Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài 2: Cộng, trừ, nhân, chia số hữu tỉ Toán 7 Cánh diều

Trắc nghiệm Bài 2: Cộng, trừ, nhân, chia số hữu tỉ Toán 7 Cánh diều

Trắc nghiệm Bài 2: Cộng, trừ, nhân, chia số hữu tỉ Toán 7 Cánh diều

Chào mừng các em học sinh đến với bài trắc nghiệm Toán 7 Bài 2: Cộng, trừ, nhân, chia số hữu tỉ của chương trình Cánh diều. Bài trắc nghiệm này được thiết kế để giúp các em ôn luyện và củng cố kiến thức đã học về các phép toán với số hữu tỉ.

Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, kèm đáp án chi tiết và lời giải dễ hiểu, giúp các em tự tin hơn trong quá trình học tập và làm bài.

Đề bài

    Câu 1 :

    Kết quả của phép tính $\dfrac{2}{3} + \dfrac{4}{5}$ là:

    • A.

      $\dfrac{{22}}{{15}}$

    • B.

      $\dfrac{6}{8}$

    • C.

      $\dfrac{6}{{15}}$

    • D.

      $\dfrac{8}{{15}}$

    Câu 2 :

    Chọn kết luận đúng nhất về kết quả của phép tính \(\dfrac{{ - 2}}{{13}} + \dfrac{{ - 11}}{{26}}\)

    • A.

      Là số nguyên âm

    • B.

      Là số nguyên dương

    • C.

      Là số hữu tỉ âm

    • D.

      Là số hữu tỉ dương

    Câu 3 :

    \(\dfrac{{23}}{{12}}\) là kết quả của phép tính:

    • A.

      \(\dfrac{2}{3} + \dfrac{5}{4}\)

    • B.

      \(\dfrac{1}{6} + \dfrac{3}{2}\)

    • C.

      \(\dfrac{5}{3} + \dfrac{3}{2}\)

    • D.

      \(1 + \dfrac{{13}}{{12}}\)

    Câu 4 :

    Số \(\dfrac{{ - 3}}{{14}}\) viết thành hiệu của hai số hữu tỉ dương nào dưới đây?

    • A.

      \(\dfrac{2}{3} - \dfrac{5}{7}\)

    • B.

      \(\dfrac{1}{{14}} - \dfrac{1}{7}\)

    • C.

      \(\dfrac{1}{2} - \dfrac{5}{7}\)

    • D.

      \(\dfrac{3}{{14}} - \dfrac{5}{{14}}\)

    Câu 5 :

    Tính \(\dfrac{2}{7} + \left( {\dfrac{{ - 3}}{5}} \right) + \dfrac{3}{5},\) ta được kết quả là:

    • A.

      \(\dfrac{{52}}{{35}}\)

    • B.

      \(\dfrac{2}{7}\)

    • C.

      \(\dfrac{{17}}{{35}}\)

    • D.

      \(\dfrac{{13}}{{35}}\)

    Câu 6 :

    Cho $x + \dfrac{1}{2} = \dfrac{3}{4}$. Giá trị của x bằng:

    • A.

      $\dfrac{1}{4}$

    • B.

      $\dfrac{{ - \,1}}{4}$

    • C.

      $\dfrac{2}{5}$

    • D.

      $\dfrac{5}{4}$

    Câu 7 :

    Giá trị biểu thức \(\dfrac{2}{5} + \left( { - \dfrac{4}{3}} \right) + \left( { - \dfrac{1}{2}} \right)\) là :

    • A.

      \(\dfrac{{ - 33}}{{30}}\)

    • B.

      \(\dfrac{{ - 31}}{{30}}\)

    • C.

      \(\dfrac{{43}}{{30}}\)

    • D.

      \(\dfrac{{ - 43}}{{30}}\)

    Câu 8 :

    Kết luận nào đúng khi nói về giá trị của biểu thức \(A = \dfrac{1}{3} - \left[ {\left( { - \dfrac{5}{4}} \right) - \left( {\dfrac{1}{4} + \dfrac{3}{8}} \right)} \right]\)

    • A.

      $A < 0$

    • B.

      $A < 1$

    • C.

      $A > 2$

    • D.

      $A < 2$

    Câu 9 :

    Số nào dưới đây là giá trị của biểu thức $B = \dfrac{2}{{11}} - \dfrac{5}{{13}} + \dfrac{9}{{11}} - \dfrac{8}{{13}}$

    • A.

      $2$

    • B.

      $ - 1$

    • C.

      $1$

    • D.

      $0$

    Câu 10 :

    Cho các số hữu tỉ \(x = \dfrac{a}{b},y = \dfrac{c}{d}\,\,(a,b,c,d \in Z,b \ne 0,d \ne 0).\) Tổng $x + y$ bằng:

    • A.

      \(\dfrac{{ac - bd}}{{bd}}\)

    • B.

      \(\dfrac{{ac + bd}}{{bd}}\)

    • C.

      \(\dfrac{{ad + bc}}{{bd}}\)

    • D.

      \(\dfrac{{ad - bc}}{{bd}}\)

    Câu 11 :

    Tính nhanh \(\left( { - 2 - \dfrac{1}{3} - \dfrac{1}{5}} \right) - \left( {\dfrac{2}{3} - \dfrac{6}{5}} \right),\)ta được kết quả là:

    • A.

      \( - 2\)

    • B.

      \( - \dfrac{{13}}{{15}}\)

    • C.

      \(\dfrac{{11}}{{15}}\)

    • D.

      \( - 1\)

    Câu 12 :

    Tính giá trị biểu thức \(M = \left( {\dfrac{2}{3} - \dfrac{1}{4} + 2} \right) - \left( {2 - \dfrac{5}{2} + \dfrac{1}{4}} \right) - \left( {\dfrac{5}{2} - \dfrac{1}{3}} \right)\).

    • A.

      \(\dfrac{1}{3}\)

    • B.

      \(\dfrac{1}{2}\)

    • C.

      \(\dfrac{3}{2}\)

    • D.

      \(\dfrac{2}{3}\)

    Câu 13 :

    Giá trị nào dưới đây của \(x\) thỏa mãn \(\dfrac{3}{7} - x = \dfrac{1}{4} - \left( { - \dfrac{3}{5}} \right)\)

    • A.

      \(x = \dfrac{{ - 59}}{{140}}\)

    • B.

      \(x = \dfrac{{59}}{{140}}\)

    • C.

      \(x = \dfrac{{ - 9}}{{140}}\)

    • D.

      \(x = \dfrac{{ - 49}}{{140}}\)

    Câu 14 :

    Tìm \(x\) biết \(\dfrac{{11}}{{12}} - \left( {\dfrac{2}{5} + x} \right) = \dfrac{2}{3}\)

    • A.

      \(\dfrac{1}{3}\)

    • B.

      \(\dfrac{{ - 3}}{{20}}\)

    • C.

      \(\dfrac{1}{2}\)

    • D.

      \(\dfrac{{ - 2}}{{30}}\)

    Câu 15 :

    Gọi \({x_0}\) là số thỏa mãn \(x.\left( {2018 + \dfrac{1}{{2018}} - 2019 - \dfrac{1}{{2019}}} \right) = \dfrac{1}{3} + \dfrac{1}{6} - \dfrac{1}{2}.\) Khi đó

    • A.

      \({x_0} > 0\)

    • B.

      \({x_0} < 0\)

    • C.

      \({x_0} = 0\)

    • D.

      \({x_0} = 1\)

    Câu 16 :

    Giá trị của biểu thức $\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \dfrac{1}{{4.5}} + ... + \dfrac{1}{{2018.2019}}$ là

    • A.

      \(\dfrac{{2018}}{{2019}}\)

    • B.

      \(\dfrac{{2019}}{{2018}}\)

    • C.

      \(1\)

    • D.

      \(\dfrac{1}{{2019}}\)

    Câu 17 :

    Kết quả của phép tính: \(\dfrac{{ - 2}}{3} + \dfrac{4}{3}\) là:

    • A.

      \(2\)

    • B.

      \(\dfrac{{ - 2}}{3}\)

    • C.

      \(\dfrac{2}{3}\)

    • D.

      \(\dfrac{2}{6}\)

    Câu 18 :

    Nếu \(x = \dfrac{a}{b};\,y = \dfrac{c}{d}\,\left( {b,d \ne 0} \right)\) thì tích \(x.y\) bằng

    • A.

      $\dfrac{{a.d}}{{b.c}}$

    • B.

      $\dfrac{{a.c}}{{b.d}}$

    • C.

      $\dfrac{{a + c}}{{b + d}}$

    • D.

      $\dfrac{{a + d}}{{b + c}}$

    Câu 19 :

    Kết quả của phép tính \( - \dfrac{6}{7}.\dfrac{{21}}{{12}}\) là

    • A.

      $\dfrac{3}{2}$

    • B.

      $ - \dfrac{3}{2}$

    • C.

      $\dfrac{2}{3}$

    • D.

      $ - \dfrac{2}{3}$

    Câu 20 :

    Thực hiện phép tính $\dfrac{5}{{11}}:\dfrac{{15}}{{22}}$ ta được kết quả là:

    • A.

      $\dfrac{2}{{ - \,5}}$

    • B.

      $\dfrac{3}{4}$

    • C.

      $\dfrac{2}{3}$

    • D.

      $\dfrac{3}{2}$

    Câu 21 :

    Kết quả của phép tính $\dfrac{3}{2}.\dfrac{4}{7}$ là

    • A.

      Một số nguyên âm

    • B.

      Một số nguyên dương

    • C.

      Một phân số nhỏ hơn \(0\)

    • D.

      Một phân số lớn hơn \(0\)

    Câu 22 :

    Số nào sau đây là kết quả của phép tính \(1\dfrac{4}{5}:\left( { - \dfrac{3}{4}} \right)\)

    • A.

      $ - \dfrac{{12}}{5}$

    • B.

      $\dfrac{3}{4}$

    • C.

      $\dfrac{2}{{15}}$

    • D.

      $\dfrac{{12}}{5}$

    Câu 23 :

    Cho \(A = \dfrac{{ - 5}}{6}.\dfrac{{12}}{{ - 7}}.\left( {\dfrac{{ - 21}}{{15}}} \right);\,B = \dfrac{1}{6}.\dfrac{9}{{ - 8}}.\left( {\dfrac{{ - 12}}{{11}}} \right)\) . So sánh \(A\) và \(B\).

    • A.

      $A > B$

    • B.

      $A < B$

    • C.

      $A = B$

    • D.

      $A \ge B$

    Câu 24 :

    Tìm \(x\) biết \(\dfrac{2}{3}x = - \dfrac{1}{{8}}.\)

    • A.

      \(x = - \dfrac{1}{4}\)

    • B.

      \(x = - \dfrac{5}{{16}}\)

    • C.

      \(x = \dfrac{3}{{16}}\)

    • D.

      \(x = - \dfrac{3}{{16}}\)

    Câu 25 :

    Tìm số $x$ thoả mãn: \(x:\left( {\dfrac{2}{5} - 1\dfrac{2}{5}} \right) = 1.\)

    • A.

      $x = 1$

    • B.

      $x = - 1$

    • C.

      $x = \dfrac{5}{2}$

    • D.

      $x = - \dfrac{5}{2}$

    Câu 26 :

    Gọi ${x_0}$ là giá trị thỏa mãn \(\dfrac{5}{7}:x - \dfrac{2}{5} = \dfrac{1}{3}\). Chọn câu đúng.

    • A.

      ${x_0} < 1$

    • B.

      ${x_0} = 1$

    • C.

      ${x_0} > 1$

    • D.

      ${x_0} = - 1$

    Câu 27 :

    Có bao nhiêu giá trị của \(x\) thỏa mãn \(\dfrac{1}{3}x + \dfrac{2}{5}\left( {x - 1} \right) = 0\)?

    • A.

      $1$

    • B.

      $2$

    • C.

      $0$

    • D.

      $3$

    Câu 28 :

    Biểu thức \(P = \left( {\dfrac{{ - 3}}{4} + \dfrac{2}{5}} \right):\dfrac{3}{7} + \left( {\dfrac{3}{5} + \dfrac{{ - 1}}{4}} \right):\dfrac{3}{7}\) có giá trị là

    • A.

      $1$

    • B.

      $2$

    • C.

      $0$

    • D.

      $3$

    Câu 29 :

    Cho \({x_1}\) là giá trị thỏa mãn \(\dfrac{3}{7} + \dfrac{1}{7}:x = \dfrac{3}{{14}}\) và \({x_2}\) là giá trị thỏa mãn \(\dfrac{5}{7} + \dfrac{2}{7}:x = 1.\) Khi đó, chọn câu đúng.

    • A.

      ${x_1} = {x_2}$

    • B.

      ${x_1} < {x_2}$

    • C.

      ${x_1} > {x_2}$

    • D.

      ${x_1} = 2.{x_2}$

    Câu 30 :

    Tìm $x$ , biết: $\left[ {\left( {{\rm{8}}{\kern 1pt} \, + {\kern 1pt} {\kern 1pt} \,\dfrac{{\rm{x}}}{{1000}}} \right)\,\,:\,\,2} \right]:\,\,3\,\, = \,\,2.$

    • A.

      $x = 8000$

    • B.

      $x = 400$

    • C.

      $x = 6000$

    • D.

      $x = 4000$

    Câu 31 :

    Tính giá trị biểu thức: $A = \dfrac{{\dfrac{2}{3} - \dfrac{2}{5} + \dfrac{2}{{10}}}}{{\dfrac{8}{3} - \dfrac{8}{5} + \dfrac{8}{{10}}}} + \dfrac{1}{2}.$

    • A.

      $A = \dfrac{3}{8}$

    • B.

      $A = \dfrac{5}{9}$

    • C.

      $A = \dfrac{3}{4}$

    • D.

      $A = \dfrac{1}{3}$

    Câu 32 :

    Có bao nhiêu giá trị của \(x\) thỏa mãn \(\left( {\dfrac{2}{3}x - \dfrac{4}{9}} \right)\left( {\dfrac{1}{2} + \dfrac{{ - 3}}{7}:x} \right) = 0\,?\)

    • A.

      $3$

    • B.

      $0$

    • C.

      $2$

    • D.

      $1$

    Câu 33 :

    Thực hiện phép tính \(\dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{{45}}:\left( {\dfrac{1}{5} - \dfrac{2}{{15}}} \right) + 1\dfrac{2}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\) ta được kết quả là

    • A.

      \(\dfrac{{27}}{7}\)

    • B.

      \(\dfrac{7}{{27}}\)

    • C.

      \(\dfrac{1}{7}\)

    • D.

      $\dfrac{1}{4}$

    Câu 34 :

    Nếu \(x = \dfrac{a}{b};\,y = \dfrac{c}{d}\,\left( {b,d \ne 0}, y\ne 0 \right)\) thì \(x:y\) bằng:

    • A.
      $\dfrac{{a.d}}{{b.c}}$
    • B.
      $\dfrac{{a:c}}{{b.d}}$
    • C.
      $\dfrac{{a+c}}{{b.d}}$
    • D.
      $\dfrac{{a.c}}{{b.d}}$
    Câu 35 :

    Tính: \(\frac{2}{3} - \frac{{ - 3}}{7}\)

    • A.

      \(\frac{5}{{21}}\)

    • B.

      \(\frac{2}{7}\)

    • C.

      \(\frac{{23}}{{21}}\)

    • D.

      \(\frac{{-23}}{{21}}\)

    Câu 36 :

    Thực hiện phép tính:

    \(\frac{{ - 2}}{3} + \frac{2}{5}:\frac{{ - 3}}{5}\)

    • A.

      0

    • B.

      \(\frac{4}{9}\)

    • C.

      \(\begin{array}{l}\frac{{ - 4}}{3}\\\end{array}\)

    • D.

      \(\frac{{ - 68}}{{75}}\)

    Câu 37 :

    Tính:

    \(3\frac{1}{2} - \frac{2}{3}:\frac{5}{{ - 3}} - 0,3\)

    • A.

      \(\frac{{194}}{{45}}\)

    • B.

      \(3\frac{3}{5}\)

    • C.

      \(\frac{{ - 14}}{5}\)

    • D.

      \(\frac{{ - 85}}{{59}}\)

    Câu 38 :

    Tìm x biết:

    \( - 0,12 - 2x = - 1\frac{2}{5}\)

    • A.

      \(\frac{{16}}{{25}}\)

    • B.

      \(\frac{{ - 19}}{{25}}\)

    • C.

      \(\frac{{19}}{{25}}\)

    • D.

      \(\frac{{ - 16}}{{25}}\)

    Câu 39 :

    Tính:

    \(M = \frac{{11}}{{20}}.68 - 4,2.2022 + 4\frac{1}{5}.2022 - 68.( - 0,45)\)

    • A.

      6,8

    • B.

      17052,8

    • C.

      0

    • D.

      68

    Câu 40 :

    Tìm x thỏa mãn:

    \(\frac{{x + \frac{3}{2}}}{6} = \frac{{ - 5}}{{12}}\)

    • A.

      -4

    • B.

      \(\frac{3}{2}\)

    • C.

      \(\frac{{ - 13}}{2}\)

    • D.

      -1

    Câu 41 :

    Tính: \(\frac{{\frac{3}{{11}} + \frac{3}{{17}} - \frac{3}{{23}} + \frac{3}{{29}}}}{{\frac{7}{{11}} + \frac{7}{{17}} - \frac{7}{{23}} + \frac{7}{{29}}}}\)

    • A.

      \(\frac{7}{3}\)

    • B.

      \(\frac{{ - 3}}{7}\)

    • C.

      \(\frac{3}{7}\)

    • D.

      \(\frac{{ - 7}}{3}\)

    Câu 42 :

    Có bao nhiêu số nguyên x thỏa mãn:

    (2x + 7) . ( x – 1) < 0

    • A.

      3

    • B.

      4

    • C.

      5

    • D.

      7

    Câu 43 :

    Tính: \((\frac{1}{3} - 1).(\frac{1}{4} - 1)....(\frac{1}{{2022}} - 1)\)

    • A.

      \(\frac{3}{{2022}}\)

    • B.

      -\(\frac{3}{{2022}}\)

    • C.

      -\(\frac{1}{{1011}}\)

    • D.

      \(\frac{1}{{1011}}\)

    Câu 44 :

    Cho P = 3 + 30 + 33 + 36 +…+ 3300.

    Tìm số x sao cho P - 3 = 5x

    • A.

      366575

    • B.

      363 303

    • C.

      1832880

    • D.

      99000

    Lời giải và đáp án

    Câu 1 :

    Kết quả của phép tính $\dfrac{2}{3} + \dfrac{4}{5}$ là:

    • A.

      $\dfrac{{22}}{{15}}$

    • B.

      $\dfrac{6}{8}$

    • C.

      $\dfrac{6}{{15}}$

    • D.

      $\dfrac{8}{{15}}$

    Đáp án : A

    Phương pháp giải :

    Đưa hai phân số về cùng mẫu rồi thực hiện phép cộng hai phân số cùng mẫu.

    Với $x = \dfrac{a}{m};\,y = \dfrac{b}{m}\,\left( {a,b,m \in \mathbb{Z},\,m > 0} \right)$ ta có:

    \(x + y = \dfrac{a}{m} + \dfrac{b}{m} = \dfrac{{a + b}}{m}\)

    Lời giải chi tiết :

    \(\dfrac{2}{3} + \dfrac{4}{5} = \dfrac{{10}}{{15}} + \dfrac{{12}}{{15}} = \dfrac{{22}}{{15}}.\)

    Câu 2 :

    Chọn kết luận đúng nhất về kết quả của phép tính \(\dfrac{{ - 2}}{{13}} + \dfrac{{ - 11}}{{26}}\)

    • A.

      Là số nguyên âm

    • B.

      Là số nguyên dương

    • C.

      Là số hữu tỉ âm

    • D.

      Là số hữu tỉ dương

    Đáp án : C

    Phương pháp giải :

    Đưa hai phân số về cùng mẫu rồi thực hiện phép cộng hai phân số cùng mẫu.

    Với $x = \dfrac{a}{m};\,y = \dfrac{b}{m}\,\left( {a,b,m \in \mathbb{Z},\,m > 0} \right)$ ta có:

    \(x + y = \dfrac{a}{m} + \dfrac{b}{m} = \dfrac{{a + b}}{m}\)

    Lời giải chi tiết :

    Ta có \(\dfrac{{ - 2}}{{13}} + \dfrac{{ - 11}}{{26}} = \dfrac{{ - 4}}{{26}} + \dfrac{{ - 11}}{{26}} = \dfrac{{ - 15}}{{26}}\)

    Do đó kết quả là số hữu tỉ âm.

    Câu 3 :

    \(\dfrac{{23}}{{12}}\) là kết quả của phép tính:

    • A.

      \(\dfrac{2}{3} + \dfrac{5}{4}\)

    • B.

      \(\dfrac{1}{6} + \dfrac{3}{2}\)

    • C.

      \(\dfrac{5}{3} + \dfrac{3}{2}\)

    • D.

      \(1 + \dfrac{{13}}{{12}}\)

    Đáp án : A

    Phương pháp giải :

    Đưa hai phân số về cùng mẫu rồi thực hiện phép cộng hai phân số cùng mẫu.

    Với $x = \dfrac{a}{m};\,y = \dfrac{b}{m}\,\left( {a,b,m \in \mathbb{Z},\,m \ne 0} \right)$ ta có:

    \(x + y = \dfrac{a}{m} + \dfrac{b}{m} = \dfrac{{a + b}}{m}\)

    Lời giải chi tiết :

    Ta có:

    \(\dfrac{2}{3} + \dfrac{5}{4} = \dfrac{8}{{12}} + \dfrac{{15}}{{12}} = \dfrac{{23}}{{12}}.\)

    \(\dfrac{1}{6} + \dfrac{3}{2} = \dfrac{1}{6} + \dfrac{9}{6} = \dfrac{{10}}{6} = \dfrac{5}{3}.\)

    \(\dfrac{5}{3} + \dfrac{3}{2} = \dfrac{{10}}{6} + \dfrac{9}{6} = \dfrac{{19}}{6}.\)

    \(1 + \dfrac{{13}}{{12}} = \dfrac{{12}}{{12}} + \dfrac{{13}}{{12}} = \dfrac{{25}}{{12}}.\)

    Do đó \(\dfrac{{23}}{{12}}\) là kết quả của phép tính: \(\dfrac{2}{3} + \dfrac{5}{4}.\)

    Câu 4 :

    Số \(\dfrac{{ - 3}}{{14}}\) viết thành hiệu của hai số hữu tỉ dương nào dưới đây?

    • A.

      \(\dfrac{2}{3} - \dfrac{5}{7}\)

    • B.

      \(\dfrac{1}{{14}} - \dfrac{1}{7}\)

    • C.

      \(\dfrac{1}{2} - \dfrac{5}{7}\)

    • D.

      \(\dfrac{3}{{14}} - \dfrac{5}{{14}}\)

    Đáp án : C

    Phương pháp giải :

    Đưa hai phân số về cùng mẫu rồi thực hiện phép trừ hai phân số cùng mẫu.

    Với $x = \dfrac{a}{m};\,y = \dfrac{b}{m}\,\left( {a,b,m \in \mathbb{Z},\,m > 0} \right)$ ta có:

    \(x - y = \dfrac{a}{m} - \dfrac{b}{m} = \dfrac{{a - b}}{m}\)

    Lời giải chi tiết :

    \(\dfrac{{ - 3}}{{14}} = \dfrac{{7 - 10}}{{14}} = \dfrac{7}{{14}} - \dfrac{{10}}{{14}} \)\(= \dfrac{1}{2}-\dfrac{5}{7}\) nên C đúng

    +) Đáp án B: \(\dfrac{1}{{14}} - \dfrac{1}{7} = \dfrac{1}{{14}} - \dfrac{2}{{14}} = \dfrac{{ - 1}}{{14}}\ne \dfrac{{ - 3}}{{14}}\) nên loại B.

    +) Đáp án A: \(\dfrac{2}{3} - \dfrac{5}{7} = \dfrac{{14}}{{21}} - \dfrac{{15}}{{21}} = \dfrac{{ - 1}}{{21}}\ne \dfrac{{ - 3}}{{14}}\) nên loại A.

    +) Đáp án D: \(\dfrac{3}{{14}} - \dfrac{5}{{14}} = \dfrac{{ - 2}}{{14}} = \dfrac{{ - 1}}{7}\ne \dfrac{{ - 3}}{{14}}\) nên loại D.

    Câu 5 :

    Tính \(\dfrac{2}{7} + \left( {\dfrac{{ - 3}}{5}} \right) + \dfrac{3}{5},\) ta được kết quả là:

    • A.

      \(\dfrac{{52}}{{35}}\)

    • B.

      \(\dfrac{2}{7}\)

    • C.

      \(\dfrac{{17}}{{35}}\)

    • D.

      \(\dfrac{{13}}{{35}}\)

    Đáp án : B

    Lời giải chi tiết :

    $\dfrac{2}{7} + \left( {\dfrac{{ - 3}}{5}} \right) + \dfrac{3}{5} = \dfrac{2}{7} + \left[ {\left( {\dfrac{{ - 3}}{5}} \right) + \dfrac{3}{5}} \right]$$ = \dfrac{2}{7} + 0\, = \dfrac{2}{7}.$

    Câu 6 :

    Cho $x + \dfrac{1}{2} = \dfrac{3}{4}$. Giá trị của x bằng:

    • A.

      $\dfrac{1}{4}$

    • B.

      $\dfrac{{ - \,1}}{4}$

    • C.

      $\dfrac{2}{5}$

    • D.

      $\dfrac{5}{4}$

    Đáp án : A

    Phương pháp giải :

    Sử dụng quy tắc chuyển vế và trừ hai số hữu tỉ để tìm \(x\)

    Lời giải chi tiết :

    $x + \dfrac{1}{2} = \dfrac{3}{4}$

    $x\,\, = \dfrac{3}{4} - \dfrac{1}{2}$

    \(x = \dfrac{3}{4} - \dfrac{2}{4}\)

    \(x = \dfrac{1}{4}\)

    Câu 7 :

    Giá trị biểu thức \(\dfrac{2}{5} + \left( { - \dfrac{4}{3}} \right) + \left( { - \dfrac{1}{2}} \right)\) là :

    • A.

      \(\dfrac{{ - 33}}{{30}}\)

    • B.

      \(\dfrac{{ - 31}}{{30}}\)

    • C.

      \(\dfrac{{43}}{{30}}\)

    • D.

      \(\dfrac{{ - 43}}{{30}}\)

    Đáp án : D

    Phương pháp giải :

    Đưa các phân số về cùng mẫu rồi thực hiện phép cộng hai phân số cùng mẫu.

    Với $x = \dfrac{a}{m};\,y = \dfrac{b}{m}\,\left( {a,b,m \in \mathbb{Z},\,m > 0} \right)$ ta có:

    \(x + y = \dfrac{a}{m} + \dfrac{b}{m} = \dfrac{{a + b}}{m}\)

    Lời giải chi tiết :

    Ta có \(\dfrac{2}{5} + \left( { - \dfrac{4}{3}} \right) + \left( { - \dfrac{1}{2}} \right)\)\( = \dfrac{{12}}{{30}} + \left( {\dfrac{{ - 40}}{{30}}} \right) + \left( {\dfrac{{ - 15}}{{30}}} \right) = \dfrac{{12 - 40 - 15}}{{30}} = \dfrac{{ - 43}}{{30}}\)

    Câu 8 :

    Kết luận nào đúng khi nói về giá trị của biểu thức \(A = \dfrac{1}{3} - \left[ {\left( { - \dfrac{5}{4}} \right) - \left( {\dfrac{1}{4} + \dfrac{3}{8}} \right)} \right]\)

    • A.

      $A < 0$

    • B.

      $A < 1$

    • C.

      $A > 2$

    • D.

      $A < 2$

    Đáp án : C

    Phương pháp giải :

    Thực hiện phép cộng trừ các phân số theo thứ tự ngoặc tròn \( \to \) ngoặc vuông.

    Lời giải chi tiết :

    Ta có \(A = \dfrac{1}{3} - \left[ {\left( { - \dfrac{5}{4}} \right) - \left( {\dfrac{1}{4} + \dfrac{3}{8}} \right)} \right]\)

    \( = \dfrac{1}{3} - \left[ {\left( { - \dfrac{5}{4}} \right) - \left( {\dfrac{2}{8} + \dfrac{3}{8}} \right)} \right]\)

    \( = \dfrac{1}{3} - \left[ {\left( { - \dfrac{5}{4}} \right) - \dfrac{5}{8}} \right]\)

    \( = \dfrac{1}{3} - \left[ {\left( { - \dfrac{{10}}{8}} \right) - \dfrac{5}{8}} \right]\)

    \( = \dfrac{1}{3} - \left( { - \dfrac{{15}}{8}} \right)\)

    \( = \dfrac{1}{3} + \dfrac{{15}}{8}\)

    \( = \dfrac{8}{{24}} + \dfrac{{45}}{{24}}\)

    \( = \dfrac{{53}}{{24}}\)

    Vậy $A = \dfrac{{53}}{{24}} > \dfrac{{48}}{{24}} = 2$ hay \(A > 2\) .

    Câu 9 :

    Số nào dưới đây là giá trị của biểu thức $B = \dfrac{2}{{11}} - \dfrac{5}{{13}} + \dfrac{9}{{11}} - \dfrac{8}{{13}}$

    • A.

      $2$

    • B.

      $ - 1$

    • C.

      $1$

    • D.

      $0$

    Đáp án : D

    Phương pháp giải :

    + Sử dụng phép giao hoán của phép cộng để nhóm các phân số cùng mẫu với nhau.

    + Sử dụng tính chất $-a-b=-(a+b).$

    Lời giải chi tiết :

    \(\dfrac{2}{{11}} - \dfrac{5}{{13}} + \dfrac{9}{{11}} - \dfrac{8}{{13}} = \left( {\dfrac{2}{{11}} + \dfrac{9}{{11}}} \right) - \left( {\dfrac{5}{{13}} + \dfrac{8}{{13}}} \right) = \dfrac{{11}}{{11}} - \dfrac{{13}}{{13}} = 1 - 1 = 0.\)

    Câu 10 :

    Cho các số hữu tỉ \(x = \dfrac{a}{b},y = \dfrac{c}{d}\,\,(a,b,c,d \in Z,b \ne 0,d \ne 0).\) Tổng $x + y$ bằng:

    • A.

      \(\dfrac{{ac - bd}}{{bd}}\)

    • B.

      \(\dfrac{{ac + bd}}{{bd}}\)

    • C.

      \(\dfrac{{ad + bc}}{{bd}}\)

    • D.

      \(\dfrac{{ad - bc}}{{bd}}\)

    Đáp án : C

    Phương pháp giải :

    + Đưa hai phân số về cùng mẫu số rồi thực hiện phép cộng hai phân số cùng mẫu

    Lời giải chi tiết :

    \(x + y = \dfrac{a}{b} + \dfrac{c}{d} = \dfrac{{ad}}{{bd}} + \dfrac{{cb}}{{bd}} = \dfrac{{ad + cb}}{{bd}}.\)

    Câu 11 :

    Tính nhanh \(\left( { - 2 - \dfrac{1}{3} - \dfrac{1}{5}} \right) - \left( {\dfrac{2}{3} - \dfrac{6}{5}} \right),\)ta được kết quả là:

    • A.

      \( - 2\)

    • B.

      \( - \dfrac{{13}}{{15}}\)

    • C.

      \(\dfrac{{11}}{{15}}\)

    • D.

      \( - 1\)

    Đáp án : A

    Phương pháp giải :

    Phá ngoặc và sử dụng tính chất giao hoán của phép cộng để tính toán

    Lời giải chi tiết :

    $\left( { - 2 - \dfrac{1}{3} - \dfrac{1}{5}} \right) - \left( {\dfrac{2}{3} - \dfrac{6}{5}} \right) = ( - 2) + \left( { - \dfrac{1}{3} - \dfrac{2}{3}} \right) + \left( { - \dfrac{1}{5} + \dfrac{6}{5}} \right)$$ = ( - 2) + ( - 1) + 1 = - 2$

    Câu 12 :

    Tính giá trị biểu thức \(M = \left( {\dfrac{2}{3} - \dfrac{1}{4} + 2} \right) - \left( {2 - \dfrac{5}{2} + \dfrac{1}{4}} \right) - \left( {\dfrac{5}{2} - \dfrac{1}{3}} \right)\).

    • A.

      \(\dfrac{1}{3}\)

    • B.

      \(\dfrac{1}{2}\)

    • C.

      \(\dfrac{3}{2}\)

    • D.

      \(\dfrac{2}{3}\)

    Đáp án : B

    Phương pháp giải :

    Phá ngoặc và sử dụng tính chất giao hoán của phép cộng để tính toán.

    Lời giải chi tiết :

    \(M = \left( {\dfrac{2}{3} - \dfrac{1}{4} + 2} \right) - \left( {2 - \dfrac{5}{2} + \dfrac{1}{4}} \right) - \left( {\dfrac{5}{2} - \dfrac{1}{3}} \right)\)

    \( = \dfrac{2}{3} - \dfrac{1}{4} + 2 - 2 + \dfrac{5}{2} - \dfrac{1}{4} - \dfrac{5}{2} + \dfrac{1}{3}\)

    \( = \left( {\dfrac{2}{3} + \dfrac{1}{3}} \right) + \left( {2 - 2} \right) + \left( {\dfrac{5}{2} - \dfrac{5}{2}} \right) + \left( { - \dfrac{1}{4} - \dfrac{1}{4}} \right)\)

    \( = 1 + 0 + 0 - \dfrac{1}{2}\)

    \( = \dfrac{1}{2}\)

    Vậy \(M = \dfrac{1}{2}\) .

    Câu 13 :

    Giá trị nào dưới đây của \(x\) thỏa mãn \(\dfrac{3}{7} - x = \dfrac{1}{4} - \left( { - \dfrac{3}{5}} \right)\)

    • A.

      \(x = \dfrac{{ - 59}}{{140}}\)

    • B.

      \(x = \dfrac{{59}}{{140}}\)

    • C.

      \(x = \dfrac{{ - 9}}{{140}}\)

    • D.

      \(x = \dfrac{{ - 49}}{{140}}\)

    Đáp án : A

    Phương pháp giải :

    + Tính giá trị vế phải

    + Thực hiện qui tắc chuyển vế để tìm \(x\) .

    Lời giải chi tiết :

    Ta có

    \(\dfrac{3}{7} - x = \dfrac{1}{4} - \left( { - \dfrac{3}{5}} \right)\)

    \(\dfrac{3}{7} - x = \dfrac{5}{{20}} + \dfrac{{12}}{{20}}\)

    \(\dfrac{3}{7} - x = \dfrac{{17}}{{20}}\)

    \(x = \dfrac{3}{7} - \dfrac{{17}}{{20}}\)

    \(x = \dfrac{{60}}{{140}} - \dfrac{{119}}{{140}}\)

    \(x = \dfrac{{ - 59}}{{140}}\)

    Vậy \(x = \dfrac{{ - 59}}{{140}}\).

    Câu 14 :

    Tìm \(x\) biết \(\dfrac{{11}}{{12}} - \left( {\dfrac{2}{5} + x} \right) = \dfrac{2}{3}\)

    • A.

      \(\dfrac{1}{3}\)

    • B.

      \(\dfrac{{ - 3}}{{20}}\)

    • C.

      \(\dfrac{1}{2}\)

    • D.

      \(\dfrac{{ - 2}}{{30}}\)

    Đáp án : B

    Phương pháp giải :

    Biến đổi để đưa về dạng tìm \(x\) đã học.

    Tìm số trừ bằng cách lấy số bị trừ trừ đi hiệu

    Tìm số hạng chưa biết bằng cách lấy tổng trừ đi số hạng đã biết

    Lời giải chi tiết :

    Ta có \(\dfrac{{11}}{{12}} - \left( {\dfrac{2}{5} + x} \right) = \dfrac{2}{3}\)

    \(\dfrac{2}{5} + x = \dfrac{{11}}{{12}} - \dfrac{2}{3}\)

    \(\dfrac{2}{5} + x = \dfrac{{11}}{{12}} - \dfrac{8}{{12}}\)

    \(\dfrac{2}{5} + x = \dfrac{3}{{12}}\)

    \(x = \dfrac{1}{4} - \dfrac{2}{5}\)

    \(x = \dfrac{5}{{20}} - \dfrac{8}{{20}}\)

    \(x = \dfrac{{ - 3}}{{20}}\)

    Vậy \(x = \dfrac{{ - 3}}{{20}}\).

    Câu 15 :

    Gọi \({x_0}\) là số thỏa mãn \(x.\left( {2018 + \dfrac{1}{{2018}} - 2019 - \dfrac{1}{{2019}}} \right) = \dfrac{1}{3} + \dfrac{1}{6} - \dfrac{1}{2}.\) Khi đó

    • A.

      \({x_0} > 0\)

    • B.

      \({x_0} < 0\)

    • C.

      \({x_0} = 0\)

    • D.

      \({x_0} = 1\)

    Đáp án : C

    Phương pháp giải :

    Tính giá trị bên vế phải rồi đưa về dạng tìm \(x\) đã học.

    Lời giải chi tiết :

    $\begin{array}{l}x.\left( {2018 + \dfrac{1}{{2018}} - 2019 - \dfrac{1}{{2019}}} \right) = \dfrac{1}{3} + \dfrac{1}{6} - \dfrac{1}{2}\\x.\left( {2018 + \dfrac{1}{{2018}} - 2019 - \dfrac{1}{{2019}}} \right) = 0.\end{array}$

    Mà $2018 + \dfrac{1}{{2018}} - 2019 - \dfrac{1}{{2019}} = - 1 + \dfrac{1}{{2018}} - \dfrac{1}{{2019}} < 0$ nên $x = 0$ .

    Câu 16 :

    Giá trị của biểu thức $\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \dfrac{1}{{4.5}} + ... + \dfrac{1}{{2018.2019}}$ là

    • A.

      \(\dfrac{{2018}}{{2019}}\)

    • B.

      \(\dfrac{{2019}}{{2018}}\)

    • C.

      \(1\)

    • D.

      \(\dfrac{1}{{2019}}\)

    Đáp án : A

    Phương pháp giải :

    Sử dụng tính chất:

    Với số tự nhiên \(n \ne 0\) ta có \(\dfrac{1}{{n\left( {n + 1} \right)}} = \dfrac{1}{n} - \dfrac{1}{{n + 1}}\)

    Lời giải chi tiết :

    $\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \dfrac{1}{{4.5}} + ... + \dfrac{1}{{2018.2019}}$

    $ = 1 - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{4} - \dfrac{1}{5} + ... - \dfrac{1}{{2018}} + \dfrac{1}{{2018}} - \dfrac{1}{{2019}}$

    $ = 1 - \dfrac{1}{{2019}}$

    $ = \dfrac{{2018}}{{2019}}$ .

    Câu 17 :

    Kết quả của phép tính: \(\dfrac{{ - 2}}{3} + \dfrac{4}{3}\) là:

    • A.

      \(2\)

    • B.

      \(\dfrac{{ - 2}}{3}\)

    • C.

      \(\dfrac{2}{3}\)

    • D.

      \(\dfrac{2}{6}\)

    Đáp án : C

    Phương pháp giải :

    Với $x = \dfrac{a}{m};\,y = \dfrac{b}{m}\,\left( {a,b,m \in \mathbb{Z},\,m \ne 0} \right)$ ta có:

    \(x + y = \dfrac{a}{m} + \dfrac{b}{m} = \dfrac{{a + b}}{m}\)

    Lời giải chi tiết :

    \(\dfrac{{ - 2}}{3} + \dfrac{4}{3} = \dfrac{{ - 2 + 4}}{3} = \dfrac{2}{3}\)

    Câu 18 :

    Nếu \(x = \dfrac{a}{b};\,y = \dfrac{c}{d}\,\left( {b,d \ne 0} \right)\) thì tích \(x.y\) bằng

    • A.

      $\dfrac{{a.d}}{{b.c}}$

    • B.

      $\dfrac{{a.c}}{{b.d}}$

    • C.

      $\dfrac{{a + c}}{{b + d}}$

    • D.

      $\dfrac{{a + d}}{{b + c}}$

    Đáp án : B

    Lời giải chi tiết :

    Với \(x = \dfrac{a}{b};\,y = \dfrac{c}{d}\,\left( {b,d \ne 0} \right)\) ta có: \(x.y = \dfrac{a}{b}.\dfrac{c}{d} = \dfrac{{a.c}}{{b.d}}\) .

    Câu 19 :

    Kết quả của phép tính \( - \dfrac{6}{7}.\dfrac{{21}}{{12}}\) là

    • A.

      $\dfrac{3}{2}$

    • B.

      $ - \dfrac{3}{2}$

    • C.

      $\dfrac{2}{3}$

    • D.

      $ - \dfrac{2}{3}$

    Đáp án : B

    Lời giải chi tiết :

    Ta có \( - \dfrac{6}{7}.\dfrac{{21}}{{12}} = - \dfrac{6}{7}.\dfrac{7}{4} = \dfrac{{ - 6}}{4} = - \dfrac{3}{2}\)

    Câu 20 :

    Thực hiện phép tính $\dfrac{5}{{11}}:\dfrac{{15}}{{22}}$ ta được kết quả là:

    • A.

      $\dfrac{2}{{ - \,5}}$

    • B.

      $\dfrac{3}{4}$

    • C.

      $\dfrac{2}{3}$

    • D.

      $\dfrac{3}{2}$

    Đáp án : C

    Lời giải chi tiết :

    Ta có $\dfrac{5}{{11}}:\dfrac{{15}}{{22}}$\( = \dfrac{5}{{11}}.\dfrac{{22}}{{15}} = \dfrac{{5.22}}{{11.15}} = \dfrac{2}{3}\)

    Câu 21 :

    Kết quả của phép tính $\dfrac{3}{2}.\dfrac{4}{7}$ là

    • A.

      Một số nguyên âm

    • B.

      Một số nguyên dương

    • C.

      Một phân số nhỏ hơn \(0\)

    • D.

      Một phân số lớn hơn \(0\)

    Đáp án : D

    Lời giải chi tiết :

    Ta có $\dfrac{3}{2}.\dfrac{4}{7} = \dfrac{{3.4}}{{2.7}} = \dfrac{6}{7} > 0$

    Câu 22 :

    Số nào sau đây là kết quả của phép tính \(1\dfrac{4}{5}:\left( { - \dfrac{3}{4}} \right)\)

    • A.

      $ - \dfrac{{12}}{5}$

    • B.

      $\dfrac{3}{4}$

    • C.

      $\dfrac{2}{{15}}$

    • D.

      $\dfrac{{12}}{5}$

    Đáp án : A

    Phương pháp giải :

    + Đưa hỗn số về dạng phân số

    + Thực hiện phép chia các phân số

    Lời giải chi tiết :

    Ta có \(1\dfrac{4}{5}:\left( { - \dfrac{3}{4}} \right)\)\( = \dfrac{9}{5}.\left( { - \dfrac{4}{3}} \right) = - \dfrac{{9.4}}{{5.3}} = - \dfrac{{12}}{5}\)

    Câu 23 :

    Cho \(A = \dfrac{{ - 5}}{6}.\dfrac{{12}}{{ - 7}}.\left( {\dfrac{{ - 21}}{{15}}} \right);\,B = \dfrac{1}{6}.\dfrac{9}{{ - 8}}.\left( {\dfrac{{ - 12}}{{11}}} \right)\) . So sánh \(A\) và \(B\).

    • A.

      $A > B$

    • B.

      $A < B$

    • C.

      $A = B$

    • D.

      $A \ge B$

    Đáp án : B

    Phương pháp giải :

    Sử dụng quy tắc nhân các phân số để tính giá trị biểu thức \(A,\,B\)

    Sau đó so sánh $A;B$.

    Lời giải chi tiết :

    Ta có

    \(A = \dfrac{{ - 5}}{6}.\dfrac{{12}}{{ - 7}}.\left( {\dfrac{{ - 21}}{{15}}} \right) = \dfrac{{\left( { - 5} \right).12.\left( { - 21} \right)}}{{6.\left( { - 7} \right).15}} = \dfrac{{\left( { - 5} \right).2.6.\left( { - 7} \right).3}}{{6.\left( { - 7} \right).5.3}} = - 2\)

    \(B = \dfrac{1}{6}.\dfrac{9}{{ - 8}}.\left( {\dfrac{{ - 12}}{{11}}} \right) = \dfrac{{9.\left( { - 12} \right)}}{{6.\left( { - 8} \right).11}} = \dfrac{9}{{44}}\)

    Suy ra \(A < B\) .

    Câu 24 :

    Tìm \(x\) biết \(\dfrac{2}{3}x = - \dfrac{1}{{8}}.\)

    • A.

      \(x = - \dfrac{1}{4}\)

    • B.

      \(x = - \dfrac{5}{{16}}\)

    • C.

      \(x = \dfrac{3}{{16}}\)

    • D.

      \(x = - \dfrac{3}{{16}}\)

    Đáp án : D

    Phương pháp giải :

    Sử dụng cách tìm \(x\) đã học: Số hạng bằng tích chia số hạng đã biết.

    Lời giải chi tiết :

    Ta có \(\dfrac{2}{3}x = - \dfrac{1}{{8}}\)

    \(x = \left( { - \dfrac{1}{{8}}} \right):\dfrac{2}{3}\)

    \(x = \dfrac{{ - 1}}{8}.\dfrac{3}{2}\)

    \(x = - \dfrac{3}{{16}}\)

    Vậy \(x = - \dfrac{3}{{16}}.\)

    Câu 25 :

    Tìm số $x$ thoả mãn: \(x:\left( {\dfrac{2}{5} - 1\dfrac{2}{5}} \right) = 1.\)

    • A.

      $x = 1$

    • B.

      $x = - 1$

    • C.

      $x = \dfrac{5}{2}$

    • D.

      $x = - \dfrac{5}{2}$

    Đáp án : B

    Phương pháp giải :

    Tính giá trị trong ngoặc

    Tìm \(x\) bằng cách sử dụng: Số bị chia bằng thương nhân với số chia.

    Lời giải chi tiết :

    Ta có \(x:\left( {\dfrac{2}{5} - 1\dfrac{2}{5}} \right) = 1\)

    \(x:\left( {\dfrac{2}{5} - \dfrac{7}{5}} \right) = 1\)

    \(x:\left( {\dfrac{{ - 5}}{5}} \right) = 1\)

    \(x:\left( { - 1} \right) = 1\)

    \(x = 1.\left( { - 1} \right)\)

    \(x = - 1\)

    Vậy \(x = - 1\) .

    Câu 26 :

    Gọi ${x_0}$ là giá trị thỏa mãn \(\dfrac{5}{7}:x - \dfrac{2}{5} = \dfrac{1}{3}\). Chọn câu đúng.

    • A.

      ${x_0} < 1$

    • B.

      ${x_0} = 1$

    • C.

      ${x_0} > 1$

    • D.

      ${x_0} = - 1$

    Đáp án : A

    Phương pháp giải :

    Sử dụng qui tắc chuyển vế để đưa về dạng tìm \(x\) đã học.

    Xác định rằng:

    \( (\dfrac{5}{7}:x) \) là số bị trừ

    \( \dfrac{2}{5}\) là số trừ

    \( \dfrac{1}{3}\) là hiệu

    Số bị trừ bằng số trừ cộng với hiệu

    Lời giải chi tiết :

    Ta có \(\dfrac{5}{7}:x - \dfrac{2}{5} = \dfrac{1}{3}\)

    \(\dfrac{5}{7}:x = \dfrac{1}{3} + \dfrac{2}{5}\)

    \(\dfrac{5}{7}:x = \dfrac{5}{{15}} + \dfrac{6}{{15}}\)

    \(\dfrac{5}{7}:x = \dfrac{{11}}{{15}}\)

    \(x = \dfrac{5}{7}:\dfrac{{11}}{{15}}\)

    \(x = \dfrac{5}{7}.\dfrac{{15}}{{11}}\)

    \(x = \dfrac{{75}}{{77}}\)

    Vậy \({x_0} = \dfrac{{75}}{{77}} < \dfrac{{77}}{{77}} = 1\) .

    Câu 27 :

    Có bao nhiêu giá trị của \(x\) thỏa mãn \(\dfrac{1}{3}x + \dfrac{2}{5}\left( {x - 1} \right) = 0\)?

    • A.

      $1$

    • B.

      $2$

    • C.

      $0$

    • D.

      $3$

    Đáp án : A

    Phương pháp giải :

    Sử dụng qui tắc phá ngoặc và nhóm các số hạng chứa \(x\) để đưa về dạng thường gặp.

    Lời giải chi tiết :

    Ta có \(\dfrac{1}{3}x + \dfrac{2}{5}\left( {x - 1} \right) = 0\)

    \(\dfrac{1}{3}x + \dfrac{2}{5}x - \dfrac{2}{5} = 0\)

    \(\dfrac{1}{3}x + \dfrac{2}{5}x = \dfrac{2}{5}\)

    \(x\left( {\dfrac{1}{3} + \dfrac{2}{5}} \right) = \dfrac{2}{5}\)

    \(x.\left( {\dfrac{5}{{15}} + \dfrac{6}{{15}}} \right) = \dfrac{2}{5}\)

    \(x.\dfrac{{11}}{{15}} = \dfrac{2}{5}\)

    \(x = \dfrac{2}{5}:\dfrac{{11}}{{15}}\)

    \(x = \dfrac{2}{5}.\dfrac{{15}}{{11}}\)

    \(x = \dfrac{{2.15}}{{5.11}}\)

    \(x = \dfrac{6}{{11}}\)

    Vậy có một giá trị của \(x\) thoả mãn điều kiện.

    Câu 28 :

    Biểu thức \(P = \left( {\dfrac{{ - 3}}{4} + \dfrac{2}{5}} \right):\dfrac{3}{7} + \left( {\dfrac{3}{5} + \dfrac{{ - 1}}{4}} \right):\dfrac{3}{7}\) có giá trị là

    • A.

      $1$

    • B.

      $2$

    • C.

      $0$

    • D.

      $3$

    Đáp án : C

    Phương pháp giải :

    Sử dụng tính chất phân phối của phép nhân (chia) đối với phép cộng

    Lời giải chi tiết :

    Ta có \(P = \left( {\dfrac{{ - 3}}{4} + \dfrac{2}{5}} \right):\dfrac{3}{7} + \left( {\dfrac{3}{5} + \dfrac{{ - 1}}{4}} \right):\dfrac{3}{7}\)$ = \left( {\dfrac{{ - 3}}{4} + \dfrac{2}{5} + \dfrac{3}{5} + \dfrac{{ - 1}}{4}} \right):\dfrac{3}{7}$

    \( = \left[ {\left( {\dfrac{{ - 3}}{4} + \dfrac{{ - 1}}{4}} \right) + \left( {\dfrac{2}{5} + \dfrac{3}{5}} \right)} \right]:\dfrac{3}{7}\) \( = \left( { - 1 + 1} \right):\dfrac{3}{7} = 0:\dfrac{3}{7} = 0\)

    Vậy \(P = 0.\)

    Câu 29 :

    Cho \({x_1}\) là giá trị thỏa mãn \(\dfrac{3}{7} + \dfrac{1}{7}:x = \dfrac{3}{{14}}\) và \({x_2}\) là giá trị thỏa mãn \(\dfrac{5}{7} + \dfrac{2}{7}:x = 1.\) Khi đó, chọn câu đúng.

    • A.

      ${x_1} = {x_2}$

    • B.

      ${x_1} < {x_2}$

    • C.

      ${x_1} > {x_2}$

    • D.

      ${x_1} = 2.{x_2}$

    Đáp án : B

    Phương pháp giải :

    + Sử dụng qui tắc chuyển vế đưa về dạng tìm \(x\) đã học để tìm \({x_1};\,{x_2}\)

    + So sánh \({x_1};\,{x_2}\).

    Lời giải chi tiết :

    Ta có: \(\dfrac{3}{7} + \dfrac{1}{7}:x = \dfrac{3}{{14}}\)

    \(\dfrac{1}{7}:x = \dfrac{3}{{14}} - \dfrac{3}{7}\)

    \(\dfrac{1}{7}:x = \dfrac{3}{{14}} - \dfrac{6}{{14}}\)

    \(\dfrac{1}{7}:x = \dfrac{{ - 3}}{{14}}\)

    \(x = \dfrac{1}{7}:\left( {\dfrac{{ - 3}}{{14}}} \right)\)

    \(x = \dfrac{1}{7}.\dfrac{{14}}{{\left( { - 3} \right)}}\)

    \(x = - \dfrac{2}{3}\)

    Vậy \({x_1} = - \dfrac{2}{3}\)

    * \(\dfrac{5}{7} + \dfrac{2}{7}:x = 1\)

    \(\dfrac{2}{7}:x = 1 - \dfrac{5}{7}\)

    \(\dfrac{2}{7}:x = \dfrac{2}{7}\)

    \(x = \dfrac{2}{7}:\dfrac{2}{7}\)

    \(x = 1\)

    Vậy \({x_2} = 1\) .

    Mà \( - \dfrac{2}{3} < 0 < 1\) nên \({x_1} < {x_2}\) .

    Câu 30 :

    Tìm $x$ , biết: $\left[ {\left( {{\rm{8}}{\kern 1pt} \, + {\kern 1pt} {\kern 1pt} \,\dfrac{{\rm{x}}}{{1000}}} \right)\,\,:\,\,2} \right]:\,\,3\,\, = \,\,2.$

    • A.

      $x = 8000$

    • B.

      $x = 400$

    • C.

      $x = 6000$

    • D.

      $x = 4000$

    Đáp án : D

    Phương pháp giải :

    Sử dụng: Số bị chia bằng thương nhân với số chia để tìm \(x\).

    Lời giải chi tiết :

    Ta có: $\left[ {\left( {{\rm{8}}{\kern 1pt} \, + {\kern 1pt} {\kern 1pt} \,\dfrac{{\rm{x}}}{{1000}}} \right)\,\,:\,\,2} \right]:\,\,3\,\, = \,\,2$

    $\left( {{\rm{8}}{\kern 1pt} \, + {\kern 1pt} {\kern 1pt} \,\dfrac{{\rm{x}}}{{1000}}} \right)\,\,:\,\,2\,\, = \,\,2.3$

     $\left( {{\rm{8}}{\kern 1pt} \, + {\kern 1pt} {\kern 1pt} \,\dfrac{{\rm{x}}}{{1000}}} \right)\,\,:\,\,2\,\, = \,\,6$

     ${\rm{8}}{\kern 1pt} \, + {\kern 1pt} {\kern 1pt} \,\dfrac{{\rm{x}}}{{1000}}\, = \,\,6.2$

    ${\rm{8}}{\kern 1pt} \, + {\kern 1pt} {\kern 1pt} \,\dfrac{{\rm{x}}}{{1000}}\, = \,\,12$

    $\,\dfrac{{\rm{x}}}{{1000}}\, = \,\,12 - 8$

    $\,\dfrac{{\rm{x}}}{{1000}}\, = \,\,4$

    \(x = 4.1000\)

    \(x = 4000\)

    Câu 31 :

    Tính giá trị biểu thức: $A = \dfrac{{\dfrac{2}{3} - \dfrac{2}{5} + \dfrac{2}{{10}}}}{{\dfrac{8}{3} - \dfrac{8}{5} + \dfrac{8}{{10}}}} + \dfrac{1}{2}.$

    • A.

      $A = \dfrac{3}{8}$

    • B.

      $A = \dfrac{5}{9}$

    • C.

      $A = \dfrac{3}{4}$

    • D.

      $A = \dfrac{1}{3}$

    Đáp án : C

    Phương pháp giải :

    Thực hiện phép cộng trừ các phân số rồi rút gọn để tính giá trị biểu thức.

    Lời giải chi tiết :

    $A = \dfrac{{\dfrac{2}{3} - \dfrac{2}{5} + \dfrac{2}{{10}}}}{{\dfrac{8}{3} - \dfrac{8}{5} + \dfrac{8}{{10}}}} + \dfrac{1}{2}$

    $A = \dfrac{{\left( {\dfrac{2}{3} - \dfrac{2}{5} + \dfrac{2}{{10}}} \right)}}{{4.\left( {\dfrac{2}{3} - \dfrac{2}{5} + \dfrac{2}{{10}}} \right)}} + \dfrac{1}{2}$

    $A = \dfrac{1}{4} + \dfrac{1}{2}$

    $A = \dfrac{3}{4}.$

    Câu 32 :

    Có bao nhiêu giá trị của \(x\) thỏa mãn \(\left( {\dfrac{2}{3}x - \dfrac{4}{9}} \right)\left( {\dfrac{1}{2} + \dfrac{{ - 3}}{7}:x} \right) = 0\,?\)

    • A.

      $3$

    • B.

      $0$

    • C.

      $2$

    • D.

      $1$

    Đáp án : C

    Phương pháp giải :

    Sử dụng: \(A.B = 0\)

    TH1: \(A = 0\)

    TH2: \(B = 0\)

    Lời giải chi tiết :

    Ta có \(\left( {\dfrac{2}{3}x - \dfrac{4}{9}} \right)\left( {\dfrac{1}{2} + \dfrac{{ - 3}}{7}:x} \right) = 0\,\)

    TH1: \(\dfrac{2}{3}x - \dfrac{4}{9} = 0\)

    \(\dfrac{2}{3}x = \dfrac{4}{9}\)

    \(x = \dfrac{4}{9}:\dfrac{2}{3}\)

    \(x = \dfrac{4}{9}.\dfrac{3}{2}\)

    \(x = \dfrac{2}{3}\)

    TH2: \(\dfrac{1}{2} + \dfrac{{ - 3}}{7}:x = 0\)

    \(\dfrac{{ - 3}}{7}:x = \dfrac{{ - 1}}{2}\)

    \(x = \dfrac{{ - 3}}{7}:\left( {\dfrac{{ - 1}}{2}} \right)\)

    \(x = \dfrac{6}{7}\)

    Vậy có hai giá trị của \(x\) thỏa mãn là \(x = \dfrac{2}{3};x = \dfrac{6}{7}\) .

    Câu 33 :

    Thực hiện phép tính \(\dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{{45}}:\left( {\dfrac{1}{5} - \dfrac{2}{{15}}} \right) + 1\dfrac{2}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\) ta được kết quả là

    • A.

      \(\dfrac{{27}}{7}\)

    • B.

      \(\dfrac{7}{{27}}\)

    • C.

      \(\dfrac{1}{7}\)

    • D.

      $\dfrac{1}{4}$

    Đáp án : B

    Phương pháp giải :

    Thực hiện phép tính theo thứ tự: ngoặc tròn \( \to \) ngoặc vuông

    Và nhân chia trước, cộng trừ sau.

    Lời giải chi tiết :

    Ta có \(\dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{{45}}:\left( {\dfrac{1}{5} - \dfrac{2}{{15}}} \right) + 1\dfrac{2}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\)

    \( = \dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{{45}}:\left( {\dfrac{3}{{15}} - \dfrac{2}{{15}}} \right) + \dfrac{5}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\)

    \( = \dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{{45}}:\dfrac{1}{{15}} + \dfrac{5}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\)

    \( = \dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{{45}}.\dfrac{{15}}{1} + \dfrac{5}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\)

    \( = \dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{3} + \dfrac{5}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\)

    $ = \dfrac{2}{9}.\dfrac{1}{3} - \left( {\dfrac{{ - 5}}{{27}}} \right)$

    \( = \dfrac{2}{{27}} + \dfrac{5}{{27}}\)

    \( = \dfrac{7}{{27}}\)

    Câu 34 :

    Nếu \(x = \dfrac{a}{b};\,y = \dfrac{c}{d}\,\left( {b,d \ne 0}, y\ne 0 \right)\) thì \(x:y\) bằng:

    • A.
      $\dfrac{{a.d}}{{b.c}}$
    • B.
      $\dfrac{{a:c}}{{b.d}}$
    • C.
      $\dfrac{{a+c}}{{b.d}}$
    • D.
      $\dfrac{{a.c}}{{b.d}}$

    Đáp án : A

    Lời giải chi tiết :
    Với \(x = \dfrac{a}{b};\,y = \dfrac{c}{d}\,\left( {b,d \ne 0}, y\ne 0 \right)\) ta có: \(x:y = \dfrac{a}{b}:\dfrac{c}{d} = \dfrac{a}{b}.\dfrac{d}{c}=\dfrac{{a.d}}{{b.c}}\) .
    Câu 35 :

    Tính: \(\frac{2}{3} - \frac{{ - 3}}{7}\)

    • A.

      \(\frac{5}{{21}}\)

    • B.

      \(\frac{2}{7}\)

    • C.

      \(\frac{{23}}{{21}}\)

    • D.

      \(\frac{{-23}}{{21}}\)

    Đáp án : C

    Phương pháp giải :

    a – (-b) = a + b

    Muốn cộng 2 phân số khác mẫu số, ta quy đồng về dạng 2 phân số cùng mẫu dương rồi cộng tử với tử, mẫu giữ nguyên mẫu.

    Lời giải chi tiết :

    \(\frac{2}{3} - \frac{{ - 3}}{7} = \frac{2}{3} + \frac{3}{7} = \frac{{14}}{{21}} + \frac{9}{{21}} = \frac{{23}}{{21}}\)

    Câu 36 :

    Thực hiện phép tính:

    \(\frac{{ - 2}}{3} + \frac{2}{5}:\frac{{ - 3}}{5}\)

    • A.

      0

    • B.

      \(\frac{4}{9}\)

    • C.

      \(\begin{array}{l}\frac{{ - 4}}{3}\\\end{array}\)

    • D.

      \(\frac{{ - 68}}{{75}}\)

    Đáp án : C

    Phương pháp giải :

    Bước 1: Thực hiện phép chia trước: \(\frac{a}{b}:\frac{c}{d} = \frac{a}{b}.\frac{d}{c} = \frac{{a.d}}{{b.c}}\)

    Bước 2: Thực hiện phép tính cộng 2 số hữu tỉ

    Lời giải chi tiết :

    \(\frac{{ - 2}}{3} + \frac{2}{5}:\frac{{ - 3}}{5} = \frac{{ - 2}}{3} + \frac{2}{5}.\frac{{ - 5}}{3} = \frac{{ - 2}}{3} + \frac{{ - 2}}{3} = \frac{{ - 4}}{3}\)

    Câu 37 :

    Tính:

    \(3\frac{1}{2} - \frac{2}{3}:\frac{5}{{ - 3}} - 0,3\)

    • A.

      \(\frac{{194}}{{45}}\)

    • B.

      \(3\frac{3}{5}\)

    • C.

      \(\frac{{ - 14}}{5}\)

    • D.

      \(\frac{{ - 85}}{{59}}\)

    Đáp án : B

    Phương pháp giải :

    Bước 1: Đưa các số hữu tỉ về dạng phân số

    Bước 2: Thực hiện phép tính với các phân số. Chú ý thực hiện phép nhân, chia trước; cộng, trừ sau

    Lời giải chi tiết :

    \(\begin{array}{l}3\frac{1}{2} - \frac{2}{3}:\frac{5}{{ - 3}} - 0,3\\ = \frac{7}{2} - \frac{2}{3}.\frac{{ - 3}}{5} - \frac{3}{{10}}\\ = \frac{7}{2} - \frac{{ - 2}}{5} - \frac{3}{{10}}\\ = \frac{7}{2} + \frac{2}{5} - \frac{3}{{10}}\\ = \frac{{35}}{{10}} + \frac{4}{{10}} - \frac{3}{{10}}\\ = \frac{{36}}{{10}}\\ = \frac{{18}}{5}\\ = 3\frac{3}{5}\end{array}\)

    Câu 38 :

    Tìm x biết:

    \( - 0,12 - 2x = - 1\frac{2}{5}\)

    • A.

      \(\frac{{16}}{{25}}\)

    • B.

      \(\frac{{ - 19}}{{25}}\)

    • C.

      \(\frac{{19}}{{25}}\)

    • D.

      \(\frac{{ - 16}}{{25}}\)

    Đáp án : A

    Phương pháp giải :

    Đưa các số hữu tỉ về dạng phân số

    Số trừ = số bị trừ - hiệu

    Lời giải chi tiết :

    \(\begin{array}{l} - 0,12 - 2x = - 1\frac{2}{5}\\ \frac{{ - 12}}{{100}} - 2x = \frac{{ - 7}}{5}\\ \frac{{ - 3}}{{25}} - 2x = \frac{{ - 7}}{5}\\ 2x = \frac{{ - 3}}{{25}} - (\frac{{ - 7}}{5})\\ 2x = \frac{{ - 3}}{{25}} + \frac{{35}}{{25}}\\ 2x = \frac{{32}}{{25}}\\ x = \frac{{32}}{{25}}:2\\ x = \frac{{32}}{{25}}.\frac{1}{2}\\ x = \frac{{16}}{{25}}\end{array}\)

    Câu 39 :

    Tính:

    \(M = \frac{{11}}{{20}}.68 - 4,2.2022 + 4\frac{1}{5}.2022 - 68.( - 0,45)\)

    • A.

      6,8

    • B.

      17052,8

    • C.

      0

    • D.

      68

    Đáp án : D

    Phương pháp giải :

    Bước 1: Đưa tất cả các số hữu tỉ về dạng số thập phân

    Bước 2: Nhóm các số hạng hợp lí

    Bước 3: Sử dụng tính chất phân phối của phép nhân đối với phép cộng: a. b + a . c = a . (b + c)

    Lời giải chi tiết :

    \(\begin{array}{l}M = \frac{{11}}{{20}}.68 - 4,2.2022 + 4\frac{1}{5}.2022 - 68.( - 0,45)\\ = 0,55.68 - 4,2.2022 + 4,2.2022 + 68.0,45\\ = (0,55.68 + 68.0,45) + ( - 4,2.2022 + 4,2.2022)\\ = 68.(0,55 + 0,45) + 0\\ = 68.1\\ = 68\end{array}\)

    Câu 40 :

    Tìm x thỏa mãn:

    \(\frac{{x + \frac{3}{2}}}{6} = \frac{{ - 5}}{{12}}\)

    • A.

      -4

    • B.

      \(\frac{3}{2}\)

    • C.

      \(\frac{{ - 13}}{2}\)

    • D.

      -1

    Đáp án : A

    Phương pháp giải :

    Đưa 2 tỉ số về dạng có cùng mẫu số rồi sử dụng nhận xét: Nếu \(\frac{a}{b} = \frac{c}{b} \Rightarrow a = c(b \ne 0)\)

    Lời giải chi tiết :

    \(\begin{array}{l}\frac{{x + \frac{3}{2}}}{6} = \frac{{ - 5}}{{12}}\\ \frac{{2.(x + \frac{3}{2})}}{{12}} = \frac{{ - 5}}{{12}}\\ \frac{{2x + 3}}{{12}} = \frac{{ - 5}}{{12}}\\ 2x + 3 = - 5\\ 2x = - 5 - 3\\ \ 2x = - 8\\ x = - 4\end{array}\)

    Vậy x = -4

    Câu 41 :

    Tính: \(\frac{{\frac{3}{{11}} + \frac{3}{{17}} - \frac{3}{{23}} + \frac{3}{{29}}}}{{\frac{7}{{11}} + \frac{7}{{17}} - \frac{7}{{23}} + \frac{7}{{29}}}}\)

    • A.

      \(\frac{7}{3}\)

    • B.

      \(\frac{{ - 3}}{7}\)

    • C.

      \(\frac{3}{7}\)

    • D.

      \(\frac{{ - 7}}{3}\)

    Đáp án : C

    Phương pháp giải :

    + Phát hiện quy luật

    + Sử dụng tính chất phân phối của phép nhân đối với phép cộng

    + Rút gọn

    Lời giải chi tiết :

    Ta có:

    \(\begin{array}{l}\frac{{\frac{3}{{11}} + \frac{3}{{17}} - \frac{3}{{23}} + \frac{3}{{29}}}}{{\frac{7}{{11}} + \frac{7}{{17}} - \frac{7}{{23}} + \frac{7}{{29}}}}\\ = \frac{{3.(\frac{1}{{11}} + \frac{1}{{17}} - \frac{1}{{23}} + \frac{1}{{29}})}}{{7.(\frac{1}{{11}} + \frac{1}{{17}} - \frac{1}{{23}} + \frac{1}{{29}})}}\\ = \frac{3}{7}\end{array}\)

    Câu 42 :

    Có bao nhiêu số nguyên x thỏa mãn:

    (2x + 7) . ( x – 1) < 0

    • A.

      3

    • B.

      4

    • C.

      5

    • D.

      7

    Đáp án : B

    Phương pháp giải :

    Nếu A . B < 0 thì:

    + Trường hợp 1: A < 0; B > 0

    + Trường hợp 2: A > 0; B < 0

    Kết hợp 2 trường hợp, tìm điều kiện của x thỏa mãn

    Lời giải chi tiết :

    Ta xét 2 trường hợp sau:

    + Trường hợp 1:

    \({x - 1 > 0}\) và \({2x + 7 < 0}\)

    \({x > 1}\) và \({2x < - 7}\)

    \({x > 1}\) và \({x < \frac{{ - 7}}{2}}\) ( Vô lí)

    + Trường hợp 2:

    \({x - 1 < 0}\) và \({2x + 7 > 0} \)

    \({x < 1}\) và \({2x > - 7} \)

    \({x < 1}\) và \({x > \frac{{ - 7}}{2}} \)

    suy ra \(\frac{{ - 7}}{2} < x < 1 \)

    Mà x nguyên nên \(x \in \{ - 3; - 2; - 1;0\} \)

    Vậy có 4 giá trị của x thỏa mãn

    Câu 43 :

    Tính: \((\frac{1}{3} - 1).(\frac{1}{4} - 1)....(\frac{1}{{2022}} - 1)\)

    • A.

      \(\frac{3}{{2022}}\)

    • B.

      -\(\frac{3}{{2022}}\)

    • C.

      -\(\frac{1}{{1011}}\)

    • D.

      \(\frac{1}{{1011}}\)

    Đáp án : D

    Phương pháp giải :

    Tính từng biểu thức trong ngoặc rồi thực hiện phép nhân các số hữu tỉ

    Lời giải chi tiết :

    \((\frac{1}{3} - 1).(\frac{1}{4} - 1)....(\frac{1}{{2022}} - 1)\)

    \( = \frac{{ - 2}}{3}.\frac{{ - 3}}{4}.....\frac{{ - 2021}}{{2022}}\)

    \( = \frac{2}{{2022}}\) (vì có 2021 - 2 + 1 = 2020 số hạng nên số dấu "-" là 2020 dấu, khi nhân với nhau sẽ thành số dương).

    \( = \frac{1}{{1011}}\)

    Câu 44 :

    Cho P = 3 + 30 + 33 + 36 +…+ 3300.

    Tìm số x sao cho P - 3 = 5x

    • A.

      366575

    • B.

      363 303

    • C.

      1832880

    • D.

      99000

    Đáp án : B

    Phương pháp giải :

    Phát hiện quy luật của dãy số

    Tính số số hạng của dãy số cách đều = ( số hạng cuối – số hạng đầu) : khoảng cách + 1

    Tính tổng của dãy số cách đều = ( số hạng cuối + số hạng đầu) . số số hạng : 2

    Lời giải chi tiết :

    Lời giải

    Đặt Q = P – 3 = 3 + 30 + 33 + 36 +…+ 3300 – 3 = 30 + 33 + 36 +…+ 3300

    Số số hạng của tổng Q là:

    \[\frac{{3300 - 30}}{3} + 1 = 1091\]

    Tổng Q là: \(\frac{{(3300 + 30).1091}}{2} = 1816515\)

    Ta được 5x = 1816515

    Do đó: x = 1816515 : 5 = 363303

    Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Trắc nghiệm Bài 2: Cộng, trừ, nhân, chia số hữu tỉ Toán 7 Cánh diều tại chuyên mục toán lớp 7 trên toán học. Với bộ bài tập toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

    Trắc nghiệm Bài 2: Cộng, trừ, nhân, chia số hữu tỉ Toán 7 Cánh diều - Tổng quan

    Bài 2 trong chương trình Toán 7 Cánh diều tập trung vào việc rèn luyện kỹ năng thực hiện các phép toán cơ bản (cộng, trừ, nhân, chia) với số hữu tỉ. Việc nắm vững kiến thức này là nền tảng quan trọng cho các bài học tiếp theo và các ứng dụng thực tế của toán học.

    I. Khái niệm cơ bản về số hữu tỉ

    Trước khi đi vào phần trắc nghiệm, chúng ta cùng ôn lại một số khái niệm cơ bản về số hữu tỉ:

    • Số hữu tỉ là gì? Số hữu tỉ là số có thể được biểu diễn dưới dạng phân số \frac{a}{b}, trong đó a là số nguyên và b là số nguyên dương.
    • Phân số tối giản: Phân số không thể rút gọn được nữa.
    • Số đối của một số hữu tỉ: Là số mà khi cộng với số ban đầu sẽ bằng 0.

    II. Các phép toán với số hữu tỉ

    1. Phép cộng và phép trừ số hữu tỉ:

    Để cộng hoặc trừ hai số hữu tỉ, ta cần quy đồng mẫu số của chúng. Sau đó, cộng hoặc trừ các tử số và giữ nguyên mẫu số chung.

    Ví dụ: \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}

    2. Phép nhân số hữu tỉ:

    Để nhân hai số hữu tỉ, ta nhân các tử số với nhau và nhân các mẫu số với nhau.

    Ví dụ: \frac{1}{2} \times \frac{1}{3} = \frac{1 \times 1}{2 \times 3} = \frac{1}{6}

    3. Phép chia số hữu tỉ:

    Để chia hai số hữu tỉ, ta nhân số bị chia với nghịch đảo của số chia.

    Ví dụ: \frac{1}{2} : \frac{1}{3} = \frac{1}{2} \times \frac{3}{1} = \frac{3}{2}

    III. Bài tập trắc nghiệm minh họa

    Dưới đây là một số câu hỏi trắc nghiệm minh họa để các em làm quen với dạng bài:

    1. Câu 1: Kết quả của phép tính \frac{2}{3} + \frac{1}{4} là:
      • A. \frac{3}{7}
      • B. \frac{11}{12}
      • C. \frac{5}{12}
      • D. \frac{1}{12}
    2. Câu 2: Kết quả của phép tính \frac{3}{5} - \frac{2}{7} là:
      • A. \frac{1}{2}
      • B. \frac{11}{35}
      • C. \frac{1}{35}
      • D. \frac{5}{12}
    3. Câu 3: Kết quả của phép tính \frac{1}{2} \times \frac{3}{4} là:
      • A. \frac{4}{6}
      • B. \frac{3}{8}
      • C. \frac{1}{8}
      • D. \frac{2}{6}
    4. Câu 4: Kết quả của phép tính \frac{5}{6} : \frac{2}{3} là:
      • A. \frac{10}{18}
      • B. \frac{5}{4}
      • C. \frac{3}{4}
      • D. \frac{2}{3}

    IV. Mẹo giải bài tập trắc nghiệm

    Để giải bài tập trắc nghiệm về số hữu tỉ một cách hiệu quả, các em nên:

    • Đọc kỹ đề bài và xác định yêu cầu của câu hỏi.
    • Quy đồng mẫu số (nếu cần) trước khi thực hiện các phép toán.
    • Rút gọn phân số về dạng tối giản.
    • Kiểm tra lại kết quả trước khi chọn đáp án.

    V. Luyện tập thêm

    Để củng cố kiến thức và kỹ năng, các em nên luyện tập thêm nhiều bài tập trắc nghiệm khác nhau. Giaitoan.edu.vn cung cấp một kho đề thi phong phú, đa dạng, giúp các em tự tin hơn trong quá trình học tập.

    Chúc các em học tốt và đạt kết quả cao trong môn Toán!

    Tài liệu, đề thi và đáp án Toán 7