Logo Header
  1. Môn Toán
  2. Đề thi học kì 2 Toán 7 - Đề số 12 - Chân trời sáng tạo

Đề thi học kì 2 Toán 7 - Đề số 12 - Chân trời sáng tạo

Đề thi học kì 2 Toán 7 - Đề số 12 - Chân trời sáng tạo

Chào mừng các em học sinh lớp 7 đến với đề thi học kì 2 môn Toán, đề số 12, chương trình Chân trời sáng tạo.

Đề thi này được thiết kế để giúp các em ôn tập và đánh giá kiến thức đã học trong học kì 2, chuẩn bị tốt nhất cho kỳ thi sắp tới.

Đề bài

    I. Trắc nghiệm
    Câu 1 :

    Trong các phát biểu sau, phát biểu nào đúng?

    • A.
      \(\frac{1}{2} = \frac{{ - 2}}{4}\).
    • B.
      \(\frac{1}{2} = \frac{5}{{10}}\).
    • C.
      \(\frac{1}{2} = \frac{3}{4}\).
    • D.
      \(\frac{1}{2} = \frac{{ - 2}}{{ - 6}}\).
    Câu 2 :

    Giá trị x thoả mãn tỉ lệ thức: \(\frac{6}{x} = \frac{{ - 10}}{5}\)

    • A.
      \( - 30.\)
    • B.
      \( - 3.\)
    • C.
      \(3 \cdot \)
    • D.
      \(30.\)
    Câu 3 :

    Trong các công thức sau, công thức nào phát biểu: “Đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ 2”?

    • A.
      \(y = 2x.\)
    • B.
      \(y = \frac{2}{x}.\)
    • C.
      \(y = x + 2.\)
    • D.
      \(y = {x^2}.\)
    Câu 4 :

    Biểu thức đại số biểu diễn công thức tính diện tích hình thang có 2 đáy độ dài a, b; chiều cao h ( a, b, h có cùng đơn vị đo độ dài)

    • A.
      \(ab.\)
    • B.
      \(ah.\)
    • C.
      \((a + b)h.\)
    • D.
      \(\frac{{(a + b)h}}{2}.\)
    Câu 5 :

    Hệ số tự do của đa thức \( - {x^7} + 5{x^5} - 12x - 22\) là

    • A.
      \( - 22.\)
    • B.
      \( - 1.\)
    • C.
      \(5.\)
    • D.
      \(22.\)
    Câu 6 :

    Giá trị của đa thức \(g\left( x \right) = {x^8}{\rm{ + }}{x^4} + {x^2} + 1\) tại \(x = - 1\)bằng

    • A.
      \( - 4.\)
    • B.
      \( - 3.\)
    • C.
      \(3.\)
    • D.
      \(4.\)
    Câu 7 :

    Trong các biến cố sau, biến cố nào là biến cố ngẫu nhiên?

    • A.
      Trong điều kiện thường nước sôi ở \({100^o}C.\)
    • B.
      Tháng tư có 30 ngày.
    • C.
      Gieo một con xúc xắc 1 lần, số chấm xuất hiện trên mặt con xúc xắc là 7.
    • D.
      Gieo hai con xúc xắc 1 lần, tổng số chấm xuất hiện trên hai con xúc xắc là 7.
    Câu 8 :

    Gieo một đồng xu cân đối, đồng chất 1 lần. Xác suất của biến cố “Đồng xu xuất hiện mặt ngửa” là

    • A.
      \(\frac{1}{4}.\)
    • B.
      \(\frac{1}{3}.\)
    • C.
      \(\frac{1}{2}.\)
    • D.
      \(1.\)
    Câu 9 :

    Cho \(\Delta ABC\) vuông tại A có \(\widehat B = {65^0}.\) Chọn khẳng định đúng.

    • A.
      \(AB < BC < AC.\)
    • B.
      \(BC > AC > AB.\)
    • C.
      \(BC < AC < AB.\)
    • D.
      \(AC < AB < BC.\)
    Câu 10 :

    Cho tam giác \(ABC\) có AM là đường trung tuyến, trọng tâm \(G\). Khẳng định nào sau đây đúng?

    • A.
      \(AM = 3AG.\)
    • B.
      \(AG = 2GM.\)
    • C.
      \(3AM = 2AG.\)
    • D.
      \(AG = \frac{1}{2}GM.\)
    Câu 11 :

    Bộ ba số nào là độ dài ba cạnh của một tam giác?

    • A.
      \(4cm,\;5cm,\;10cm.\)
    • B.
      \(5cm,\;5cm,\;12cm.\)
    • C.
      \(11cm,\;11cm,\;20cm.\)
    • D.
      \(9cm,\;20cm,\;11cm.\)
    Câu 12 :

    Cho \(\Delta ABC\) có \(\widehat A = {35^0};\widehat B = {45^0}\). Số đo góc C là:

    • A.
      \({70^0}\).
    • B.
      \({80^0}\).
    • C.
      \({90^0}\).
    • D.
      \({100^0}\).
    II. Tự luận
    Câu 1 :

    a) Tính giá trị của biểu thức \(A = (2x + y)(2x - y)\) tại \(x = - 2,\;y = \frac{1}{3}.\)

    b) Tìm tất cả các giá trị của \(x\) thoả mãn \(x(3x - 2) - 3{x^2} = \frac{3}{4}.\)

    Câu 2 :

    Học sinh của ba lớp 7A, 7B, 7C làm 40 tấm thiệp để chúc mừng các thầy cô nhân ngày 20-11, biết số học sinh của ba lớp 7A, 7B, 7C theo thứ tự là 45; 42; 33. Hỏi trong ba lớp trên mỗi lớp làm bao nhiêu tấm thiệp, biết số học sinh tỉ lệ với số thiệp cần làm.

    Câu 3 :

    Cho hai đa thức \(A\left( x \right) = 5{x^4} - 7{x^2} - 3x - 6{x^2} + 11x - 30\) và \(B\left( x \right) = - 11{x^3} + 5x - 10 + 13{x^4} - 2 + 20{x^3} - 34x\)

    a) Thu gọn hai đa thức \(A\left( x \right)\) và \(B\left( x \right)\) và sắp xếp theo lũy thừa giảm dần của biến.

    b) Tính \(A\left( x \right) - B\left( x \right)\).

    Câu 4 :

    Cho tam giác ABC cân tại A. Kẻ \(BH \bot AC;CK \bot AB\) (\(H \in AC;\,\)\(K \in AB\)).

    a) Chứng minh tam giác AKH là tam giác cân

    b) Gọi I là giao của BHCK; AI cắt BC tại M. Chứng minh rằng IM là phân giác của \(\widehat {BIC}\).

    c) Chứng minh: \(HK\,{\rm{//}}\,BC\).

    Câu 5 :

    Tìm tất cả các số nguyên dương \(x,y,z\) thỏa mãn:

    \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\)và \(200 < {y^2} + {z^2} < 450\).

    Lời giải và đáp án

      I. Trắc nghiệm
      Câu 1 :

      Trong các phát biểu sau, phát biểu nào đúng?

      • A.
        \(\frac{1}{2} = \frac{{ - 2}}{4}\).
      • B.
        \(\frac{1}{2} = \frac{5}{{10}}\).
      • C.
        \(\frac{1}{2} = \frac{3}{4}\).
      • D.
        \(\frac{1}{2} = \frac{{ - 2}}{{ - 6}}\).

      Đáp án : B

      Phương pháp giải :

      Dựa vào kiến thức về tỉ lệ thức.

      Lời giải chi tiết :

      Ta có:

      \(\frac{1}{2} = \frac{2}{4} \ne \frac{{ - 2}}{4}\) nên A sai.

      \(\frac{1}{2} = \frac{5}{{10}}\) nên B đúng.

      \(\frac{1}{2} = \frac{2}{4} \ne \frac{3}{4}\) nên C sai.

      \(\frac{1}{2} = \frac{{ - 3}}{{ - 6}} \ne \frac{{ - 2}}{{ - 6}}\) nên D sai.

      Đáp án B.

      Câu 2 :

      Giá trị x thoả mãn tỉ lệ thức: \(\frac{6}{x} = \frac{{ - 10}}{5}\)

      • A.
        \( - 30.\)
      • B.
        \( - 3.\)
      • C.
        \(3 \cdot \)
      • D.
        \(30.\)

      Đáp án : B

      Phương pháp giải :

      Dựa vào kiến thức về tỉ lệ thức: Nếu \(\frac{a}{b} = \frac{c}{d}\) thì \(ad = bc\).

      Lời giải chi tiết :

      Ta có: \(\frac{6}{x} = \frac{{ - 10}}{5}\) nên

      \(\begin{array}{l}6.5 = \left( { - 10} \right).x\\x = \frac{{6.5}}{{ - 10}}\\x = - 3\end{array}\)

      Đáp án B.

      Câu 3 :

      Trong các công thức sau, công thức nào phát biểu: “Đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ 2”?

      • A.
        \(y = 2x.\)
      • B.
        \(y = \frac{2}{x}.\)
      • C.
        \(y = x + 2.\)
      • D.
        \(y = {x^2}.\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng kiến thức về hai đại lượng tỉ lệ thuận: Nếu đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ là a thì ta có công thức \(y = ax\)

      Lời giải chi tiết :

      Đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ 2 nên y = 2x.

      Đáp án A.

      Câu 4 :

      Biểu thức đại số biểu diễn công thức tính diện tích hình thang có 2 đáy độ dài a, b; chiều cao h ( a, b, h có cùng đơn vị đo độ dài)

      • A.
        \(ab.\)
      • B.
        \(ah.\)
      • C.
        \((a + b)h.\)
      • D.
        \(\frac{{(a + b)h}}{2}.\)

      Đáp án : D

      Phương pháp giải :

      Sử dụng công thức tính diện tích hình thang để viết biểu thức.

      Lời giải chi tiết :

      Biểu thức đại số biểu diễn công thức tính diện tích hình thang có 2 đáy độ dài a, b; chiều cao h ( a, b, h có cùng đơn vị đo độ dài) là: \(\frac{{\left( {a + b} \right).h}}{2}\).

      Đáp án D.

      Câu 5 :

      Hệ số tự do của đa thức \( - {x^7} + 5{x^5} - 12x - 22\) là

      • A.
        \( - 22.\)
      • B.
        \( - 1.\)
      • C.
        \(5.\)
      • D.
        \(22.\)

      Đáp án : A

      Phương pháp giải :

      Hệ số của hạng tử bậc 0 gọi là hệ số tự do của đa thức đó.

      Lời giải chi tiết :

      Hệ số tự do của đa thức \( - {x^7} + 5{x^5} - 12x - 22\) là – 22.

      Đáp án A.

      Câu 6 :

      Giá trị của đa thức \(g\left( x \right) = {x^8}{\rm{ + }}{x^4} + {x^2} + 1\) tại \(x = - 1\)bằng

      • A.
        \( - 4.\)
      • B.
        \( - 3.\)
      • C.
        \(3.\)
      • D.
        \(4.\)

      Đáp án : D

      Phương pháp giải :

      Thay \(x = - 1\) vào đa thức để tính giá trị.

      Lời giải chi tiết :

      Thay \(x = - 1\) vào đa thức g(x) ta được:

      \(g\left( x \right) = {\left( { - 1} \right)^8}{\rm{ + }}{\left( { - 1} \right)^4} + {\left( { - 1} \right)^2} + 1 = 1 + 1 + 1 + 1 = 4\)

      Đáp án D.

      Câu 7 :

      Trong các biến cố sau, biến cố nào là biến cố ngẫu nhiên?

      • A.
        Trong điều kiện thường nước sôi ở \({100^o}C.\)
      • B.
        Tháng tư có 30 ngày.
      • C.
        Gieo một con xúc xắc 1 lần, số chấm xuất hiện trên mặt con xúc xắc là 7.
      • D.
        Gieo hai con xúc xắc 1 lần, tổng số chấm xuất hiện trên hai con xúc xắc là 7.

      Đáp án : D

      Phương pháp giải :

      Dựa vào kiến thức về các loại biến cố.

      Lời giải chi tiết :

      Biến cố “Gieo hai con xúc xắc 1 lần, tổng số chấm xuất hiện trên hai con xúc xắc là 7” là biến cố ngẫu nhiên.

      Đáp án D.

      Câu 8 :

      Gieo một đồng xu cân đối, đồng chất 1 lần. Xác suất của biến cố “Đồng xu xuất hiện mặt ngửa” là

      • A.
        \(\frac{1}{4}.\)
      • B.
        \(\frac{1}{3}.\)
      • C.
        \(\frac{1}{2}.\)
      • D.
        \(1.\)

      Đáp án : C

      Phương pháp giải :

      Dựa vào kiến thức về xác suất của các biến cố đồng khả năng.

      Lời giải chi tiết :

      Do đồng xu cân đối nên biến cố “Đồng xu xuất hiện mặt ngửa” và “Đồng xu xuất hiện mặt sấp” là đồng khả năng nên xác suất của 2 biến cố này bằng nhau và bằng \(\frac{1}{2}\).

      Đáp án C.

      Câu 9 :

      Cho \(\Delta ABC\) vuông tại A có \(\widehat B = {65^0}.\) Chọn khẳng định đúng.

      • A.
        \(AB < BC < AC.\)
      • B.
        \(BC > AC > AB.\)
      • C.
        \(BC < AC < AB.\)
      • D.
        \(AC < AB < BC.\)

      Đáp án : B

      Phương pháp giải :

      Dựa vào mối quan hệ giữa góc và cạnh đối nhau trong một tam giác và định lí tổng ba góc của một tam giác bằng \({180^0}\).

      Lời giải chi tiết :

      Tam giác ABC vuông tại A có \(\widehat B = {65^0}\) nên

      \(\widehat C = {180^0} - \widehat A - \widehat B = {180^0} - {90^0} - {65^0} = {25^0}\).

      Vì \(\widehat A > \widehat B > \widehat C\left( {{{90}^0} > {{65}^0} > {{25}^0}} \right)\) nên \(BC > AC > AB\).

      Đáp án B.

      Câu 10 :

      Cho tam giác \(ABC\) có AM là đường trung tuyến, trọng tâm \(G\). Khẳng định nào sau đây đúng?

      • A.
        \(AM = 3AG.\)
      • B.
        \(AG = 2GM.\)
      • C.
        \(3AM = 2AG.\)
      • D.
        \(AG = \frac{1}{2}GM.\)

      Đáp án : B

      Phương pháp giải :

      Dựa vào kiến thức về trọng tâm của tam giác.

      Lời giải chi tiết :

      Vì G là trọng tâm của tam giác ABC nên \(AG = \frac{2}{3}AM\) suy ra \(GM = AM - AG = AM - \frac{2}{3}AM = \frac{1}{3}AM\).

      Suy ra \(\frac{{GM}}{{AG}} = \frac{{\frac{1}{3}AM}}{{\frac{2}{3}AM}} = \frac{1}{2}\) hay \(AG = 2GM\).

      Đáp án B.

      Câu 11 :

      Bộ ba số nào là độ dài ba cạnh của một tam giác?

      • A.
        \(4cm,\;5cm,\;10cm.\)
      • B.
        \(5cm,\;5cm,\;12cm.\)
      • C.
        \(11cm,\;11cm,\;20cm.\)
      • D.
        \(9cm,\;20cm,\;11cm.\)

      Đáp án : C

      Phương pháp giải :

      Dựa vào quan hệ giữa các cạnh của một tam giác.

      Lời giải chi tiết :

      Ta có:

      4 + 5 = 9 < 10, ba độ dài \(4cm,\;5cm,\;10cm\) không thỏa mãn một bất đẳng thức tam giác nên không là độ dài ba cạnh của một tam giác.

      5 + 5 = 10 < 12, ba độ dài \(5cm,\;5cm,\;12cm\) không thỏa mãn một bất đẳng thức tam giác nên không là độ dài ba cạnh của một tam giác.

      11 > 20 – 11 = 9, ba độ dài \(11cm,\;11cm,\;20cm\) thỏa mãn điều kiện của bất đẳng thức tam giác nên đây có thể là độ dài ba cạnh của một tam giác.

      11 = 20 – 9, ba độ dài \(9cm,\;20cm,\;11cm\) không thỏa mãn một bất đẳng thức tam giác nên không là độ dài ba cạnh của một tam giác.

      Đáp án C.

      Câu 12 :

      Cho \(\Delta ABC\) có \(\widehat A = {35^0};\widehat B = {45^0}\). Số đo góc C là:

      • A.
        \({70^0}\).
      • B.
        \({80^0}\).
      • C.
        \({90^0}\).
      • D.
        \({100^0}\).

      Đáp án : D

      Phương pháp giải :

      Dựa vào định lí tổng ba góc của một tam giác bằng \({180^0}\).

      Lời giải chi tiết :

      Số đo góc C là:

      \(\begin{array}{l}\widehat C = {180^0} - \widehat A - \widehat B\\ = {180^0} - {35^0} - {45^0}\\ = {100^0}\end{array}\)

      Đáp án D.

      II. Tự luận
      Câu 1 :

      a) Tính giá trị của biểu thức \(A = (2x + y)(2x - y)\) tại \(x = - 2,\;y = \frac{1}{3}.\)

      b) Tìm tất cả các giá trị của \(x\) thoả mãn \(x(3x - 2) - 3{x^2} = \frac{3}{4}.\)

      Phương pháp giải :

      a) Thay \(x = - 2,\;y = \frac{1}{3}\) vào A để tính giá trị biểu thức.

      b) Sử dụng các phép tính với đa thức một biến để tìm giá trị của x.

      Lời giải chi tiết :

      a) Tại \(x = - 2,\;y = \frac{1}{3}\) ta có

      \(\begin{array}{l}A = \left[ {2 \cdot ( - 2) + \frac{1}{3}} \right]\left[ {2 \cdot ( - 2) - \frac{1}{3}} \right]\\ = \left( { - 4 + \frac{1}{3}} \right)\left( { - 4 - \frac{1}{3}} \right)\\ = \frac{{ - 11}}{3}.\frac{{ - 13}}{3}\\ = \frac{{143}}{9}.\end{array}\)

      b) \(x(3x - 2) - 3{x^2} = \frac{3}{4}\)

      \(\begin{array}{l}3{x^2} - 2x - 3{x^2} = \frac{3}{4}\\ - 2x = \frac{3}{4}\\x = \frac{{ - 3}}{8}.\end{array}\)

      Vậy \(x = \frac{{ - 3}}{8}\).

      Câu 2 :

      Học sinh của ba lớp 7A, 7B, 7C làm 40 tấm thiệp để chúc mừng các thầy cô nhân ngày 20-11, biết số học sinh của ba lớp 7A, 7B, 7C theo thứ tự là 45; 42; 33. Hỏi trong ba lớp trên mỗi lớp làm bao nhiêu tấm thiệp, biết số học sinh tỉ lệ với số thiệp cần làm.

      Phương pháp giải :

      Gọi số tấm thiệp của ba lớp 7A, 7B, 7C lần lượt là \(x,y,z\left( {x,y,z \in {\mathbb{N}^ * }} \right)\)

      Viết phương trình dựa vào đề bài.

      Áp dụng tính chất dãy tỉ số bằng nhau để tìm x, y, z.

      Lời giải chi tiết :

      Gọi số tấm thiệp của ba lớp 7A, 7B, 7C lần lượt là \(x,y,z\left( {x,y,z \in {\mathbb{N}^ * }} \right)\)

      Vì có 40 tấm thiệp nên x + y + z = 40

       Vì số học sinh tỉ lệ với số thiệp cần làm nên ta có \(\frac{x}{{45}} = \frac{y}{{42}} = \frac{z}{{33}}\).

      Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      \(\frac{x}{{45}} = \frac{y}{{42}} = \frac{z}{{33}} = \frac{{x + y + z}}{{45 + 42 + 33}} = \frac{{40}}{{120}} = \frac{1}{3}\)

      suy ra \( x = \frac{1}{3}.45 = 15; y = \frac{1}{3}.42 = 14; z = \frac{1}{3}.33 = 11\)

      Vậy số tấm thiệp của ba lớp 7A, 7B, 7C lần lượt là 15; 14; 11.

      Câu 3 :

      Cho hai đa thức \(A\left( x \right) = 5{x^4} - 7{x^2} - 3x - 6{x^2} + 11x - 30\) và \(B\left( x \right) = - 11{x^3} + 5x - 10 + 13{x^4} - 2 + 20{x^3} - 34x\)

      a) Thu gọn hai đa thức \(A\left( x \right)\) và \(B\left( x \right)\) và sắp xếp theo lũy thừa giảm dần của biến.

      b) Tính \(A\left( x \right) - B\left( x \right)\).

      Phương pháp giải :

      Thực hiện tính toán với đa thức một biến.

      Lời giải chi tiết :

      a) \(A\left( x \right) = 5{x^4} - 7{x^2} - 3x - 6{x^2} + 11x - 30\)

      \(\begin{array}{l} = 5{x^4} + \left( { - 7{x^2} - 6{x^2}} \right) + \left( { - 3x + 11x} \right) - 30\\ = 5{x^4} - 13{x^2} + 8x - 30\end{array}\)

      \(B\left( x \right) = - 11{x^3} + 5x - 10 + 13{x^4} - 2 + 20{x^3} - 34x\)

      \(\begin{array}{l} = 13{x^4} + \left( { - 11{x^3} + 20{x^3}} \right) + \left( {5x - 34x} \right) + \left( { - 10 - 2} \right)\\ = 13{x^4} + 9{x^3} - 29x - 12\end{array}\)

      b) \(A\left( x \right) - B\left( x \right) = \left( {5{x^4} - 13{x^2} + 8x - 30} \right) - \left( {13{x^4} + 9{x^3} - 29x - 12} \right)\)

      \(\begin{array}{l} = 5{x^4} - 13{x^2} + 8x - 30 - 13{x^4} - 9{x^3} + 29x + 12\\ = \left( {5{x^4} - 13{x^4}} \right) - 9{x^3} - 13{x^2} + \left( {8x + 29x} \right) + \left( { - 30 + 12} \right)\\ = -8{x^4} - 9{x^3} - 13{x^2} + 37x - 18\end{array}\)

      Câu 4 :

      Cho tam giác ABC cân tại A. Kẻ \(BH \bot AC;CK \bot AB\) (\(H \in AC;\,\)\(K \in AB\)).

      a) Chứng minh tam giác AKH là tam giác cân

      b) Gọi I là giao của BHCK; AI cắt BC tại M. Chứng minh rằng IM là phân giác của \(\widehat {BIC}\).

      c) Chứng minh: \(HK\,{\rm{//}}\,BC\).

      Phương pháp giải :

      a) Chứng minh \(\Delta ABH = \Delta ACK\) theo trường hợp cạnh huyền – góc nhọn. suy ra AH = AK nên tam giác AKH là tam giác cân.

      b) Chứng minh \(\widehat {{P_1}} = \widehat {{N_1}}\) nên \(\Delta AKI = \Delta AHI\) theo trường hợp cạnh huyền – cạnh góc vuông suy ra \(\widehat {AIK} = \widehat {AIH}\)

      Từ đó ta có \(\widehat {CIM} = \widehat {BIM}\) nên IM là phân giác của góc BIC

      c) Từ tam giác cân ABC và AHK ta có \(\widehat {ABC} = \frac{{180^\circ - \widehat A}}{2}\), \(\widehat {AKH} = \frac{{180^\circ - \widehat A}}{2}\) nên \(\widehat {ABC} = \widehat {AKH}\).

      Mà hai góc này ở vị trí đồng vị nên HK // BC.

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 7 - Đề số 12 - Chân trời sáng tạo 1 1

      a) Xét \(\Delta ABH\) và \(\Delta ACK\) có:

      \(\widehat {AHB} = \widehat {AKC} = 90^\circ \) (vì \(BH \bot AC;CK \bot AB\))

      AB = AC (\(\Delta ABC\) cân);

      góc A chung;

      Do đó: \(\Delta ABH = \Delta ACK\) (cạnh huyền – góc nhọn).

      \( \Rightarrow AH = AK \Rightarrow \Delta AHK\) cân tại A (đpcm).

      b) Xét \(\Delta AKI\) và \(\Delta AHI\) có: \(\widehat {AKI} = \widehat {AHI} = 90^\circ \) (vì \(BH \bot AC;CK \bot AB\))

      AK = AH (\(\Delta AHK\) cân tại A);

      cạnh AI chung;

      Do đó: \(\Delta AKI = \Delta AHI\) (cạnh huyền – cạnh góc vuông).

      \( \Rightarrow \widehat {AIK} = \widehat {AIH}\).

      Mà: \(\widehat {AIK} = \widehat {CIM};\widehat {AIH} = \widehat {BIM}\) (2 góc đối đỉnh).

      Do đó: \(\widehat {CIM} = \widehat {BIM}\)\( \Rightarrow IM\)là phân giác của góc BIC (đpcm).

      c) \(\Delta ABC\) cân tại A nên: \(\widehat {ABC} = \frac{{180^\circ - \widehat A}}{2}\) .

      \(\Delta AHK\) cân tại A nên: \(\widehat {AKH} = \frac{{180^\circ - \widehat A}}{2}\) .

      Suy ra \(\widehat {ABC} = \widehat {AKH}\).

      Mà 2 góc này ở vị trí đồng vị.

      Do đó: KH // BC (đpcm).

      Câu 5 :

      Tìm tất cả các số nguyên dương \(x,y,z\) thỏa mãn:

      \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\)và \(200 < {y^2} + {z^2} < 450\).

      Phương pháp giải :

      Biến đổi \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\) thành \(\frac{{6z - 12x}}{9} = \frac{{12x - 8y}}{{16}} = \frac{{8y - 6z}}{4}\).

      Áp dụng tính chất dãy tỉ số bằng nhau để suy ra \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2} = 0\)

      Từ đó ta có \(6z = 12x = 8y\).

      Đặt \(6z = 12x = 8y = 24k\left( {k > 0} \right) \Rightarrow \left( {x;y;z} \right) = \left( {2k;3k;4k} \right)\)

      Tìm k dựa vào \(200 < {y^2} + {z^2} < 450\)

      Từ đó tính được x, y, z.

      Lời giải chi tiết :

      Ta có \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\) nên

      \(\begin{array}{l}\frac{{3\left( {z - 4x} \right)}}{{3.3}} = \frac{{4\left( {3x - 2y} \right)}}{{4.4}} = \frac{{2\left( {4y - 3z} \right)}}{{2.2}}\\\frac{{6z - 12x}}{9} = \frac{{12x - 8y}}{{16}} = \frac{{8y - 6z}}{4}\end{array}\)

      Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

      \(\frac{{6z - 12x}}{9} = \frac{{12x - 8y}}{{16}} = \frac{{8y - 6z}}{4} = \frac{{6z - 12x + 12x - 8y + 8y - 6z}}{{9 + 16 + 4}} = \frac{0}{{29}} = 0\)

      Do đó \(\left\{ \begin{array}{l}6z - 12x = 0\\12x - 8y = 0\\8y - 6z = 0\end{array} \right.\) hay \(6z = 12x = 8y\).

      Đặt \(6z = 12x = 8y = 24k\left( {k > 0} \right)\) ta được \(\left( {x;y;z} \right) = \left( {2k;3k;4k} \right)\)

      Theo giả thiết \(200 < {y^2} + {z^2} < 450\)

      nên \(200 < (3k)^2 + (4k)^2 < 450\)

      \(200 < 9{k^2} + 16{k^2} < 450\)

      suy ra \(200 < 25{k^2} < 450\)

      \(8 < k^2 < 18\)

      Do đó \(k \in \left\{ {3;4} \right\}\)

      Từ đó tìm được \(\left( {x;y;z} \right) \in \left\{ {\left( {6;9;12} \right);\left( {8;12;16} \right)} \right\}\)

      Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Đề thi học kì 2 Toán 7 - Đề số 12 - Chân trời sáng tạo tại chuyên mục giải bài tập toán 7 trên toán học. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

      Đề thi học kì 2 Toán 7 - Đề số 12 - Chân trời sáng tạo: Tổng quan và Hướng dẫn Giải Chi Tiết

      Kỳ thi học kì 2 Toán 7 đóng vai trò quan trọng trong việc đánh giá năng lực học tập của học sinh sau một học kỳ rèn luyện kiến thức. Đề thi học kì 2 Toán 7 - Đề số 12 - Chân trời sáng tạo là một trong những đề thi được nhiều trường học lựa chọn để đánh giá học sinh. Bài viết này sẽ cung cấp thông tin chi tiết về cấu trúc đề thi, các dạng bài tập thường gặp, và hướng dẫn giải chi tiết để giúp các em học sinh ôn tập hiệu quả.

      Cấu trúc Đề thi học kì 2 Toán 7 - Đề số 12 - Chân trời sáng tạo

      Đề thi học kì 2 Toán 7 - Đề số 12 - Chân trời sáng tạo thường bao gồm các phần sau:

      1. Phần trắc nghiệm: Kiểm tra kiến thức cơ bản và khả năng vận dụng các khái niệm toán học.
      2. Phần tự luận: Yêu cầu học sinh trình bày lời giải chi tiết cho các bài toán, thể hiện khả năng tư duy logic và giải quyết vấn đề.

      Các chủ đề thường xuất hiện trong đề thi bao gồm:

      • Số hữu tỉ và số thực
      • Biểu thức đại số
      • Phương trình bậc nhất một ẩn
      • Bất phương trình bậc nhất một ẩn
      • Hàm số tuyến tính
      • Hình học: Các góc và đường thẳng song song, tam giác, tứ giác.

      Các Dạng Bài Tập Thường Gặp

      Dưới đây là một số dạng bài tập thường gặp trong Đề thi học kì 2 Toán 7 - Đề số 12 - Chân trời sáng tạo:

      1. Tính toán với Số hữu tỉ và Số thực

      Các bài tập này yêu cầu học sinh thực hiện các phép tính cộng, trừ, nhân, chia với số hữu tỉ và số thực. Ví dụ:

      Tính: (1/2) + (3/4) - (5/8)

      2. Giải Phương trình và Bất phương trình

      Học sinh cần giải các phương trình và bất phương trình bậc nhất một ẩn. Ví dụ:

      Giải phương trình: 2x + 5 = 11

      3. Bài toán về Hàm số tuyến tính

      Các bài tập này yêu cầu học sinh xác định hàm số tuyến tính, vẽ đồ thị hàm số, và giải các bài toán liên quan đến hàm số. Ví dụ:

      Cho hàm số y = 2x - 1. Tìm giá trị của y khi x = 3.

      4. Bài toán Hình học

      Các bài tập hình học yêu cầu học sinh chứng minh các tính chất hình học, tính góc, tính độ dài đoạn thẳng, và giải các bài toán liên quan đến tam giác, tứ giác. Ví dụ:

      Cho tam giác ABC vuông tại A. Tính độ dài cạnh BC biết AB = 3cm và AC = 4cm.

      Hướng dẫn Giải Chi Tiết

      Để giải tốt các bài tập trong Đề thi học kì 2 Toán 7 - Đề số 12 - Chân trời sáng tạo, học sinh cần nắm vững kiến thức cơ bản, hiểu rõ các định nghĩa, định lý, và công thức toán học. Ngoài ra, học sinh cần luyện tập thường xuyên để rèn luyện kỹ năng giải toán.

      Dưới đây là một số lời khuyên hữu ích:

      • Đọc kỹ đề bài và xác định yêu cầu của bài toán.
      • Phân tích bài toán và tìm ra phương pháp giải phù hợp.
      • Trình bày lời giải một cách rõ ràng, logic, và chính xác.
      • Kiểm tra lại kết quả để đảm bảo tính đúng đắn.

      Tài liệu Ôn tập và Luyện thi

      Để chuẩn bị tốt nhất cho kỳ thi học kì 2 Toán 7, học sinh có thể tham khảo các tài liệu sau:

      • Sách giáo khoa Toán 7 - Chân trời sáng tạo
      • Sách bài tập Toán 7 - Chân trời sáng tạo
      • Các đề thi thử học kì 2 Toán 7
      • Các trang web học toán online uy tín như giaitoan.edu.vn

      Kết luận

      Đề thi học kì 2 Toán 7 - Đề số 12 - Chân trời sáng tạo là một cơ hội để học sinh đánh giá năng lực học tập của mình và chuẩn bị tốt nhất cho các kỳ thi tiếp theo. Hy vọng rằng với những thông tin và hướng dẫn chi tiết trong bài viết này, các em học sinh sẽ tự tin và đạt kết quả tốt nhất trong kỳ thi sắp tới.

      Tài liệu, đề thi và đáp án Toán 7