}} \right)^5}.{\left( {\dfrac{1}{2}} \right)^1} = {\left( {\dfrac{1}{2}} \right)^{4 + 5 + 1}} = {\left( {\dfrac{1}{2}} \right)^{10}}\)
d) \(\left( {2,5 + \dfrac{2}{3}} \right) - 3\dfrac{1}{3} = \dfrac{{25}}{{10}} + \dfrac{2}{3} - \dfrac{{10}}{3} = \dfrac{5}{2} - \dfrac{8}{3} = \dfrac{{15}}{6} - \dfrac{{16}}{6} = \dfrac{{ - 1}}{6}\)
Câu 2
Phương pháp:
\(\left| x \right| = a\,\) với \((a > 0)\)\( \Leftrightarrow \left[ \begin{array}{l}x = a\\x = - a\end{array} \right.\)
Cách giải:
a)
\(\begin{array}{l}2x - 3,7 = 10\\2x = 10 + 3,7\\2x = 13,7\\x = 13,7:2\\x = 6,85.\end{array}\)
Vậy x = 6,85.
b)
\(\begin{array}{l}\sqrt {49} + 5x - 1 = {\left( { - 2} \right)^3}\\7 + 5x - 1 = - 8\\5x = - 8 - 7 + 1\\5x = - 14\\x = \dfrac{{ - 14}}{5}\end{array}\)
Vậy \(x = \dfrac{{ - 14}}{5}\)
c)
\(\begin{array}{l}\dfrac{8}{3}.|2x + 1| = 3\dfrac{1}{3}\\ \Leftrightarrow \dfrac{8}{3}.|2x + 1| = \dfrac{{10}}{3}\\ \Leftrightarrow |2x + 1| = \dfrac{{10}}{3}:\dfrac{8}{3}\\ \Leftrightarrow |2x + 1| = \dfrac{{10}}{3}.\dfrac{3}{8}\\ \Leftrightarrow |2x + 1| = \dfrac{5}{4}\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x + 1 = \dfrac{5}{4}}\\{2x + 1 = \dfrac{{ - 5}}{4}}\end{array}} \right.\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x = \dfrac{1}{4}}\\{2x = \dfrac{{ - 3}}{2}}\end{array}} \right.\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \dfrac{1}{8}}\\{x = \dfrac{{ - 3}}{4}}\end{array}} \right.\end{array}\)
Vậy \(x \in \left\{ {\dfrac{1}{8};\dfrac{{ - 3}}{4}} \right\}\)
Câu 3
Phương pháp:
Diện tích xung quanh hình lăng trụ đứng = Chu vi đáy . chiều cao.
Cách giải:
Chu vi đáy của lăng trụ là: C = 2+3+4 = 9 (cm)
Diện tích xung quanh của lăng trụ là: Sxq = C.h = 9. 6 = 54 (cm2).
Câu 4
Phương pháp:
Tính chất hai đường thẳng song song: Nếu một đường thẳng cắt đường thẳng song song thì: các góc ở vị trí so le trong bằng nhau, các góc ở vị trí đồng vị bằng nhau, các góc trong cùng phía bù nhau.
Tính chất các góc kề bù, các góc đối đỉnh.
Cách giải:
a) Vì \(a//b,b \bot CD \Rightarrow a \bot CD\)
b) Vì a//b nên \(\widehat {{A_1}} = \widehat {{B_3}}\) (2 góc so le trong), mà \(\widehat {{A_1}} = 65^\circ \Rightarrow \widehat {{B_3}} = 65^\circ \)
Ta có: \(\widehat {{B_3}} = \widehat {{B_1}}\) (2 góc đối đỉnh) nên \(\widehat {{B_1}} = 65^\circ \).
Vì \(\widehat {{B_3}} + \widehat {{B_4}} = 180^\circ \) (2 góc kề bù) nên \(65^\circ + \widehat {{B_4}} = 180^\circ \Leftrightarrow \widehat {{B_4}} = 180^\circ - 65^\circ = 115^\circ \).
Mà \(\widehat {{B_2}} = \widehat {{B_4}}\)(2 góc đối đỉnh) nên \(\widehat {{B_2}} = 115^\circ \).
Vậy \(\widehat {{B_1}} = \widehat {{B_3}} = 65^\circ \); \(\widehat {{B_2}} = \widehat {{B_4}} = 115^\circ \).
Câu 5
Phương pháp:
Tỉ số phần trăm của a đối với b là: a : b . 100%
Cách giải
a) Sĩ số lớp 7B là:
18 +12 + 3 + 7 = 40 (học sinh).
b) Tỉ lệ phần trăm những bạn có khả năng tự nấu ăn xuất sắc so với sĩ số lớp là:
7 : 40.100 = 17,5
Câu 6
Phương pháp:
Dùng bất đẳng thức \({x^2} \ge 0,\forall x \in \mathbb{R}\).
Cách giải: \(M = \sqrt {{x^2} + 169} - 2024\)
Vì \({x^2} \ge 0,\forall x \in \mathbb{R}\) nên \(M = \sqrt {{x^2} + 169} - 2024 \ge \sqrt {169} - 2024 = 13 - 2024 = - 2011.\)
Dấu “=” xảy ra \( \Leftrightarrow x = 0\).
Vậy min M = -2011 khi x = 0.
Phần I: Trắc nghiệm (3 điểm).
Câu 1: Trong các câu sau câu nào đúng?
A. \(\dfrac{3}{7} \in \mathbb{Q}.\)
B. \(\dfrac{1}{2} \in \mathbb{Z}\).
C. \(\dfrac{{ - 9}}{5} \notin \mathbb{Q}\).
D. \( - 6 \in \mathbb{N}\).
Câu 2: Tập hợp các số hữu tỉ kí hiệu là:
A. N;
B. \({N^*}\);
C. Q;
D. Z.
Câu 3: Số đối cùa \(\dfrac{{ - 2}}{3}\) là:
A. \(\dfrac{2}{3}\);
B. \(\dfrac{3}{2}\);
C. \(\dfrac{{ - 3}}{2}\);
D. \(\dfrac{2}{{ - 3}}\).
Câu 4: Điểm B trên trục số biểu diễn số hữu tỉ nào sau đây?
A. \(\dfrac{{ - 2}}{3}\);
B. \(\dfrac{{ - 2}}{5}\);
C. \( - \dfrac{1}{3}\);
D. \(\dfrac{2}{6}\).
Câu 5: Phép tính nào sau đây không đúng?
A. \({x^{18}}:{x^6} = {x^{12}}\left( {x \ne 0} \right)\)
B. \({x^4}.{x^8} = {x^{12}}\)
C. \({x^2}.{x^6} = {x^{12}}\)
D. \({({x^3})^4} = {x^{12}}\)
Câu 6: Cho các số sau \(\dfrac{4}{6} = 0,66...6;\dfrac{3}{4} = 0,75;\dfrac{{20}}{{15}} = 1,333....3;\dfrac{5}{4} = 1,25\) số nào viết được dưới dạng số thập phân hữu hạn?
A. \(\dfrac{4}{6} = 0,66...6;\dfrac{{20}}{{15}} = 1,333....3\);
B. \(\dfrac{3}{4} = 0,75;\dfrac{5}{4} = 1,25\);
C. \(\dfrac{4}{6} = 0,66...6;\dfrac{3}{4} = 0,75\);
D. \(\dfrac{4}{6} = 0,66...6;\dfrac{3}{4} = 0,75;\dfrac{{20}}{{15}} = 1,333....3\)
Câu 7: Số mặt của hình hộp chữ nhật \(ABCD{A^,}{B^,}{C^,}{D^,}\) là:
A. 3;
B. 4;
C. 6;
D. 12.
Câu 8: Thể tích của hình hộp chữ nhật bên là:
A. 6 cm3;
B. 8 cm3;
C. 12 cm3;
D. 24 cm3.
Câu 9: Diện tích xung quanh của hình hộp chữ nhật bên là:
A. 12 cm2;
B. 24 cm2;
C. 36 cm2;
D. 42 cm2
Câu 10: Tiên đề Euclid được phát biểu: “Qua một điểm M nằm ngoài đường thẳng a.”
A. Có duy nhất một đường thẳng đi qua M và song song với a.
B. Có hai đường thẳng song song với a.
C. Có ít nhất một đường thẳng song song với a.
D. Có vô số đường thẳng song song với a.
Câu 11: Cho hình vẽ:
Các cặp góc đối đỉnh là:
A. Ô1 và Ô2
B. Ô1 và Ô4
C. Ô2 và Ô4 ; Ô1 và Ô3
D. Ô2 và Ô3
Câu 12: Cho hình vẽ:
Biết\(\widehat {\;xOy} = {20^0}\), Oy là tia phân giác của góc \(\widehat {xOz}\). Khi đó số đo \(\widehat {yOz\;}\) bằng:
A. \({20^0}\)
B. \(\;{160^0}\)
C. \({80^0}\)
D. \(\;{40^0}\).
II. TỰ LUẬN (7 điểm)
Câu 1:(2 điểm) Tính:
a) \(\sqrt 9 - \dfrac{2}{3}\)
b) \( - 5 + \sqrt {25} + {2023^0}\)
c) \({\left( {\dfrac{1}{4}} \right)^2} \cdot {\left( {\dfrac{1}{2}} \right)^5}:2\)
d) \(\left( {2,5 + \dfrac{2}{3}} \right) - 3\dfrac{1}{3}\)
Câu 2: (1,5 điểm) Tìm x:
a) \(2x - 3,7 = 10\)
b) \(\sqrt {49} + 5x - 1 = {\left( { - 2} \right)^3}\)
c) \(\dfrac{8}{3}.|2x + 1| = 3\dfrac{1}{3}\)
Câu 3: (0,5 điểm) Cho hình vẽ: Tính diện tích xung quanh của hình lăng trụ ABC.A’B’C’?
Câu 4: (1,5 điểm) Cho hình vẽ sau. Biết a // b.
a) Chứng minh CD vuông góc với a.
b) Biết số đo góc A1 là 65o. Tính số đo góc B1 ; B2 ; B3 ; B4.
Câu 5:(1,0 điểm) Kết quả tìm hiểu về khả năng tự nấu ăn của tất cả học sinh lớp 7B cho bởi bảng thống kê sau:
Khả năng tự nấu ăn | Không đạt | Đạt | Giỏi | Xuất sắc |
Số bạn tự đánh giá | 18 | 12 | 3 | 7 |
a) Tính sĩ số lớp 7B.
b) Tính tỉ lệ % của những bạn có khả nhăng tự nấu ăn xuất sắc so với sĩ số lớp.
Câu 6:(0,5 điểm) Tìm giá trị nhỏ nhất của biểu thức \(M = \sqrt {{x^2} + 169} - 2024\).
Phần I: Trắc nghiệm (3 điểm).
Câu 1: Trong các câu sau câu nào đúng?
A. \(\dfrac{3}{7} \in \mathbb{Q}.\)
B. \(\dfrac{1}{2} \in \mathbb{Z}\).
C. \(\dfrac{{ - 9}}{5} \notin \mathbb{Q}\).
D. \( - 6 \in \mathbb{N}\).
Câu 2: Tập hợp các số hữu tỉ kí hiệu là:
A. N;
B. \({N^*}\);
C. Q;
D. Z.
Câu 3: Số đối cùa \(\dfrac{{ - 2}}{3}\) là:
A. \(\dfrac{2}{3}\);
B. \(\dfrac{3}{2}\);
C. \(\dfrac{{ - 3}}{2}\);
D. \(\dfrac{2}{{ - 3}}\).
Câu 4: Điểm B trên trục số biểu diễn số hữu tỉ nào sau đây?
A. \(\dfrac{{ - 2}}{3}\);
B. \(\dfrac{{ - 2}}{5}\);
C. \( - \dfrac{1}{3}\);
D. \(\dfrac{2}{6}\).
Câu 5: Phép tính nào sau đây không đúng?
A. \({x^{18}}:{x^6} = {x^{12}}\left( {x \ne 0} \right)\)
B. \({x^4}.{x^8} = {x^{12}}\)
C. \({x^2}.{x^6} = {x^{12}}\)
D. \({({x^3})^4} = {x^{12}}\)
Câu 6: Cho các số sau \(\dfrac{4}{6} = 0,66...6;\dfrac{3}{4} = 0,75;\dfrac{{20}}{{15}} = 1,333....3;\dfrac{5}{4} = 1,25\) số nào viết được dưới dạng số thập phân hữu hạn?
A. \(\dfrac{4}{6} = 0,66...6;\dfrac{{20}}{{15}} = 1,333....3\);
B. \(\dfrac{3}{4} = 0,75;\dfrac{5}{4} = 1,25\);
C. \(\dfrac{4}{6} = 0,66...6;\dfrac{3}{4} = 0,75\);
D. \(\dfrac{4}{6} = 0,66...6;\dfrac{3}{4} = 0,75;\dfrac{{20}}{{15}} = 1,333....3\)
Câu 7: Số mặt của hình hộp chữ nhật \(ABCD{A^,}{B^,}{C^,}{D^,}\) là:
A. 3;
B. 4;
C. 6;
D. 12.
Câu 8: Thể tích của hình hộp chữ nhật bên là:
A. 6 cm3;
B. 8 cm3;
C. 12 cm3;
D. 24 cm3.
Câu 9: Diện tích xung quanh của hình hộp chữ nhật bên là:
A. 12 cm2;
B. 24 cm2;
C. 36 cm2;
D. 42 cm2
Câu 10: Tiên đề Euclid được phát biểu: “Qua một điểm M nằm ngoài đường thẳng a.”
A. Có duy nhất một đường thẳng đi qua M và song song với a.
B. Có hai đường thẳng song song với a.
C. Có ít nhất một đường thẳng song song với a.
D. Có vô số đường thẳng song song với a.
Câu 11: Cho hình vẽ:
Các cặp góc đối đỉnh là:
A. Ô1 và Ô2
B. Ô1 và Ô4
C. Ô2 và Ô4 ; Ô1 và Ô3
D. Ô2 và Ô3
Câu 12: Cho hình vẽ:
Biết\(\widehat {\;xOy} = {20^0}\), Oy là tia phân giác của góc \(\widehat {xOz}\). Khi đó số đo \(\widehat {yOz\;}\) bằng:
A. \({20^0}\)
B. \(\;{160^0}\)
C. \({80^0}\)
D. \(\;{40^0}\).
II. TỰ LUẬN (7 điểm)
Câu 1:(2 điểm) Tính:
a) \(\sqrt 9 - \dfrac{2}{3}\)
b) \( - 5 + \sqrt {25} + {2023^0}\)
c) \({\left( {\dfrac{1}{4}} \right)^2} \cdot {\left( {\dfrac{1}{2}} \right)^5}:2\)
d) \(\left( {2,5 + \dfrac{2}{3}} \right) - 3\dfrac{1}{3}\)
Câu 2: (1,5 điểm) Tìm x:
a) \(2x - 3,7 = 10\)
b) \(\sqrt {49} + 5x - 1 = {\left( { - 2} \right)^3}\)
c) \(\dfrac{8}{3}.|2x + 1| = 3\dfrac{1}{3}\)
Câu 3: (0,5 điểm) Cho hình vẽ: Tính diện tích xung quanh của hình lăng trụ ABC.A’B’C’?
Câu 4: (1,5 điểm) Cho hình vẽ sau. Biết a // b.
a) Chứng minh CD vuông góc với a.
b) Biết số đo góc A1 là 65o. Tính số đo góc B1 ; B2 ; B3 ; B4.
Câu 5:(1,0 điểm) Kết quả tìm hiểu về khả năng tự nấu ăn của tất cả học sinh lớp 7B cho bởi bảng thống kê sau:
Khả năng tự nấu ăn | Không đạt | Đạt | Giỏi | Xuất sắc |
Số bạn tự đánh giá | 18 | 12 | 3 | 7 |
a) Tính sĩ số lớp 7B.
b) Tính tỉ lệ % của những bạn có khả nhăng tự nấu ăn xuất sắc so với sĩ số lớp.
Câu 6:(0,5 điểm) Tìm giá trị nhỏ nhất của biểu thức \(M = \sqrt {{x^2} + 169} - 2024\).
I. Phần trắc nghiệm (3 điểm)
Câu | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Đáp án | A | C | A | C | C | B | C | D | C | A | C | A |
Câu 1
Phương pháp:
Tập hợp các số tự nhiên: N = {0;1;2;3;…}
Tập hợp các số nguyên: Z = {-3;-2;-1;0;1;2;3;….}
Tập hợp các số hữu tỉ \(Q = \left\{ {\dfrac{a}{b}|a,b \in Z,b \ne 0} \right\}\)
Cách giải:
\(\dfrac{3}{7} \in \mathbb{Q}\) nên A đúng.
\(\dfrac{1}{2} \notin \mathbb{Z}\) nên B sai
\(\dfrac{{ - 9}}{5} \in \mathbb{Q}\) nên C sai
\( - 6 \notin \mathbb{N}\) nên D sai.
Chọn A.
Câu 2
Phương pháp:
Tập hợp các số hữu tỉ \(Q = \left\{ {\dfrac{a}{b}|a,b \in Z,b \ne 0} \right\}\)
Cách giải:
Tập hợp các số hữu tỉ kí hiệu là Q
Chọn C.
Câu 3
Phương pháp:
Hai số đối nhau nếu chúng có tổng là 0.
Số đối của số a là số -a.
Cách giải:
Số đối của \(\dfrac{{ - 2}}{3}\) là \(\dfrac{2}{3}\)
Chọn A.
Câu 4
Phương pháp:
Xác định 1 đơn vị được chia thành bao nhiêu phần.
Các số nằm bên trái gốc O là các số âm.
Cách giải:
Điểm B nằm bên trái gốc O và cách gốc O một khoảng bằng \(\dfrac{1}{3}\) nên điểm B biểu diễn số hữu tỉ \(\dfrac{{ - 1}}{3}\).
Chọn C.
Câu 5
Phương pháp:
Các phép tính với lũy thừa
Cách giải:
\({x^{18}}:{x^6} = {x^{18 - 6}} = {x^{12}}\left( {x \ne 0} \right)\) nên A đúng
\({x^4}.{x^8} = {x^{4 + 8}} = {x^{12}}\) nên B đúng
\({x^2}.{x^6} = {x^{2 + 6}} = {x^8}\) nên C sai.
\({({x^3})^4} = {x^{3.4}} = {x^{12}}\) nên D đúng.
Chọn C.
Câu 6
Phương pháp:
Nhận biết số thập phân hữu hạn
Cách giải:
\(\dfrac{4}{6} = 0,66...6\) là số thập phân vô hạn tuần hoàn với chu kì 6.
\(\dfrac{3}{4} = 0,75\) là số thập phân hữu hạn.
\(\dfrac{{20}}{{15}} = 1,333....3\) là số thập phân vô hạn tuần hoàn với chu kì 3.
\(\dfrac{5}{4} = 1,25\) là số thập phân hữu hạn
Vậy các số thập phân hữu hạn là \(\dfrac{3}{4} = 0,75\) và \(\dfrac{5}{4} = 1,25\)
Chọn B.
Câu 7
Phương pháp:
Đặc điểm của hình hộp chữ nhật
Cách giải:
Hình hộp chữ nhật có 6 mặt.
Chọn C.
Câu 8
Phương pháp:
Thể tích hình hộp chữ nhật có kích thước a, b, c là: V = a.b.c
Cách giải:
Thể tích hình lăng trụ ABCD.A’B’C’D’ là: V = 4.2.3 = 24 (cm3).
Chọn D.
Câu 9
Phương pháp:
Diện tích xung quanh của hình hộp chữ nhật có chiều rộng a, chiều dài b, chiều cao c là: Sxq = 2.(a+b).c
Cách giải:
Diện tích xung quanh hình hộp chữ nhật là: Sxq = 2.(2+4).3 = 36 (cm2).
Chọn C.
Câu 10
Phương pháp:
Tiên đề Euclid.
Cách giải:
Qua một điểm M nằm ngoài đường thẳng a, có duy nhất một đường thẳng đi qua M và song song với a.
Chọn A.
Câu 11
Phương pháp:
Hai góc được gọi là đối đỉnh nếu 2 góc có cạnh của góc này là tia đối của cạnh của góc kia.
Cách giải:
Ta thấy \(\widehat {{O_1}};\widehat {{O_3}}\)là hai góc đối nhau; \(\widehat {{O_2}};\widehat {{O_4}}\)là hai góc đối nhau.
Chọn C.
Câu 12
Phương pháp:
Nếu Om là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOm} = \widehat {yOm} = \dfrac{1}{2}.\widehat {xOy}\)
Cách giải:
Vì Oy là tia phân giác của \(\widehat {xOz}\) nên \(\widehat {xOy} = \widehat {yOz} = 20^\circ \)
Chọn A.
II. Phần tự luận (7 điểm)
Câu 1
Phương pháp:
Thực hiện phép tính theo thứ tự thực hiện phép tính.
Tính căn bậc hai số học của một số.
Cách giải:
a) \(\sqrt 9 - \dfrac{2}{3} = 3 - \dfrac{2}{3} = \dfrac{9}{3} - \dfrac{2}{3} = \dfrac{7}{3}\)
b) \( - 5 + \sqrt {25} + {2023^0} = - 5 + 5 + 1 = 1\)
c) \({\left( {\dfrac{1}{4}} \right)^2} \cdot {\left( {\dfrac{1}{2}} \right)^5}:2 = {\left[ {{{\left( {\dfrac{1}{2}} \right)}^2}} \right]^2}.{\left( {\dfrac{1}{2}} \right)^5}.\dfrac{1}{2} = {\left( {\dfrac{1}{2}} \right)^4}.{\left( {\dfrac{1}{2}} \right)^5}.{\left( {\dfrac{1}{2}} \right)^1} = {\left( {\dfrac{1}{2}} \right)^{4 + 5 + 1}} = {\left( {\dfrac{1}{2}} \right)^{10}}\)
d) \(\left( {2,5 + \dfrac{2}{3}} \right) - 3\dfrac{1}{3} = \dfrac{{25}}{{10}} + \dfrac{2}{3} - \dfrac{{10}}{3} = \dfrac{5}{2} - \dfrac{8}{3} = \dfrac{{15}}{6} - \dfrac{{16}}{6} = \dfrac{{ - 1}}{6}\)
Câu 2
Phương pháp:
\(\left| x \right| = a\,\) với \((a > 0)\)\( \Leftrightarrow \left[ \begin{array}{l}x = a\\x = - a\end{array} \right.\)
Cách giải:
a)
\(\begin{array}{l}2x - 3,7 = 10\\2x = 10 + 3,7\\2x = 13,7\\x = 13,7:2\\x = 6,85.\end{array}\)
Vậy x = 6,85.
b)
\(\begin{array}{l}\sqrt {49} + 5x - 1 = {\left( { - 2} \right)^3}\\7 + 5x - 1 = - 8\\5x = - 8 - 7 + 1\\5x = - 14\\x = \dfrac{{ - 14}}{5}\end{array}\)
Vậy \(x = \dfrac{{ - 14}}{5}\)
c)
\(\begin{array}{l}\dfrac{8}{3}.|2x + 1| = 3\dfrac{1}{3}\\ \Leftrightarrow \dfrac{8}{3}.|2x + 1| = \dfrac{{10}}{3}\\ \Leftrightarrow |2x + 1| = \dfrac{{10}}{3}:\dfrac{8}{3}\\ \Leftrightarrow |2x + 1| = \dfrac{{10}}{3}.\dfrac{3}{8}\\ \Leftrightarrow |2x + 1| = \dfrac{5}{4}\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x + 1 = \dfrac{5}{4}}\\{2x + 1 = \dfrac{{ - 5}}{4}}\end{array}} \right.\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x = \dfrac{1}{4}}\\{2x = \dfrac{{ - 3}}{2}}\end{array}} \right.\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \dfrac{1}{8}}\\{x = \dfrac{{ - 3}}{4}}\end{array}} \right.\end{array}\)
Vậy \(x \in \left\{ {\dfrac{1}{8};\dfrac{{ - 3}}{4}} \right\}\)
Câu 3
Phương pháp:
Diện tích xung quanh hình lăng trụ đứng = Chu vi đáy . chiều cao.
Cách giải:
Chu vi đáy của lăng trụ là: C = 2+3+4 = 9 (cm)
Diện tích xung quanh của lăng trụ là: Sxq = C.h = 9. 6 = 54 (cm2).
Câu 4
Phương pháp:
Tính chất hai đường thẳng song song: Nếu một đường thẳng cắt đường thẳng song song thì: các góc ở vị trí so le trong bằng nhau, các góc ở vị trí đồng vị bằng nhau, các góc trong cùng phía bù nhau.
Tính chất các góc kề bù, các góc đối đỉnh.
Cách giải:
a) Vì \(a//b,b \bot CD \Rightarrow a \bot CD\)
b) Vì a//b nên \(\widehat {{A_1}} = \widehat {{B_3}}\) (2 góc so le trong), mà \(\widehat {{A_1}} = 65^\circ \Rightarrow \widehat {{B_3}} = 65^\circ \)
Ta có: \(\widehat {{B_3}} = \widehat {{B_1}}\) (2 góc đối đỉnh) nên \(\widehat {{B_1}} = 65^\circ \).
Vì \(\widehat {{B_3}} + \widehat {{B_4}} = 180^\circ \) (2 góc kề bù) nên \(65^\circ + \widehat {{B_4}} = 180^\circ \Leftrightarrow \widehat {{B_4}} = 180^\circ - 65^\circ = 115^\circ \).
Mà \(\widehat {{B_2}} = \widehat {{B_4}}\)(2 góc đối đỉnh) nên \(\widehat {{B_2}} = 115^\circ \).
Vậy \(\widehat {{B_1}} = \widehat {{B_3}} = 65^\circ \); \(\widehat {{B_2}} = \widehat {{B_4}} = 115^\circ \).
Câu 5
Phương pháp:
Tỉ số phần trăm của a đối với b là: a : b . 100%
Cách giải
a) Sĩ số lớp 7B là:
18 +12 + 3 + 7 = 40 (học sinh).
b) Tỉ lệ phần trăm những bạn có khả năng tự nấu ăn xuất sắc so với sĩ số lớp là:
7 : 40.100 = 17,5
Câu 6
Phương pháp:
Dùng bất đẳng thức \({x^2} \ge 0,\forall x \in \mathbb{R}\).
Cách giải: \(M = \sqrt {{x^2} + 169} - 2024\)
Vì \({x^2} \ge 0,\forall x \in \mathbb{R}\) nên \(M = \sqrt {{x^2} + 169} - 2024 \ge \sqrt {169} - 2024 = 13 - 2024 = - 2011.\)
Dấu “=” xảy ra \( \Leftrightarrow x = 0\).
Vậy min M = -2011 khi x = 0.
Đề thi học kì 1 Toán 7 - Đề số 4 chương trình Chân trời sáng tạo là một bài kiểm tra quan trọng giúp học sinh đánh giá mức độ nắm vững kiến thức đã học trong nửa học kì đầu tiên. Đề thi bao gồm các dạng bài tập khác nhau, tập trung vào các chủ đề chính như số hữu tỉ, số thực, biểu thức đại số, phương trình bậc nhất một ẩn, và các ứng dụng thực tế của toán học.
Đề thi thường được chia thành các phần sau:
Các bài tập về số hữu tỉ và số thực thường yêu cầu học sinh:
Các bài tập về biểu thức đại số thường yêu cầu học sinh:
Các bài tập về phương trình bậc nhất một ẩn thường yêu cầu học sinh:
Các bài tập ứng dụng thực tế thường yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các vấn đề trong cuộc sống, ví dụ như tính tiền, tính diện tích, tính thể tích,...
Bài 1: Tính giá trị của biểu thức A = (1/2 + 1/3) * 6
Giải:
Bài 2: Giải phương trình 2x + 3 = 7
Giải:
Để chuẩn bị tốt nhất cho kỳ thi học kì, các em nên:
Giaitoan.edu.vn hy vọng rằng đề thi này và hướng dẫn giải chi tiết sẽ giúp các em học sinh ôn tập và đạt kết quả tốt nhất trong kỳ thi học kì 1 Toán 7 chương trình Chân trời sáng tạo.