Chào mừng các em học sinh đến với chuyên mục luyện tập Dạng 2. Một số bài toán thực tế thuộc Chủ đề 4 Ôn hè Toán 6 của giaitoan.edu.vn. Chuyên mục này được thiết kế để giúp các em củng cố kiến thức đã học và rèn luyện kỹ năng giải quyết các bài toán ứng dụng thực tế.
Với phương pháp tiếp cận gần gũi và dễ hiểu, chúng tôi sẽ cung cấp các bài tập đa dạng, kèm theo lời giải chi tiết, giúp các em tự tin hơn trong quá trình học tập.
* Tìm ƯCLN Muốn tìm ƯCLN của của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau :
* Tìm ƯCLN
Muốn tìm ƯCLN của của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau :
Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.
Bước 2 : Chọn ra các thừa số nguyên tố chung.
Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.
* Tìm BCNN:
Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện theo ba bước sau :
Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.
Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng.
Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.
Bài 1:
Lớp 7A2 có 28 học sinh nam, 21 học sinh nữ. Hỏi có bao nhiêu cách chia lớp thành các tổ sao cho mỗi tổ có cùng số học sinh nam và số học sinh nữ?
Bài 2:
Một đơn vị bộ đội khi xếp hàng, mỗi hàng có 20 người, 25 người hoặc 30 người thì đều thừa 12 người. Nếu xếp mỗi hàng 38 người thì vừa đủ. Hỏi đơn vị có bao nhiêu người, biết rằng số người của đơn vị không quá 1000 người.
Lời giải chi tiết:
Bài 1:
Lớp 7A2 có 28 học sinh nam, 21 học sinh nữ. Hỏi có bao nhiêu cách chia lớp thành các tổ sao cho mỗi tổ có cùng số học sinh nam và số học sinh nữ?
Phương pháp
a) Bước 1: Viết tập hợp các ước của a và của b: Ư(a), Ư(b)
Bước 2: Tìm những phần tử chung của Ư(a) và Ư(b).
b) Bước 1: Viết tập hợp các bội B(a) của a và các bội B(b) của b.
Bước 2: Tìm những phần tử chung của B(a) và B(b).
Lời giải
a) Ta có:
Ư(32) = {1;2;4;8;16;32}
Ư(24) = {1;2;3;4;6;8;12;24}
Do đó, ƯC(32,24) = {1;2;4;8}
b) Ta có:
B(12) = {0;12;24;36;48;60;72;84;96;108;120;132;…}
B(15) = {0;15;30;45;60;75;90;105;120;135;…}
Do đó, BC(12,15) ={0; 60; 120;…}
Bài 2:
Một đơn vị bộ đội khi xếp hàng, mỗi hàng có 20 người, 25 người hoặc 30 người thì đều thừa 12 người. Nếu xếp mỗi hàng 38 người thì vừa đủ. Hỏi đơn vị có bao nhiêu người, biết rằng số người của đơn vị không quá 1000 người.
Phương pháp
Gọi số người của đơn vị là x ( người, x\( \in {N^*};x \le 1000\))
Nếu x chia cho m dư n thì (x – n) \( \vdots \) m
* Bội của BCNN (a,b) là BC(a,b)
* Tìm BCNN:
Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện theo ba bước sau :
Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.
Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng.
Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.
Lời giải
Gọi số người của đơn vị là x ( người, x\( \in {N^*};x \le 1000\))
Vì x chia cho 15 dư 12 nên (x – 12) \( \vdots \) 15
Vì x chia cho 20 dư 12 nên (x – 12) \( \vdots \) 20
Vì x chia cho 25 dư 12 nên (x – 12) \( \vdots \) 25
Do đó, ( x – 12 ) \( \in \) ƯC(15,20,25)
Ta có:
15 = 3 . 5
20 = 22 . 5
25 = 52
BCNN(15,20,25) = 22 . 3 . 52 = 300.
( x – 12 ) \( \in \) ƯC(15,20,25) = Ư(300) = {0;300;600;900;1200;…}
Do đó, x \( \in \){ 12;312;612;912;1212;…}
Mà x \( \le \) 1000 và x chia hết cho 38 nên x = 912.
Vậy đơn vị có 912 người.
* Tìm ƯCLN
Muốn tìm ƯCLN của của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau :
Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.
Bước 2 : Chọn ra các thừa số nguyên tố chung.
Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.
* Tìm BCNN:
Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện theo ba bước sau :
Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.
Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng.
Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.
Bài 1:
Lớp 7A2 có 28 học sinh nam, 21 học sinh nữ. Hỏi có bao nhiêu cách chia lớp thành các tổ sao cho mỗi tổ có cùng số học sinh nam và số học sinh nữ?
Bài 2:
Một đơn vị bộ đội khi xếp hàng, mỗi hàng có 20 người, 25 người hoặc 30 người thì đều thừa 12 người. Nếu xếp mỗi hàng 38 người thì vừa đủ. Hỏi đơn vị có bao nhiêu người, biết rằng số người của đơn vị không quá 1000 người.
Lời giải chi tiết:
Bài 1:
Lớp 7A2 có 28 học sinh nam, 21 học sinh nữ. Hỏi có bao nhiêu cách chia lớp thành các tổ sao cho mỗi tổ có cùng số học sinh nam và số học sinh nữ?
Phương pháp
a) Bước 1: Viết tập hợp các ước của a và của b: Ư(a), Ư(b)
Bước 2: Tìm những phần tử chung của Ư(a) và Ư(b).
b) Bước 1: Viết tập hợp các bội B(a) của a và các bội B(b) của b.
Bước 2: Tìm những phần tử chung của B(a) và B(b).
Lời giải
a) Ta có:
Ư(32) = {1;2;4;8;16;32}
Ư(24) = {1;2;3;4;6;8;12;24}
Do đó, ƯC(32,24) = {1;2;4;8}
b) Ta có:
B(12) = {0;12;24;36;48;60;72;84;96;108;120;132;…}
B(15) = {0;15;30;45;60;75;90;105;120;135;…}
Do đó, BC(12,15) ={0; 60; 120;…}
Bài 2:
Một đơn vị bộ đội khi xếp hàng, mỗi hàng có 20 người, 25 người hoặc 30 người thì đều thừa 12 người. Nếu xếp mỗi hàng 38 người thì vừa đủ. Hỏi đơn vị có bao nhiêu người, biết rằng số người của đơn vị không quá 1000 người.
Phương pháp
Gọi số người của đơn vị là x ( người, x\( \in {N^*};x \le 1000\))
Nếu x chia cho m dư n thì (x – n) \( \vdots \) m
* Bội của BCNN (a,b) là BC(a,b)
* Tìm BCNN:
Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện theo ba bước sau :
Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.
Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng.
Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.
Lời giải
Gọi số người của đơn vị là x ( người, x\( \in {N^*};x \le 1000\))
Vì x chia cho 15 dư 12 nên (x – 12) \( \vdots \) 15
Vì x chia cho 20 dư 12 nên (x – 12) \( \vdots \) 20
Vì x chia cho 25 dư 12 nên (x – 12) \( \vdots \) 25
Do đó, ( x – 12 ) \( \in \) ƯC(15,20,25)
Ta có:
15 = 3 . 5
20 = 22 . 5
25 = 52
BCNN(15,20,25) = 22 . 3 . 52 = 300.
( x – 12 ) \( \in \) ƯC(15,20,25) = Ư(300) = {0;300;600;900;1200;…}
Do đó, x \( \in \){ 12;312;612;912;1212;…}
Mà x \( \le \) 1000 và x chia hết cho 38 nên x = 912.
Vậy đơn vị có 912 người.
Dạng 2 trong Chủ đề 4 Ôn hè Toán 6 tập trung vào việc ứng dụng kiến thức đã học để giải quyết các bài toán liên quan đến thực tế cuộc sống. Đây là một dạng toán quan trọng, giúp học sinh phát triển tư duy logic, khả năng phân tích và giải quyết vấn đề. Để nắm vững dạng toán này, học sinh cần hiểu rõ các khái niệm cơ bản, nắm vững các công thức và biết cách áp dụng chúng vào các tình huống cụ thể.
Để giải quyết các bài toán thực tế một cách hiệu quả, học sinh cần thực hiện các bước sau:
Bài toán: Một cửa hàng bán được 300 kg gạo trong một ngày. Biết rằng giá gạo là 25.000 đồng/kg. Hỏi cửa hàng thu được bao nhiêu tiền từ việc bán gạo trong một ngày?
Giải:
Đáp số: Cửa hàng thu được 7.500.000 đồng từ việc bán gạo trong một ngày.
Để nắm vững dạng toán này, học sinh cần luyện tập thường xuyên với các bài tập đa dạng. Giaitoan.edu.vn cung cấp một hệ thống bài tập phong phú, được phân loại theo mức độ khó, giúp học sinh tự đánh giá năng lực và cải thiện kỹ năng giải toán. Ngoài ra, học sinh có thể tham khảo các tài liệu tham khảo, sách giáo khoa và các nguồn học liệu trực tuyến khác để mở rộng kiến thức.
Dạng 2. Một số bài toán thực tế không chỉ dừng lại ở việc áp dụng các phép toán cơ bản. Trong thực tế, các bài toán có thể phức tạp hơn, đòi hỏi học sinh phải vận dụng kiến thức của nhiều môn học khác nhau, như Vật lý, Hóa học, Sinh học,… Do đó, học sinh cần không ngừng học hỏi, trau dồi kiến thức và rèn luyện kỹ năng giải quyết vấn đề để có thể đối phó với mọi tình huống.
Hy vọng với những hướng dẫn chi tiết và bài tập luyện tập phong phú, các em học sinh sẽ tự tin hơn trong việc giải quyết các bài toán thực tế và đạt kết quả tốt trong môn Toán.