Logo Header
  1. Môn Toán
  2. Chủ đề 4. Tam giác cân - Định lý Pythagore

Chủ đề 4. Tam giác cân - Định lý Pythagore

Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Chủ đề 4. Tam giác cân - Định lý Pythagore tại chuyên mục giải bài tập toán lớp 7 trên toán math. Với bộ bài tập toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

Chủ đề 4: Tam giác cân - Định lý Pythagore

Chào mừng các em học sinh đến với chủ đề 4 của chương 2 môn Toán 7: Tam giác cân và Định lý Pythagore. Đây là một trong những chủ đề quan trọng, đặt nền móng cho các kiến thức hình học nâng cao hơn.

Tại giaitoan.edu.vn, chúng tôi cung cấp đầy đủ tài liệu, bài giảng, và bài tập giúp các em nắm vững kiến thức và rèn luyện kỹ năng giải toán một cách hiệu quả.

Chủ đề 4: Tam giác cân - Định lý Pythagore - Toán 7

Chương 2 môn Toán 7 tập trung vào việc nghiên cứu về tam giác, một trong những hình cơ bản và quan trọng nhất trong hình học. Trong chương này, chúng ta sẽ đi sâu vào tìm hiểu về các loại tam giác đặc biệt, đặc biệt là tam giác cân, và một định lý vô cùng quan trọng – Định lý Pythagore.

I. Tam giác cân

1. Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau. Hai cạnh bằng nhau được gọi là cạnh bên, cạnh còn lại được gọi là cạnh đáy. Góc đối diện với cạnh đáy được gọi là góc đỉnh, hai góc còn lại được gọi là góc đáy.

2. Tính chất:

  • Hai góc đáy của một tam giác cân bằng nhau.
  • Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân.

3. Ví dụ: Xét tam giác ABC có AB = AC. Khi đó, tam giác ABC là tam giác cân tại A, và góc B bằng góc C.

II. Định lý Pythagore

1. Phát biểu: Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương của hai cạnh góc vuông.

2. Công thức: Nếu tam giác ABC vuông tại A, thì BC2 = AB2 + AC2.

3. Ứng dụng: Định lý Pythagore được sử dụng để tính độ dài cạnh trong tam giác vuông, kiểm tra một tam giác có phải là tam giác vuông hay không, và giải quyết nhiều bài toán thực tế.

III. Mối quan hệ giữa tam giác cân và định lý Pythagore

Định lý Pythagore có thể được áp dụng để chứng minh các tính chất của tam giác cân và ngược lại. Ví dụ, ta có thể sử dụng định lý Pythagore để chứng minh rằng đường cao hạ từ đỉnh của tam giác cân xuống cạnh đáy chia tam giác cân thành hai tam giác vuông bằng nhau.

IV. Bài tập vận dụng

Bài 1: Cho tam giác ABC cân tại A, biết AB = 5cm, BC = 6cm. Tính độ dài đường cao AH.

Bài 2: Cho tam giác ABC vuông tại A, biết AB = 3cm, AC = 4cm. Tính độ dài cạnh BC.

V. Tài liệu tham khảo

Để hiểu rõ hơn về chủ đề này, các em có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 7
  • Sách bài tập Toán 7
  • Các trang web học toán online uy tín như giaitoan.edu.vn

VI. Luyện tập và củng cố kiến thức

Để nắm vững kiến thức về tam giác cân và định lý Pythagore, các em cần luyện tập thường xuyên các bài tập khác nhau. Hãy bắt đầu với các bài tập cơ bản trong sách giáo khoa và sách bài tập, sau đó nâng dần độ khó bằng cách giải các bài tập nâng cao và các bài toán thực tế.

VII. Kết luận

Chủ đề 4 về tam giác cân và định lý Pythagore là một phần quan trọng của chương 2 môn Toán 7. Việc nắm vững kiến thức và kỹ năng giải toán trong chủ đề này sẽ giúp các em học tốt môn Toán và có nền tảng vững chắc cho các kiến thức hình học nâng cao hơn. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 7