Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều

Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều

Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều

Chào mừng các em học sinh đến với bài trắc nghiệm Toán 7 Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác, sách Cánh diều. Bài trắc nghiệm này được thiết kế để giúp các em ôn tập và củng cố kiến thức về các loại lăng trụ đứng, cách tính diện tích xung quanh, diện tích toàn phần và thể tích của chúng.

Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, có đáp án chi tiết và lời giải dễ hiểu, giúp các em tự tin làm bài và đạt kết quả tốt nhất.

Đề bài

    Câu 1 :

    Các mặt bên của hình lăng trụ đứng là

    • A.

      Các hình bình hành

    • B.

      Các hình thang cân

    • C.

      Các hình chữ nhật

    • D.

      Các hình vuông

    Câu 2 :

    Các cạnh bên của hình lăng trụ đứng

    • A.

      Song song với nhau

    • B.

      Bằng nhau

    • C.

      Vuông góc với hai đáy

    • D.

      Có cả ba tính chất trên

    Cho hình lăng trụ đứng $ABCD.A'B'C'D'$ có đáy $ABCD$ là hình thang vuông \(\left( {\widehat A = \widehat B = {{90}^0}} \right)\) . 

    Câu 3

    Có bao nhiêu cạnh song song với mặt phẳng \(\left( {BCC'B'} \right)\) ?

    • A.

      \(1\) 

    • B.

      \(2\)

    • C.

      \(4\)

    • D.

      \(5\)

    Câu 4

    Có bao nhiêu cạnh vuông góc với mặt phẳng \(\left( {BCC'B'} \right)\) ?

    • A.

      \(1\) 

    • B.

      \(2\)

    • C.

      \(4\)

    • D.

      \(5\)

    Câu 5 :

    Một hình hộp chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng $6\,cm$ . Một kích thước của đáy bằng $10\,cm$ , tính kích thước còn lại.

    Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 1
    • A.

      \(15\,cm\) 

    • B.

      \(20\,cm\)

    • C.

      \(25\,cm\)

    • D.

      \(10\,cm\)

    Câu 6 :

    Một hình hộp chữ nhật có diện tích xung quanh bằng $120\,c{m^2}$ , chiều cao bằng $6cm$ . Tìm các kích thước của đáy để hình hộp chữ nhật có thể tích lớn nhất.

    • A.

      \(8\,cm\) 

    • B.

      \(7\,cm\)

    • C.

      \(6\,cm\)

    • D.

      \(5\,cm\)

    Câu 7 :

    Tính thể tích của hình lăng trụ đứng có chiều cao $20\,{\rm{cm}}$, đáy là một tam giác vuông có các cạnh góc vuông bằng $8\,{\rm{cm}}$ và $10\,{\rm{cm}}$.

    • A.

      \(800\,c{m^3}\) 

    • B.

      \(400\,c{m^3}\)

    • C.

      \(600\,c{m^3}\)

    • D.

      \(500\,c{m^3}\)

    Câu 8 :

    Cho một hình lăng trụ đứng có diện tích đáy là $S$ , chiều cao là $h$ . Hỏi công thức tính thể tích hình lăng trụ đứng là gì?

    • A.

      $S.h\;\;\;\;\;\;$

    • B.

      \(\dfrac{1}{2}S.h\)

    • C.

      $2S.h$

    • D.

      $3S.h$

    Câu 9 :

    Tính thể tích của hình lăng trụ đứng sau:

    Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 2
    • A.

      \(16\;c{m^3}\)

    • B.

      \(20\;c{m^3}\)

    • C.

      \(26\;c{m^3}\)

    • D.

      \(22\;c{m^3}\)

    Câu 10 :

    Một lăng trụ đứng có đáy là hình chữ nhật có các kích thức $3$ cm, $8$ cm. Chiều cao của hình lăng trụ đứng là $2$cm. Tính diện tích xung quanh và thể tích của hình lăng trụ đứng.

    • A.

      \(48\;c{m^2},\;46\;c{m^3}\) 

    • B.

      \(48\;c{m^2},\;44\;c{m^3}\)

    • C.

      \(46\;c{m^2},\;48\;c{m^3}\) 

    • D.

      \(44\;c{m^2},\;48\;c{m^3}\)

    Câu 11 :

    Hình lăng trụ đứng tam giác có tất cả bao nhiêu cạnh?

    • A.

      9

    • B.

      6

    • C.

      12

    • D.

      8

    Câu 12 :

    Phát biểu nào sau đây là đúng?

    • A.

      Các mặt bên của hình lăng trụ đứng là các hình chữ nhật.

    • B.

      Các mặt bên của hình lăng trụ đứng là các hình thang cân.

    • C.

      Các mặt đáy của hình lăng trụ đứng là các hình chữ nhật.

    • D.

      Các mặt đáy của hình lăng trụ đứng là các hình tam giác.

    Câu 13 :

    Tính thể tích của hình lăng trụ đứng có chiều cao \(20cm\), đáy là một tam giác vuông có các cạnh góc vuông lần lượt là \(8cm\) và \(10cm\).

    • A.

      \(800c{m^3}\)

    • B.

      \(400c{m^3}\)

    • C.

      \(600c{m^3}\)

    • D.

      \(500c{m^3}\)

    Câu 14 :

    Tính thể tích phần không gian của một ngôi nhà dạng một lăng trụ đứng theo các kích thước đã cho trong hình.

    Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 3

    • A.

      369 m3

    • B.

      315 m3

    • C.

      327 m3

    • D.

      423 m3

    Câu 15 :

    Một chiếc đèn lồng có dạng hình lăng trụ đứng, chiều cao \(40cm\) và đáy là lục giác đều cạnh \(18cm\). Nếu giữ nguyên chiều cao của đèn thì phải giảm độ dài cạnh đáy bao nhiêu lần để thể tích của đèn giảm đi hai lần.

    • A.

      \(\sqrt 2 \)lần

    • B.

      2 lần

    • C.

      4 lần

    • D.

      8 lần

    Câu 16 :

    Hình lăng trụ đứng tứ giác có đáy là hình thang cân có bao nhiêu mặt bên?

    • A.

      \(3\)

    • B.

      \(4\)

    • C.

      \(5\)

    • D.

      \(6\)

    Câu 17 :

    Một hình lăng trụ đứng có đáy là hình chữ nhật có các kích thước \(3cm,\,\,8cm\). Chiều cao của hình lăng trụ đứng là \(2cm\). Diện tích xung quanh của hình lăng trụ đứng là

    • A.

      \(44c{m^2}\)

    • B.

      \(24c{m^2}\)

    • C.

      \(48c{m^2}\)

    • D.

      \(22c{m^2}\)

    Câu 18 :

    Cho hình lăng trụ đứng có diện tích xung quanh bằng 336 cm2, chiều cao 14 cm. Khi đó, chu vi đáy của hình lăng trụ đứng là:

    • A.

      \(12cm\)

    • B.

      \(24cm\)

    • C.

      \(36cm\)

    • D.

      \(48cm\)

    Câu 19 :

    Một hình lăng trụ đều (tức là lăng trụ có đáy là đa giác đều) có tất cả \(18\) cạnh, mỗi cạnh dài \(6\sqrt 3 \) cm. Tính thể tích của hình lăng trụ đó.

    • A.

      864 cm3

    • B.

      1944 cm3

    • C.

      2916 cm3

    • D.

      1122 cm3

    Câu 20 :

    Một hình lăng trụ đứng có đáy là hình chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng \(6cm\). Một kích thước của đáy bằng \(10cm\), tính kích thước còn lại.

    • A.

      \(15cm\)

    • B.

      \(20cm\)

    • C.

      \(25cm\)

    • D.

      \(10cm\)

    Lời giải và đáp án

    Câu 1 :

    Các mặt bên của hình lăng trụ đứng là

    • A.

      Các hình bình hành

    • B.

      Các hình thang cân

    • C.

      Các hình chữ nhật

    • D.

      Các hình vuông

    Đáp án : C

    Lời giải chi tiết :

    Hình lăng trụ đứng có hai đáy là những đa giác, các mặt bên là những hình chữ nhật.

    Câu 2 :

    Các cạnh bên của hình lăng trụ đứng

    • A.

      Song song với nhau

    • B.

      Bằng nhau

    • C.

      Vuông góc với hai đáy

    • D.

      Có cả ba tính chất trên

    Đáp án : D

    Lời giải chi tiết :

    Hình lăng trụ đứng có các mặt bên là hình chữ nhật, các cạnh bên vuông góc với đáy nên chúng song song và bằng nhau.

    Cho hình lăng trụ đứng $ABCD.A'B'C'D'$ có đáy $ABCD$ là hình thang vuông \(\left( {\widehat A = \widehat B = {{90}^0}} \right)\) . 

    Câu 3

    Có bao nhiêu cạnh song song với mặt phẳng \(\left( {BCC'B'} \right)\) ?

    • A.

      \(1\) 

    • B.

      \(2\)

    • C.

      \(4\)

    • D.

      \(5\)

    Đáp án: C

    Phương pháp giải :

    Sử dụng quan hệ song song giữa đường thẳng và mặt phẳng.

    Lời giải chi tiết :
    Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 4

    Vì $AA'{\rm{//}}BB'{\rm{//}}DD'$ và \(A'D'{\rm{//}}AD{\rm{//}}BC\) nên các đường thẳng $AA',DD',AD,A'D'$ song song với mp $\left( {BCC'B'} \right).$

    Câu 4

    Có bao nhiêu cạnh vuông góc với mặt phẳng \(\left( {BCC'B'} \right)\) ?

    • A.

      \(1\) 

    • B.

      \(2\)

    • C.

      \(4\)

    • D.

      \(5\)

    Đáp án: B

    Phương pháp giải :

    Sử dụng quan hệ vuông góc giữa đường thẳng và mặt phẳng.

    Lời giải chi tiết :
    Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 5

     Vì \(AB \bot BC\) (do \(ABCD\) là hình thang vuông) và \(AB \bot BB'\) (tính chất lăng trụ đứng)

    Nên \(AB \bot \left( {BCC'B'} \right)\) , tương tự ta có \(A'B' \bot \left( {BCC'B'} \right)\)

    Do đó $AB,A'B'$ vuông góc với mp $\left( {BCC'B'} \right).$

    Câu 5 :

    Một hình hộp chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng $6\,cm$ . Một kích thước của đáy bằng $10\,cm$ , tính kích thước còn lại.

    Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 6
    • A.

      \(15\,cm\) 

    • B.

      \(20\,cm\)

    • C.

      \(25\,cm\)

    • D.

      \(10\,cm\)

    Đáp án : A

    Lời giải chi tiết :
    Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 7

    Đặt $AD = x$ .

    Diện tích xung quanh bằng:

    $2\left( {10 + x} \right).6\left( {c{m^2}} \right)$

    Tổng diện tích hai đáy bằng $2.10x\left( {c{m^2}} \right)$

    Ta có $2\left( {10 + x} \right).6{\rm{ }} = {\rm{ }}2.10x \Leftrightarrow 60 + 6x = 10x \Leftrightarrow x = 15$

    Kích thước còn lại của đáy bằng $15cm$ .

    Câu 6 :

    Một hình hộp chữ nhật có diện tích xung quanh bằng $120\,c{m^2}$ , chiều cao bằng $6cm$ . Tìm các kích thước của đáy để hình hộp chữ nhật có thể tích lớn nhất.

    • A.

      \(8\,cm\) 

    • B.

      \(7\,cm\)

    • C.

      \(6\,cm\)

    • D.

      \(5\,cm\)

    Đáp án : D

    Phương pháp giải :

    + Sử dụng công thức thể tích và diện tích xung quanh của hình hộp chữ nhật.

    + Dùng hằng đẳng thức để biện luận theo yêu cầu đề bài.

    Lời giải chi tiết :

    Gọi $a$ và $b$ là các kích thước của đáy.

    Ta có $V = 6ab$ nên $V$ lớn nhất \( \Leftrightarrow \) $ab$ lớn nhất

    \({S_{xq}} = 120\) nên \(2\left( {a + b} \right).6 = 120\) hay \(a + b = 10\).

    Ta có: \(ab = a\left( {10 - a} \right) = - {a^2} + 10a = - {\left( {a - 5} \right)^2} + 25 \le 25\).

    Suy ra \(V = 6ab \le 6.25 = 150\).

    Thể tích lớn nhất bằng \(150\) \({\rm{c}}{{\rm{m}}^3}\) khi \(a = b = 5\), tức là các cạnh đáy bằng $5$ cm.

    Câu 7 :

    Tính thể tích của hình lăng trụ đứng có chiều cao $20\,{\rm{cm}}$, đáy là một tam giác vuông có các cạnh góc vuông bằng $8\,{\rm{cm}}$ và $10\,{\rm{cm}}$.

    • A.

      \(800\,c{m^3}\) 

    • B.

      \(400\,c{m^3}\)

    • C.

      \(600\,c{m^3}\)

    • D.

      \(500\,c{m^3}\)

    Đáp án : A

    Phương pháp giải :

    Sử dụng công thức tính thể tích hình lăng trụ đứng \(V = S.h\) với \(S\) là diện tích đáy, \(h\) là chiều cao.

    Lời giải chi tiết :

    Vì đáy là tam giác vuông nên diện tích đáy \(S = \dfrac{{8.10}}{2} = 40\,cm\) .

    Thể tích lăng trụ đứng là \(V = S.h = 40.20 = 800\,c{m^3}\) .

    Câu 8 :

    Cho một hình lăng trụ đứng có diện tích đáy là $S$ , chiều cao là $h$ . Hỏi công thức tính thể tích hình lăng trụ đứng là gì?

    • A.

      $S.h\;\;\;\;\;\;$

    • B.

      \(\dfrac{1}{2}S.h\)

    • C.

      $2S.h$

    • D.

      $3S.h$

    Đáp án : A

    Lời giải chi tiết :

    Công thức tính thể tích hình lăng trụ đứng là: $V = S.h$

    Câu 9 :

    Tính thể tích của hình lăng trụ đứng sau:

    Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 8
    • A.

      \(16\;c{m^3}\)

    • B.

      \(20\;c{m^3}\)

    • C.

      \(26\;c{m^3}\)

    • D.

      \(22\;c{m^3}\)

    Đáp án : D

    Phương pháp giải :

    - Chia hình lăng trụ đứng thành các hình hộp chữ nhật nhỏ hơn, sau đó tính thể tích từng hình hộp chữ nhật nhỏ.

    - Tính được thể tích lăng trụ đứng bằng tổng thể tích các hình hộp chữ nhật nhỏ

    Lời giải chi tiết :
    Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 9

    Hình lăng trụ đứng đã cho được tạo thành từ 2 hình hộp chữ nhật. Hình hộp chữ nhật thứ nhất có kích thước là

    \(3cm,\;\;1cm,\;\;2cm;\) hình hộp chữ nhật thứ hai có kích thước là \(2cm,\;\;4cm,\;\;2cm.\)

    Thể tích hình hộp chữ nhật thứ nhất là: \({V_1} = 3.1.2 = 6\;c{m^3}\)

    Thể tích hình hộp chữ nhật thứ hai là: \({V_2} = 2.4.2 = 16\;c{m^3}\)

    Thể tích hình lăng trụ đứng là: \(V = {V_1} + {V_2} = 6 + 16 = 22\;c{m^3}\)

    Câu 10 :

    Một lăng trụ đứng có đáy là hình chữ nhật có các kích thức $3$ cm, $8$ cm. Chiều cao của hình lăng trụ đứng là $2$cm. Tính diện tích xung quanh và thể tích của hình lăng trụ đứng.

    • A.

      \(48\;c{m^2},\;46\;c{m^3}\) 

    • B.

      \(48\;c{m^2},\;44\;c{m^3}\)

    • C.

      \(46\;c{m^2},\;48\;c{m^3}\) 

    • D.

      \(44\;c{m^2},\;48\;c{m^3}\)

    Đáp án : D

    Phương pháp giải :

    - Áp dụng công thức tính diện tích xung quanh hình lăng trụ đứng và thể tích hình lăng trụ đứng để giải bài toán: \({S_{xq}} = 2\left( {a + b} \right)c,\;\;V = abc.\)

    Lời giải chi tiết :
    Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 10

    Diện tích xung quanh \({S_{xq}} = 2.(8 + 3).2 = 44\;c{m^2}\)

    Thể tích của hình lăng trụ đứng là:\(V = 8.3.2 = 48\;c{m^3}\)

    Câu 11 :

    Hình lăng trụ đứng tam giác có tất cả bao nhiêu cạnh?

    • A.

      9

    • B.

      6

    • C.

      12

    • D.

      8

    Đáp án : A

    Phương pháp giải :

    Đặc điểm hình lăng trụ đứng tam giác

    Lời giải chi tiết :

    Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 11

    Các cạnh của hình lăng trụ đứng tam giác là: \(AB,\,\,AC,\,\,BC,\,\,{A_1}{B_1},\)\({A_1}{C_1},\,\,{B_1}{C_1},\,\,A{A_1},\,\,\,B{B_1},\,C{C_1}\)

    Vậy hình lăng trụ đứng tam giác có tất cả \(9\) cạnh.

    Câu 12 :

    Phát biểu nào sau đây là đúng?

    • A.

      Các mặt bên của hình lăng trụ đứng là các hình chữ nhật.

    • B.

      Các mặt bên của hình lăng trụ đứng là các hình thang cân.

    • C.

      Các mặt đáy của hình lăng trụ đứng là các hình chữ nhật.

    • D.

      Các mặt đáy của hình lăng trụ đứng là các hình tam giác.

    Đáp án : A

    Phương pháp giải :

    Đặc điểm hình lăng trụ đứng tam giác

    Lời giải chi tiết :

    Hình lăng trụ đứng có hai đáy là những đa giác, các mặt bên là những hình chữ nhật.

    Câu 13 :

    Tính thể tích của hình lăng trụ đứng có chiều cao \(20cm\), đáy là một tam giác vuông có các cạnh góc vuông lần lượt là \(8cm\) và \(10cm\).

    • A.

      \(800c{m^3}\)

    • B.

      \(400c{m^3}\)

    • C.

      \(600c{m^3}\)

    • D.

      \(500c{m^3}\)

    Đáp án : A

    Phương pháp giải :

    + Tính diện tích đáy là tam giác vuông: Sđáy = \(\frac{1}{2}\). Cạnh góc vuông . cạnh góc vuông

    + Tính thể tích: V = Sđáy . h

    Lời giải chi tiết :

    Diện tích đáy của hình lăng trụ đứng là:\(\dfrac{1}{2}.8.10=40 cm^3\)

    Thể tích của hình lăng trụ đứng là: \( 40.20= 800\,\,\left( {c{m^3}} \right)\)

    Vậy thể tích của hình lăng trụ đứng là \(800\,\,\left( {c{m^3}} \right)\).

    Câu 14 :

    Tính thể tích phần không gian của một ngôi nhà dạng một lăng trụ đứng theo các kích thước đã cho trong hình.

    Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 12

    • A.

      369 m3

    • B.

      315 m3

    • C.

      327 m3

    • D.

      423 m3

    Đáp án : A

    Phương pháp giải :

    Tính tổng của thể tích hình lăng trụ và thể tích hình hộp chữ nhật.

    Lời giải chi tiết :

    Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 13

    Theọ hình vẽ, ngôi nhà gồm hai phần: một phần là lăng trụ đứng có đáy là tam giác cân cạnh đáy bằng \(6m\), chiều cao đáy \(1,2m\), chiều cao lăng trụ bằng \(15m\); phần còn lại là hình hộp chữ nhật có kích thước đáy là \(6m\) và \(15m\), chiều cao \(3,5m\).

    Thể tích hình lăng trụ tam giác là:

    \({V_1} = \frac{1}{2}.6.1,2.15 = 54{\rm{ }}\left( {{m^3}} \right)\)

    Thể tích hình hộp chữ nhật là:

    \({V_2} = 6.15.3,5 = 315{\rm{ }}\left( {{m^3}} \right)\)

    Thể tích phần không gian bên trong của cả ngôi nhà là:

    \(V = {V_1} + {V_2} = 54 + 315 = 369{\rm{ }}\left( {{m^3}} \right)\)

    Thể tích phần không gian của ngôi nhà là \(369{\rm{ }}\left( {{m^3}} \right)\)

    Câu 15 :

    Một chiếc đèn lồng có dạng hình lăng trụ đứng, chiều cao \(40cm\) và đáy là lục giác đều cạnh \(18cm\). Nếu giữ nguyên chiều cao của đèn thì phải giảm độ dài cạnh đáy bao nhiêu lần để thể tích của đèn giảm đi hai lần.

    • A.

      \(\sqrt 2 \)lần

    • B.

      2 lần

    • C.

      4 lần

    • D.

      8 lần

    Đáp án : A

    Phương pháp giải :

    Lập tỉ số thể tích trước và sau khi giảm độ dài cạnh đáy.

    Lời giải chi tiết :

    Diện tích đáy đèn là: \(S = \frac{{{a^2}\sqrt 3 }}{4}.6\)\( = \frac{{{{18}^2}\sqrt 3 }}{4}.6 = 486\sqrt 3 \,\,\left( {c{m^2}} \right)\)

    Gọi \(a\) và \(b\) lần lượt là độ dài cạnh đáy đèn lồng trước và sau khi giảm thể tích.

    Gọi \({S_1}\) và \({S_2}\) là các diện tích đáy tương ứng. Khi đó: \({V_1} = {S_1}.h;\,\,{V_2} = {S_2}.h\)

    Ta có: \(\frac{{{V_1}}}{{{V_2}}} = 2 \Leftrightarrow \frac{{{S_1}.h}}{{{S_2}.h}} = 2\)\( \Leftrightarrow \frac{{{S_1}}}{{{S_2}}} = 2\)

    \( \Leftrightarrow \frac{{{a^2}\sqrt 3 .6}}{4}:\frac{{{b^2}\sqrt 3 .6}}{4} = 2\)\( \Leftrightarrow {a^2}:{b^2} = 2\)\( \Leftrightarrow a:b = \sqrt 2 \)

    Vậy độ dài cạnh đáy phải giảm đi \(\sqrt 2 \) lần.

    Câu 16 :

    Hình lăng trụ đứng tứ giác có đáy là hình thang cân có bao nhiêu mặt bên?

    • A.

      \(3\)

    • B.

      \(4\)

    • C.

      \(5\)

    • D.

      \(6\)

    Đáp án : B

    Phương pháp giải :

    Đặc điểm lăng trụ đứng tứ giác

    Lời giải chi tiết :

    Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 14

    Hình lăng trụ đứng \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có đáy \({A_1}{B_1}{C_1}{D_1}\) là hình thang cân, có các mặt bên là: \(AD{D_1}{A_1};\,\,AB{B_1}{A_1};\,\,DC{C_1}{D_1};\,\,BC{C_1}{B_1}\)

    Vậy hình lăng trụ đứng tứ giác đáy là hình thang cân có 4 mặt bên.

    Câu 17 :

    Một hình lăng trụ đứng có đáy là hình chữ nhật có các kích thước \(3cm,\,\,8cm\). Chiều cao của hình lăng trụ đứng là \(2cm\). Diện tích xung quanh của hình lăng trụ đứng là

    • A.

      \(44c{m^2}\)

    • B.

      \(24c{m^2}\)

    • C.

      \(48c{m^2}\)

    • D.

      \(22c{m^2}\)

    Đáp án : A

    Phương pháp giải :

    + Tính chu vi đáy là hình chữ nhật

    + Tính Sxq = chu vi đáy . chiều cao

    Lời giải chi tiết :

    Chu vi đáy của hình lăng trụ đứng là: \(\left( {8 + 3} \right).2 = 22\left( {cm} \right)\)

    Diện tích xung quanh của hình lăng trụ đứng là: \({S_{xq}} = C.h = 22.2 = 44\,\,\left( {c{m^2}} \right)\)

    Vậy diện tích xung quanh của hình lăng trụ đứng là \(44\,\,\left( {c{m^2}} \right)\)

    Câu 18 :

    Cho hình lăng trụ đứng có diện tích xung quanh bằng 336 cm2, chiều cao 14 cm. Khi đó, chu vi đáy của hình lăng trụ đứng là:

    • A.

      \(12cm\)

    • B.

      \(24cm\)

    • C.

      \(36cm\)

    • D.

      \(48cm\)

    Đáp án : B

    Phương pháp giải :

    Từ công thức Sxq = Chu vi đáy . chiều cao suy ra chu vi đáy

    Lời giải chi tiết :

    Chu vi đáy của hình lăng trụ đứng đó là:

    C = Sxq : h = 336 : 14 = 24 (cm)

    Câu 19 :

    Một hình lăng trụ đều (tức là lăng trụ có đáy là đa giác đều) có tất cả \(18\) cạnh, mỗi cạnh dài \(6\sqrt 3 \) cm. Tính thể tích của hình lăng trụ đó.

    • A.

      864 cm3

    • B.

      1944 cm3

    • C.

      2916 cm3

    • D.

      1122 cm3

    Đáp án : C

    Phương pháp giải :

    Để tìm được thể tích lăng trụ đứng khi đã biết chiều cao, ta cần tính diện tích đáy.

    Thể tích = diện tích đáy . chiều cao

    Lời giải chi tiết :

    Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 15

    Gọi số cạnh của một đáy là \(n\). Khi đó số cạnh bên là \(n\).

    Suy ra, tổng số cạnh của hình lăng trụ đứng là \(n + n + n = 3n\).

    Theo đề bài, hình lăng trụ đều có tất cả 18 cạnh, ta có: \(3n = 18 \Rightarrow n = 6.\)

    Vậy hình lăng trụ đứng đã cho là hình lăng trụ lục giác đều.

    Có thể coi diện tích đáy là tổng diện tích của 6 tam giác đều, mỗi cạnh bằng \(6\sqrt 3 \) cm.

    Do đó diện tích đáy là: \(S = \frac{{{{\left( {6\sqrt 3 } \right)}^2}.\sqrt 3 }}{4}.6 = 162\sqrt 3 \) ( cm2)

    Thể tích hình lăng trụ là: \(V = S.h = 162\sqrt 3 .6\sqrt 3 \)= 2916 ( cm3)

    Thể tích hình lăng trụ là 2916 ( cm3).

    Câu 20 :

    Một hình lăng trụ đứng có đáy là hình chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng \(6cm\). Một kích thước của đáy bằng \(10cm\), tính kích thước còn lại.

    • A.

      \(15cm\)

    • B.

      \(20cm\)

    • C.

      \(25cm\)

    • D.

      \(10cm\)

    Đáp án : A

    Phương pháp giải :

    Sử dụng công thức diện tích xung quanh của hình lăng trụ đứng:

    \({S_{xq}} = C.h\)

    Trong đó, \(C\) là chu vi đáy; \(h\) là chiều cao

    Lời giải chi tiết :

    Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 16

    Đặt \(AD = x\left( {cm} \right)\).

    Chu vi đáy của hình lăng trụ là: \(C = 2(AB + AD) = 2(10+x) (cm)\)

    Diện tích xung quanh của hình lăng trụ là: 

    \({S_{xq}} = C.h\)\( = 2.\left( {10 + {\rm{ }}x} \right).6\)\( = 12.\left( {10 + {\rm{ }}x} \right)\,\,\left( {c{m^2}} \right)\)

    Tổng diện tích hai đáy của hình lăng trụ là: \(2.10x = 20x\,\,(c{m^2})\)

    Theo đề bài, ta có diện tích xung quanh bằng tổng diện tích hai đáy nên \(12.\left( {10 + x} \right) = 20x\)

    Do đó \(120 + 12x = 20x\)

    Suy ra \(x = 15\,\left( {cm} \right)\)

    hay \(AD = 15\left( {cm} \right)\)

    Vậy kích thước còn lại của đáy bằng 15 cm.

    Lời giải và đáp án

      Câu 1 :

      Các mặt bên của hình lăng trụ đứng là

      • A.

        Các hình bình hành

      • B.

        Các hình thang cân

      • C.

        Các hình chữ nhật

      • D.

        Các hình vuông

      Câu 2 :

      Các cạnh bên của hình lăng trụ đứng

      • A.

        Song song với nhau

      • B.

        Bằng nhau

      • C.

        Vuông góc với hai đáy

      • D.

        Có cả ba tính chất trên

      Cho hình lăng trụ đứng $ABCD.A'B'C'D'$ có đáy $ABCD$ là hình thang vuông \(\left( {\widehat A = \widehat B = {{90}^0}} \right)\) . 

      Câu 3

      Có bao nhiêu cạnh song song với mặt phẳng \(\left( {BCC'B'} \right)\) ?

      • A.

        \(1\) 

      • B.

        \(2\)

      • C.

        \(4\)

      • D.

        \(5\)

      Câu 4

      Có bao nhiêu cạnh vuông góc với mặt phẳng \(\left( {BCC'B'} \right)\) ?

      • A.

        \(1\) 

      • B.

        \(2\)

      • C.

        \(4\)

      • D.

        \(5\)

      Câu 5 :

      Một hình hộp chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng $6\,cm$ . Một kích thước của đáy bằng $10\,cm$ , tính kích thước còn lại.

      Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 1
      • A.

        \(15\,cm\) 

      • B.

        \(20\,cm\)

      • C.

        \(25\,cm\)

      • D.

        \(10\,cm\)

      Câu 6 :

      Một hình hộp chữ nhật có diện tích xung quanh bằng $120\,c{m^2}$ , chiều cao bằng $6cm$ . Tìm các kích thước của đáy để hình hộp chữ nhật có thể tích lớn nhất.

      • A.

        \(8\,cm\) 

      • B.

        \(7\,cm\)

      • C.

        \(6\,cm\)

      • D.

        \(5\,cm\)

      Câu 7 :

      Tính thể tích của hình lăng trụ đứng có chiều cao $20\,{\rm{cm}}$, đáy là một tam giác vuông có các cạnh góc vuông bằng $8\,{\rm{cm}}$ và $10\,{\rm{cm}}$.

      • A.

        \(800\,c{m^3}\) 

      • B.

        \(400\,c{m^3}\)

      • C.

        \(600\,c{m^3}\)

      • D.

        \(500\,c{m^3}\)

      Câu 8 :

      Cho một hình lăng trụ đứng có diện tích đáy là $S$ , chiều cao là $h$ . Hỏi công thức tính thể tích hình lăng trụ đứng là gì?

      • A.

        $S.h\;\;\;\;\;\;$

      • B.

        \(\dfrac{1}{2}S.h\)

      • C.

        $2S.h$

      • D.

        $3S.h$

      Câu 9 :

      Tính thể tích của hình lăng trụ đứng sau:

      Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 2
      • A.

        \(16\;c{m^3}\)

      • B.

        \(20\;c{m^3}\)

      • C.

        \(26\;c{m^3}\)

      • D.

        \(22\;c{m^3}\)

      Câu 10 :

      Một lăng trụ đứng có đáy là hình chữ nhật có các kích thức $3$ cm, $8$ cm. Chiều cao của hình lăng trụ đứng là $2$cm. Tính diện tích xung quanh và thể tích của hình lăng trụ đứng.

      • A.

        \(48\;c{m^2},\;46\;c{m^3}\) 

      • B.

        \(48\;c{m^2},\;44\;c{m^3}\)

      • C.

        \(46\;c{m^2},\;48\;c{m^3}\) 

      • D.

        \(44\;c{m^2},\;48\;c{m^3}\)

      Câu 11 :

      Hình lăng trụ đứng tam giác có tất cả bao nhiêu cạnh?

      • A.

        9

      • B.

        6

      • C.

        12

      • D.

        8

      Câu 12 :

      Phát biểu nào sau đây là đúng?

      • A.

        Các mặt bên của hình lăng trụ đứng là các hình chữ nhật.

      • B.

        Các mặt bên của hình lăng trụ đứng là các hình thang cân.

      • C.

        Các mặt đáy của hình lăng trụ đứng là các hình chữ nhật.

      • D.

        Các mặt đáy của hình lăng trụ đứng là các hình tam giác.

      Câu 13 :

      Tính thể tích của hình lăng trụ đứng có chiều cao \(20cm\), đáy là một tam giác vuông có các cạnh góc vuông lần lượt là \(8cm\) và \(10cm\).

      • A.

        \(800c{m^3}\)

      • B.

        \(400c{m^3}\)

      • C.

        \(600c{m^3}\)

      • D.

        \(500c{m^3}\)

      Câu 14 :

      Tính thể tích phần không gian của một ngôi nhà dạng một lăng trụ đứng theo các kích thước đã cho trong hình.

      Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 3

      • A.

        369 m3

      • B.

        315 m3

      • C.

        327 m3

      • D.

        423 m3

      Câu 15 :

      Một chiếc đèn lồng có dạng hình lăng trụ đứng, chiều cao \(40cm\) và đáy là lục giác đều cạnh \(18cm\). Nếu giữ nguyên chiều cao của đèn thì phải giảm độ dài cạnh đáy bao nhiêu lần để thể tích của đèn giảm đi hai lần.

      • A.

        \(\sqrt 2 \)lần

      • B.

        2 lần

      • C.

        4 lần

      • D.

        8 lần

      Câu 16 :

      Hình lăng trụ đứng tứ giác có đáy là hình thang cân có bao nhiêu mặt bên?

      • A.

        \(3\)

      • B.

        \(4\)

      • C.

        \(5\)

      • D.

        \(6\)

      Câu 17 :

      Một hình lăng trụ đứng có đáy là hình chữ nhật có các kích thước \(3cm,\,\,8cm\). Chiều cao của hình lăng trụ đứng là \(2cm\). Diện tích xung quanh của hình lăng trụ đứng là

      • A.

        \(44c{m^2}\)

      • B.

        \(24c{m^2}\)

      • C.

        \(48c{m^2}\)

      • D.

        \(22c{m^2}\)

      Câu 18 :

      Cho hình lăng trụ đứng có diện tích xung quanh bằng 336 cm2, chiều cao 14 cm. Khi đó, chu vi đáy của hình lăng trụ đứng là:

      • A.

        \(12cm\)

      • B.

        \(24cm\)

      • C.

        \(36cm\)

      • D.

        \(48cm\)

      Câu 19 :

      Một hình lăng trụ đều (tức là lăng trụ có đáy là đa giác đều) có tất cả \(18\) cạnh, mỗi cạnh dài \(6\sqrt 3 \) cm. Tính thể tích của hình lăng trụ đó.

      • A.

        864 cm3

      • B.

        1944 cm3

      • C.

        2916 cm3

      • D.

        1122 cm3

      Câu 20 :

      Một hình lăng trụ đứng có đáy là hình chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng \(6cm\). Một kích thước của đáy bằng \(10cm\), tính kích thước còn lại.

      • A.

        \(15cm\)

      • B.

        \(20cm\)

      • C.

        \(25cm\)

      • D.

        \(10cm\)

      Câu 1 :

      Các mặt bên của hình lăng trụ đứng là

      • A.

        Các hình bình hành

      • B.

        Các hình thang cân

      • C.

        Các hình chữ nhật

      • D.

        Các hình vuông

      Đáp án : C

      Lời giải chi tiết :

      Hình lăng trụ đứng có hai đáy là những đa giác, các mặt bên là những hình chữ nhật.

      Câu 2 :

      Các cạnh bên của hình lăng trụ đứng

      • A.

        Song song với nhau

      • B.

        Bằng nhau

      • C.

        Vuông góc với hai đáy

      • D.

        Có cả ba tính chất trên

      Đáp án : D

      Lời giải chi tiết :

      Hình lăng trụ đứng có các mặt bên là hình chữ nhật, các cạnh bên vuông góc với đáy nên chúng song song và bằng nhau.

      Cho hình lăng trụ đứng $ABCD.A'B'C'D'$ có đáy $ABCD$ là hình thang vuông \(\left( {\widehat A = \widehat B = {{90}^0}} \right)\) . 

      Câu 3

      Có bao nhiêu cạnh song song với mặt phẳng \(\left( {BCC'B'} \right)\) ?

      • A.

        \(1\) 

      • B.

        \(2\)

      • C.

        \(4\)

      • D.

        \(5\)

      Đáp án: C

      Phương pháp giải :

      Sử dụng quan hệ song song giữa đường thẳng và mặt phẳng.

      Lời giải chi tiết :
      Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 4

      Vì $AA'{\rm{//}}BB'{\rm{//}}DD'$ và \(A'D'{\rm{//}}AD{\rm{//}}BC\) nên các đường thẳng $AA',DD',AD,A'D'$ song song với mp $\left( {BCC'B'} \right).$

      Câu 4

      Có bao nhiêu cạnh vuông góc với mặt phẳng \(\left( {BCC'B'} \right)\) ?

      • A.

        \(1\) 

      • B.

        \(2\)

      • C.

        \(4\)

      • D.

        \(5\)

      Đáp án: B

      Phương pháp giải :

      Sử dụng quan hệ vuông góc giữa đường thẳng và mặt phẳng.

      Lời giải chi tiết :
      Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 5

       Vì \(AB \bot BC\) (do \(ABCD\) là hình thang vuông) và \(AB \bot BB'\) (tính chất lăng trụ đứng)

      Nên \(AB \bot \left( {BCC'B'} \right)\) , tương tự ta có \(A'B' \bot \left( {BCC'B'} \right)\)

      Do đó $AB,A'B'$ vuông góc với mp $\left( {BCC'B'} \right).$

      Câu 5 :

      Một hình hộp chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng $6\,cm$ . Một kích thước của đáy bằng $10\,cm$ , tính kích thước còn lại.

      Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 6
      • A.

        \(15\,cm\) 

      • B.

        \(20\,cm\)

      • C.

        \(25\,cm\)

      • D.

        \(10\,cm\)

      Đáp án : A

      Lời giải chi tiết :
      Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 7

      Đặt $AD = x$ .

      Diện tích xung quanh bằng:

      $2\left( {10 + x} \right).6\left( {c{m^2}} \right)$

      Tổng diện tích hai đáy bằng $2.10x\left( {c{m^2}} \right)$

      Ta có $2\left( {10 + x} \right).6{\rm{ }} = {\rm{ }}2.10x \Leftrightarrow 60 + 6x = 10x \Leftrightarrow x = 15$

      Kích thước còn lại của đáy bằng $15cm$ .

      Câu 6 :

      Một hình hộp chữ nhật có diện tích xung quanh bằng $120\,c{m^2}$ , chiều cao bằng $6cm$ . Tìm các kích thước của đáy để hình hộp chữ nhật có thể tích lớn nhất.

      • A.

        \(8\,cm\) 

      • B.

        \(7\,cm\)

      • C.

        \(6\,cm\)

      • D.

        \(5\,cm\)

      Đáp án : D

      Phương pháp giải :

      + Sử dụng công thức thể tích và diện tích xung quanh của hình hộp chữ nhật.

      + Dùng hằng đẳng thức để biện luận theo yêu cầu đề bài.

      Lời giải chi tiết :

      Gọi $a$ và $b$ là các kích thước của đáy.

      Ta có $V = 6ab$ nên $V$ lớn nhất \( \Leftrightarrow \) $ab$ lớn nhất

      \({S_{xq}} = 120\) nên \(2\left( {a + b} \right).6 = 120\) hay \(a + b = 10\).

      Ta có: \(ab = a\left( {10 - a} \right) = - {a^2} + 10a = - {\left( {a - 5} \right)^2} + 25 \le 25\).

      Suy ra \(V = 6ab \le 6.25 = 150\).

      Thể tích lớn nhất bằng \(150\) \({\rm{c}}{{\rm{m}}^3}\) khi \(a = b = 5\), tức là các cạnh đáy bằng $5$ cm.

      Câu 7 :

      Tính thể tích của hình lăng trụ đứng có chiều cao $20\,{\rm{cm}}$, đáy là một tam giác vuông có các cạnh góc vuông bằng $8\,{\rm{cm}}$ và $10\,{\rm{cm}}$.

      • A.

        \(800\,c{m^3}\) 

      • B.

        \(400\,c{m^3}\)

      • C.

        \(600\,c{m^3}\)

      • D.

        \(500\,c{m^3}\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức tính thể tích hình lăng trụ đứng \(V = S.h\) với \(S\) là diện tích đáy, \(h\) là chiều cao.

      Lời giải chi tiết :

      Vì đáy là tam giác vuông nên diện tích đáy \(S = \dfrac{{8.10}}{2} = 40\,cm\) .

      Thể tích lăng trụ đứng là \(V = S.h = 40.20 = 800\,c{m^3}\) .

      Câu 8 :

      Cho một hình lăng trụ đứng có diện tích đáy là $S$ , chiều cao là $h$ . Hỏi công thức tính thể tích hình lăng trụ đứng là gì?

      • A.

        $S.h\;\;\;\;\;\;$

      • B.

        \(\dfrac{1}{2}S.h\)

      • C.

        $2S.h$

      • D.

        $3S.h$

      Đáp án : A

      Lời giải chi tiết :

      Công thức tính thể tích hình lăng trụ đứng là: $V = S.h$

      Câu 9 :

      Tính thể tích của hình lăng trụ đứng sau:

      Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 8
      • A.

        \(16\;c{m^3}\)

      • B.

        \(20\;c{m^3}\)

      • C.

        \(26\;c{m^3}\)

      • D.

        \(22\;c{m^3}\)

      Đáp án : D

      Phương pháp giải :

      - Chia hình lăng trụ đứng thành các hình hộp chữ nhật nhỏ hơn, sau đó tính thể tích từng hình hộp chữ nhật nhỏ.

      - Tính được thể tích lăng trụ đứng bằng tổng thể tích các hình hộp chữ nhật nhỏ

      Lời giải chi tiết :
      Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 9

      Hình lăng trụ đứng đã cho được tạo thành từ 2 hình hộp chữ nhật. Hình hộp chữ nhật thứ nhất có kích thước là

      \(3cm,\;\;1cm,\;\;2cm;\) hình hộp chữ nhật thứ hai có kích thước là \(2cm,\;\;4cm,\;\;2cm.\)

      Thể tích hình hộp chữ nhật thứ nhất là: \({V_1} = 3.1.2 = 6\;c{m^3}\)

      Thể tích hình hộp chữ nhật thứ hai là: \({V_2} = 2.4.2 = 16\;c{m^3}\)

      Thể tích hình lăng trụ đứng là: \(V = {V_1} + {V_2} = 6 + 16 = 22\;c{m^3}\)

      Câu 10 :

      Một lăng trụ đứng có đáy là hình chữ nhật có các kích thức $3$ cm, $8$ cm. Chiều cao của hình lăng trụ đứng là $2$cm. Tính diện tích xung quanh và thể tích của hình lăng trụ đứng.

      • A.

        \(48\;c{m^2},\;46\;c{m^3}\) 

      • B.

        \(48\;c{m^2},\;44\;c{m^3}\)

      • C.

        \(46\;c{m^2},\;48\;c{m^3}\) 

      • D.

        \(44\;c{m^2},\;48\;c{m^3}\)

      Đáp án : D

      Phương pháp giải :

      - Áp dụng công thức tính diện tích xung quanh hình lăng trụ đứng và thể tích hình lăng trụ đứng để giải bài toán: \({S_{xq}} = 2\left( {a + b} \right)c,\;\;V = abc.\)

      Lời giải chi tiết :
      Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 10

      Diện tích xung quanh \({S_{xq}} = 2.(8 + 3).2 = 44\;c{m^2}\)

      Thể tích của hình lăng trụ đứng là:\(V = 8.3.2 = 48\;c{m^3}\)

      Câu 11 :

      Hình lăng trụ đứng tam giác có tất cả bao nhiêu cạnh?

      • A.

        9

      • B.

        6

      • C.

        12

      • D.

        8

      Đáp án : A

      Phương pháp giải :

      Đặc điểm hình lăng trụ đứng tam giác

      Lời giải chi tiết :

      Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 11

      Các cạnh của hình lăng trụ đứng tam giác là: \(AB,\,\,AC,\,\,BC,\,\,{A_1}{B_1},\)\({A_1}{C_1},\,\,{B_1}{C_1},\,\,A{A_1},\,\,\,B{B_1},\,C{C_1}\)

      Vậy hình lăng trụ đứng tam giác có tất cả \(9\) cạnh.

      Câu 12 :

      Phát biểu nào sau đây là đúng?

      • A.

        Các mặt bên của hình lăng trụ đứng là các hình chữ nhật.

      • B.

        Các mặt bên của hình lăng trụ đứng là các hình thang cân.

      • C.

        Các mặt đáy của hình lăng trụ đứng là các hình chữ nhật.

      • D.

        Các mặt đáy của hình lăng trụ đứng là các hình tam giác.

      Đáp án : A

      Phương pháp giải :

      Đặc điểm hình lăng trụ đứng tam giác

      Lời giải chi tiết :

      Hình lăng trụ đứng có hai đáy là những đa giác, các mặt bên là những hình chữ nhật.

      Câu 13 :

      Tính thể tích của hình lăng trụ đứng có chiều cao \(20cm\), đáy là một tam giác vuông có các cạnh góc vuông lần lượt là \(8cm\) và \(10cm\).

      • A.

        \(800c{m^3}\)

      • B.

        \(400c{m^3}\)

      • C.

        \(600c{m^3}\)

      • D.

        \(500c{m^3}\)

      Đáp án : A

      Phương pháp giải :

      + Tính diện tích đáy là tam giác vuông: Sđáy = \(\frac{1}{2}\). Cạnh góc vuông . cạnh góc vuông

      + Tính thể tích: V = Sđáy . h

      Lời giải chi tiết :

      Diện tích đáy của hình lăng trụ đứng là:\(\dfrac{1}{2}.8.10=40 cm^3\)

      Thể tích của hình lăng trụ đứng là: \( 40.20= 800\,\,\left( {c{m^3}} \right)\)

      Vậy thể tích của hình lăng trụ đứng là \(800\,\,\left( {c{m^3}} \right)\).

      Câu 14 :

      Tính thể tích phần không gian của một ngôi nhà dạng một lăng trụ đứng theo các kích thước đã cho trong hình.

      Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 12

      • A.

        369 m3

      • B.

        315 m3

      • C.

        327 m3

      • D.

        423 m3

      Đáp án : A

      Phương pháp giải :

      Tính tổng của thể tích hình lăng trụ và thể tích hình hộp chữ nhật.

      Lời giải chi tiết :

      Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 13

      Theọ hình vẽ, ngôi nhà gồm hai phần: một phần là lăng trụ đứng có đáy là tam giác cân cạnh đáy bằng \(6m\), chiều cao đáy \(1,2m\), chiều cao lăng trụ bằng \(15m\); phần còn lại là hình hộp chữ nhật có kích thước đáy là \(6m\) và \(15m\), chiều cao \(3,5m\).

      Thể tích hình lăng trụ tam giác là:

      \({V_1} = \frac{1}{2}.6.1,2.15 = 54{\rm{ }}\left( {{m^3}} \right)\)

      Thể tích hình hộp chữ nhật là:

      \({V_2} = 6.15.3,5 = 315{\rm{ }}\left( {{m^3}} \right)\)

      Thể tích phần không gian bên trong của cả ngôi nhà là:

      \(V = {V_1} + {V_2} = 54 + 315 = 369{\rm{ }}\left( {{m^3}} \right)\)

      Thể tích phần không gian của ngôi nhà là \(369{\rm{ }}\left( {{m^3}} \right)\)

      Câu 15 :

      Một chiếc đèn lồng có dạng hình lăng trụ đứng, chiều cao \(40cm\) và đáy là lục giác đều cạnh \(18cm\). Nếu giữ nguyên chiều cao của đèn thì phải giảm độ dài cạnh đáy bao nhiêu lần để thể tích của đèn giảm đi hai lần.

      • A.

        \(\sqrt 2 \)lần

      • B.

        2 lần

      • C.

        4 lần

      • D.

        8 lần

      Đáp án : A

      Phương pháp giải :

      Lập tỉ số thể tích trước và sau khi giảm độ dài cạnh đáy.

      Lời giải chi tiết :

      Diện tích đáy đèn là: \(S = \frac{{{a^2}\sqrt 3 }}{4}.6\)\( = \frac{{{{18}^2}\sqrt 3 }}{4}.6 = 486\sqrt 3 \,\,\left( {c{m^2}} \right)\)

      Gọi \(a\) và \(b\) lần lượt là độ dài cạnh đáy đèn lồng trước và sau khi giảm thể tích.

      Gọi \({S_1}\) và \({S_2}\) là các diện tích đáy tương ứng. Khi đó: \({V_1} = {S_1}.h;\,\,{V_2} = {S_2}.h\)

      Ta có: \(\frac{{{V_1}}}{{{V_2}}} = 2 \Leftrightarrow \frac{{{S_1}.h}}{{{S_2}.h}} = 2\)\( \Leftrightarrow \frac{{{S_1}}}{{{S_2}}} = 2\)

      \( \Leftrightarrow \frac{{{a^2}\sqrt 3 .6}}{4}:\frac{{{b^2}\sqrt 3 .6}}{4} = 2\)\( \Leftrightarrow {a^2}:{b^2} = 2\)\( \Leftrightarrow a:b = \sqrt 2 \)

      Vậy độ dài cạnh đáy phải giảm đi \(\sqrt 2 \) lần.

      Câu 16 :

      Hình lăng trụ đứng tứ giác có đáy là hình thang cân có bao nhiêu mặt bên?

      • A.

        \(3\)

      • B.

        \(4\)

      • C.

        \(5\)

      • D.

        \(6\)

      Đáp án : B

      Phương pháp giải :

      Đặc điểm lăng trụ đứng tứ giác

      Lời giải chi tiết :

      Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 14

      Hình lăng trụ đứng \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có đáy \({A_1}{B_1}{C_1}{D_1}\) là hình thang cân, có các mặt bên là: \(AD{D_1}{A_1};\,\,AB{B_1}{A_1};\,\,DC{C_1}{D_1};\,\,BC{C_1}{B_1}\)

      Vậy hình lăng trụ đứng tứ giác đáy là hình thang cân có 4 mặt bên.

      Câu 17 :

      Một hình lăng trụ đứng có đáy là hình chữ nhật có các kích thước \(3cm,\,\,8cm\). Chiều cao của hình lăng trụ đứng là \(2cm\). Diện tích xung quanh của hình lăng trụ đứng là

      • A.

        \(44c{m^2}\)

      • B.

        \(24c{m^2}\)

      • C.

        \(48c{m^2}\)

      • D.

        \(22c{m^2}\)

      Đáp án : A

      Phương pháp giải :

      + Tính chu vi đáy là hình chữ nhật

      + Tính Sxq = chu vi đáy . chiều cao

      Lời giải chi tiết :

      Chu vi đáy của hình lăng trụ đứng là: \(\left( {8 + 3} \right).2 = 22\left( {cm} \right)\)

      Diện tích xung quanh của hình lăng trụ đứng là: \({S_{xq}} = C.h = 22.2 = 44\,\,\left( {c{m^2}} \right)\)

      Vậy diện tích xung quanh của hình lăng trụ đứng là \(44\,\,\left( {c{m^2}} \right)\)

      Câu 18 :

      Cho hình lăng trụ đứng có diện tích xung quanh bằng 336 cm2, chiều cao 14 cm. Khi đó, chu vi đáy của hình lăng trụ đứng là:

      • A.

        \(12cm\)

      • B.

        \(24cm\)

      • C.

        \(36cm\)

      • D.

        \(48cm\)

      Đáp án : B

      Phương pháp giải :

      Từ công thức Sxq = Chu vi đáy . chiều cao suy ra chu vi đáy

      Lời giải chi tiết :

      Chu vi đáy của hình lăng trụ đứng đó là:

      C = Sxq : h = 336 : 14 = 24 (cm)

      Câu 19 :

      Một hình lăng trụ đều (tức là lăng trụ có đáy là đa giác đều) có tất cả \(18\) cạnh, mỗi cạnh dài \(6\sqrt 3 \) cm. Tính thể tích của hình lăng trụ đó.

      • A.

        864 cm3

      • B.

        1944 cm3

      • C.

        2916 cm3

      • D.

        1122 cm3

      Đáp án : C

      Phương pháp giải :

      Để tìm được thể tích lăng trụ đứng khi đã biết chiều cao, ta cần tính diện tích đáy.

      Thể tích = diện tích đáy . chiều cao

      Lời giải chi tiết :

      Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 15

      Gọi số cạnh của một đáy là \(n\). Khi đó số cạnh bên là \(n\).

      Suy ra, tổng số cạnh của hình lăng trụ đứng là \(n + n + n = 3n\).

      Theo đề bài, hình lăng trụ đều có tất cả 18 cạnh, ta có: \(3n = 18 \Rightarrow n = 6.\)

      Vậy hình lăng trụ đứng đã cho là hình lăng trụ lục giác đều.

      Có thể coi diện tích đáy là tổng diện tích của 6 tam giác đều, mỗi cạnh bằng \(6\sqrt 3 \) cm.

      Do đó diện tích đáy là: \(S = \frac{{{{\left( {6\sqrt 3 } \right)}^2}.\sqrt 3 }}{4}.6 = 162\sqrt 3 \) ( cm2)

      Thể tích hình lăng trụ là: \(V = S.h = 162\sqrt 3 .6\sqrt 3 \)= 2916 ( cm3)

      Thể tích hình lăng trụ là 2916 ( cm3).

      Câu 20 :

      Một hình lăng trụ đứng có đáy là hình chữ nhật có diện tích xung quanh bằng tổng diện tích hai đáy, chiều cao bằng \(6cm\). Một kích thước của đáy bằng \(10cm\), tính kích thước còn lại.

      • A.

        \(15cm\)

      • B.

        \(20cm\)

      • C.

        \(25cm\)

      • D.

        \(10cm\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức diện tích xung quanh của hình lăng trụ đứng:

      \({S_{xq}} = C.h\)

      Trong đó, \(C\) là chu vi đáy; \(h\) là chiều cao

      Lời giải chi tiết :

      Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều 0 16

      Đặt \(AD = x\left( {cm} \right)\).

      Chu vi đáy của hình lăng trụ là: \(C = 2(AB + AD) = 2(10+x) (cm)\)

      Diện tích xung quanh của hình lăng trụ là: 

      \({S_{xq}} = C.h\)\( = 2.\left( {10 + {\rm{ }}x} \right).6\)\( = 12.\left( {10 + {\rm{ }}x} \right)\,\,\left( {c{m^2}} \right)\)

      Tổng diện tích hai đáy của hình lăng trụ là: \(2.10x = 20x\,\,(c{m^2})\)

      Theo đề bài, ta có diện tích xung quanh bằng tổng diện tích hai đáy nên \(12.\left( {10 + x} \right) = 20x\)

      Do đó \(120 + 12x = 20x\)

      Suy ra \(x = 15\,\left( {cm} \right)\)

      hay \(AD = 15\left( {cm} \right)\)

      Vậy kích thước còn lại của đáy bằng 15 cm.

      Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều tại chuyên mục bài tập toán 7 trên đề thi toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

      Trắc nghiệm Bài 2: Lăng trụ đứng tam giác. Lăng trụ đứng tứ giác Toán 7 Cánh diều - Tổng hợp kiến thức và bài tập

      Bài 2 trong chương trình Toán 7 Cánh diều tập trung vào kiến thức về lăng trụ đứng, một hình khối quan trọng trong hình học không gian. Để giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập, giaitoan.edu.vn xin giới thiệu bộ trắc nghiệm chi tiết và đầy đủ về chủ đề này.

      I. Kiến thức cơ bản về Lăng trụ đứng

      Lăng trụ đứng là hình đa diện có hai đáy là hai đa giác đồng dạng và song song, các cạnh bên vuông góc với hai đáy. Các yếu tố quan trọng cần nắm vững:

      • Đáy: Là hai đa giác đồng dạng và song song.
      • Cạnh bên: Vuông góc với hai đáy.
      • Chiều cao: Khoảng cách giữa hai đáy.
      • Diện tích xung quanh: Tổng diện tích các mặt bên.
      • Diện tích toàn phần: Tổng diện tích xung quanh và diện tích hai đáy.
      • Thể tích: Tích của diện tích đáy và chiều cao.

      II. Phân loại Lăng trụ đứng

      Lăng trụ đứng được phân loại dựa trên hình dạng đáy:

      • Lăng trụ đứng tam giác: Đáy là tam giác.
      • Lăng trụ đứng tứ giác: Đáy là tứ giác.
      • Lăng trụ đứng ngũ giác: Đáy là ngũ giác.
      • ...

      III. Công thức tính toán quan trọng

      Để giải các bài tập liên quan đến lăng trụ đứng, các em cần nắm vững các công thức sau:

      1. Diện tích xung quanh lăng trụ đứng: P * h (P là chu vi đáy, h là chiều cao)
      2. Diện tích toàn phần lăng trụ đứng: Sxq + 2 * Sđáy (Sxq là diện tích xung quanh, Sđáy là diện tích đáy)
      3. Thể tích lăng trụ đứng: Sđáy * h (Sđáy là diện tích đáy, h là chiều cao)

      IV. Bài tập trắc nghiệm minh họa

      Dưới đây là một số bài tập trắc nghiệm minh họa để các em làm quen với dạng bài:

      Câu 1: Một lăng trụ đứng tam giác có đáy là tam giác vuông với các cạnh góc vuông là 3cm và 4cm, chiều cao của lăng trụ là 5cm. Tính thể tích của lăng trụ.

      A. 30 cm3 B. 60 cm3 C. 15 cm3 D. 20 cm3

      Câu 2: Diện tích xung quanh của một lăng trụ đứng tứ giác là 60cm2, chu vi đáy là 10cm. Tính chiều cao của lăng trụ.

      A. 5cm B. 6cm C. 7cm D. 8cm

      V. Luyện tập và củng cố kiến thức

      Để đạt kết quả tốt nhất, các em nên luyện tập thường xuyên với các bài tập trắc nghiệm khác nhau. Giaitoan.edu.vn cung cấp một hệ thống bài tập phong phú, đa dạng, được phân loại theo mức độ khó, giúp các em tự tin chinh phục bài thi.

      VI. Mở rộng kiến thức

      Ngoài kiến thức cơ bản về lăng trụ đứng, các em có thể tìm hiểu thêm về các loại hình khối khác như hình chóp, hình cầu, hình trụ... để mở rộng kiến thức và nâng cao khả năng giải quyết vấn đề.

      Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

      Tài liệu, đề thi và đáp án Toán 7