Bài tập trắc nghiệm này được thiết kế để giúp học sinh lớp 6 rèn luyện kỹ năng ước lượng và làm tròn số, một trong những chủ đề quan trọng của chương trình Toán 6 Cánh diều.
Với nhiều dạng câu hỏi khác nhau, từ dễ đến khó, bài kiểm tra này sẽ giúp các em nắm vững kiến thức lý thuyết và áp dụng vào giải quyết các bài toán thực tế.
Làm tròn số $69,283$ đến chữ số thập phân thứ hai ta được
$69,28$
$69,29$
$69,30$
$69,284$
Làm tròn số $0,158$ đến chữ số thập phân thứ nhất ta được
\(0,17\)
\(0,159\)
\(0,16\)
\(0,2\)
Số $60,996$ được làm tròn đến hàng đơn vị là
\(60\)
\(61\)
\(60,9\)
\(61,9\)
Cho số \(982434\). Làm tròn số này đến hàng nghìn ta được số
\(983000\)
\(982\)
\(982000\)
\(98200\)
Cho số \(1,3765\). Làm tròn số này đến hàng phần nghìn ta được số
\(1,377\)
\(1,376\)
\(1,3776\)
\(1,38\)
Có \(21292\) người ở lễ hội ẩm thực. Hỏi lễ hội có khoảng bao nhiêu nghìn người?
\(22000\) người
\(21000\) người
\(21900\) người
\(21200\) người
Thực hiện phép tính \(\left( {4,375 + 5,2} \right) - \left( {6,452 - 3,55} \right)\) rồi làm tròn kết quả đến chữ số thập phân thứ hai, ta được kết quả là
\(6,674\)
\(6,68\)
\(6,63\)
\(6,67\)
Kết quả của phép tính \(7,5432 + 1,37 + 5,163 + 0,16\) sau khi làm tròn đến chữ số thập phân thứ nhất là:
\(14,4\)
\(14,24\)
\(14,3\)
\(14,2\)
Ước lượng kết quả của phép tính \(\dfrac{{43,7 + 18,2}}{{7,8 + 3,9}}.\)
\(5\)
\(\dfrac{{31}}{6}\)
\(\dfrac{{61}}{9}\)
\(6\)
Lời giải và đáp án
Làm tròn số $69,283$ đến chữ số thập phân thứ hai ta được
$69,28$
$69,29$
$69,30$
$69,284$
Đáp án : A
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Vì số $69,283$ có chữ số thập phân thứ ba là \(3 < 5\) nên làm tròn đến chữ số thập phân thứ hai ta được $69,283 \approx 69,28$
Làm tròn số $0,158$ đến chữ số thập phân thứ nhất ta được
\(0,17\)
\(0,159\)
\(0,16\)
\(0,2\)
Đáp án : D
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Vì số $0,158$ có chữ số thập phân thứ hai là \(5 \ge 5\) nên khi làm tròn đến chữ số thập phân thứ nhất ta được $0,158 \approx 0,2$
Số $60,996$ được làm tròn đến hàng đơn vị là
\(60\)
\(61\)
\(60,9\)
\(61,9\)
Đáp án : B
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Vì số $60,996$ có chữ số thập phân thứ nhất là \(9 > 5\) nên làm tròn đến hàng đơn vị ta được $60,996 \approx 61$
Cho số \(982434\). Làm tròn số này đến hàng nghìn ta được số
\(983000\)
\(982\)
\(982000\)
\(98200\)
Đáp án : C
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Số \(982434\) có chữ số hàng trăm là \(4 < 5\) nên làm tròn số này đến hàng nghìn ta được \(982434 \approx 982000\)
Cho số \(1,3765\). Làm tròn số này đến hàng phần nghìn ta được số
\(1,377\)
\(1,376\)
\(1,3776\)
\(1,38\)
Đáp án : A
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Số \(1,3765\) có chữ số hàng phần chục nghìn là $5 \ge 5$ nên làm tròn số này đến hàng phần nghìn ta được \(1,3765 \approx 1,377\)
Có \(21292\) người ở lễ hội ẩm thực. Hỏi lễ hội có khoảng bao nhiêu nghìn người?
\(22000\) người
\(21000\) người
\(21900\) người
\(21200\) người
Đáp án : B
Từ đề bài ta làm tròn số $21292$ đến hàng nghìn.
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Từ yêu cầu đề bài ta sẽ làm tròn số \(21292\) đến hàng nghìn.
Vì số \(21292\) có chữ số hàng trăm là \(2 < 5\) nên làm tròn số này đến hàng nghìn ta được \(21292 \approx 21000\)
Vậy lễ hội có khoảng \(21000\) người.
Thực hiện phép tính \(\left( {4,375 + 5,2} \right) - \left( {6,452 - 3,55} \right)\) rồi làm tròn kết quả đến chữ số thập phân thứ hai, ta được kết quả là
\(6,674\)
\(6,68\)
\(6,63\)
\(6,67\)
Đáp án : D
Thực hiện phép tính rồi dùng qui ước làm tròn số để làm tròn theo yêu cầu bài toán.
Ta có \(\left( {4,375 + 5,2} \right) - \left( {6,452 - 3,55} \right)\)\( = 9,575 - 2,902 = 6,673\)
Kết quả được làm tròn đến chữ số thập phân thứ hai: \(6,673 \approx 6,67.\)
Kết quả của phép tính \(7,5432 + 1,37 + 5,163 + 0,16\) sau khi làm tròn đến chữ số thập phân thứ nhất là:
\(14,4\)
\(14,24\)
\(14,3\)
\(14,2\)
Đáp án : D
Thực hiện phép tính rồi dùng qui ước làm tròn số để làm tròn theo yêu cầu bài toán
Ta có \(7,5432 + 1,37 + 5,163 + 0,16\)\( = 8,9132 + 5,163 + 0,16 = 14,0762 + 0,16 = 14,2362\)
Làm tròn kết quả \(14,2362\) đến chữ số thập phân thứ nhất: \(14,2362 \approx 14,2.\)
Ước lượng kết quả của phép tính \(\dfrac{{43,7 + 18,2}}{{7,8 + 3,9}}.\)
\(5\)
\(\dfrac{{31}}{6}\)
\(\dfrac{{61}}{9}\)
\(6\)
Đáp án : A
Để ước lượng kết quả phép tính , ta thường sử dụng qui ước làm tròn số để làm tròn chữ số ở hàng cao nhất của mỗi số trong phép tính.
Ta có \(43,7 \approx 40\); \(18,2 \approx 20\); \(7,8 \approx 8;\,3,9 \approx 4\)
Nên ta có \(\dfrac{{43,7 + 18,2}}{{7,8 + 3,9}} \approx \dfrac{{40 + 20}}{{8 + 4}}\)
Hay \(\dfrac{{43,7 + 18,2}}{{7,8 + 3,9}} \approx 5\)
Làm tròn số $69,283$ đến chữ số thập phân thứ hai ta được
$69,28$
$69,29$
$69,30$
$69,284$
Làm tròn số $0,158$ đến chữ số thập phân thứ nhất ta được
\(0,17\)
\(0,159\)
\(0,16\)
\(0,2\)
Số $60,996$ được làm tròn đến hàng đơn vị là
\(60\)
\(61\)
\(60,9\)
\(61,9\)
Cho số \(982434\). Làm tròn số này đến hàng nghìn ta được số
\(983000\)
\(982\)
\(982000\)
\(98200\)
Cho số \(1,3765\). Làm tròn số này đến hàng phần nghìn ta được số
\(1,377\)
\(1,376\)
\(1,3776\)
\(1,38\)
Có \(21292\) người ở lễ hội ẩm thực. Hỏi lễ hội có khoảng bao nhiêu nghìn người?
\(22000\) người
\(21000\) người
\(21900\) người
\(21200\) người
Thực hiện phép tính \(\left( {4,375 + 5,2} \right) - \left( {6,452 - 3,55} \right)\) rồi làm tròn kết quả đến chữ số thập phân thứ hai, ta được kết quả là
\(6,674\)
\(6,68\)
\(6,63\)
\(6,67\)
Kết quả của phép tính \(7,5432 + 1,37 + 5,163 + 0,16\) sau khi làm tròn đến chữ số thập phân thứ nhất là:
\(14,4\)
\(14,24\)
\(14,3\)
\(14,2\)
Ước lượng kết quả của phép tính \(\dfrac{{43,7 + 18,2}}{{7,8 + 3,9}}.\)
\(5\)
\(\dfrac{{31}}{6}\)
\(\dfrac{{61}}{9}\)
\(6\)
Làm tròn số $69,283$ đến chữ số thập phân thứ hai ta được
$69,28$
$69,29$
$69,30$
$69,284$
Đáp án : A
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Vì số $69,283$ có chữ số thập phân thứ ba là \(3 < 5\) nên làm tròn đến chữ số thập phân thứ hai ta được $69,283 \approx 69,28$
Làm tròn số $0,158$ đến chữ số thập phân thứ nhất ta được
\(0,17\)
\(0,159\)
\(0,16\)
\(0,2\)
Đáp án : D
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Vì số $0,158$ có chữ số thập phân thứ hai là \(5 \ge 5\) nên khi làm tròn đến chữ số thập phân thứ nhất ta được $0,158 \approx 0,2$
Số $60,996$ được làm tròn đến hàng đơn vị là
\(60\)
\(61\)
\(60,9\)
\(61,9\)
Đáp án : B
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Vì số $60,996$ có chữ số thập phân thứ nhất là \(9 > 5\) nên làm tròn đến hàng đơn vị ta được $60,996 \approx 61$
Cho số \(982434\). Làm tròn số này đến hàng nghìn ta được số
\(983000\)
\(982\)
\(982000\)
\(98200\)
Đáp án : C
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Số \(982434\) có chữ số hàng trăm là \(4 < 5\) nên làm tròn số này đến hàng nghìn ta được \(982434 \approx 982000\)
Cho số \(1,3765\). Làm tròn số này đến hàng phần nghìn ta được số
\(1,377\)
\(1,376\)
\(1,3776\)
\(1,38\)
Đáp án : A
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Số \(1,3765\) có chữ số hàng phần chục nghìn là $5 \ge 5$ nên làm tròn số này đến hàng phần nghìn ta được \(1,3765 \approx 1,377\)
Có \(21292\) người ở lễ hội ẩm thực. Hỏi lễ hội có khoảng bao nhiêu nghìn người?
\(22000\) người
\(21000\) người
\(21900\) người
\(21200\) người
Đáp án : B
Từ đề bài ta làm tròn số $21292$ đến hàng nghìn.
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Từ yêu cầu đề bài ta sẽ làm tròn số \(21292\) đến hàng nghìn.
Vì số \(21292\) có chữ số hàng trăm là \(2 < 5\) nên làm tròn số này đến hàng nghìn ta được \(21292 \approx 21000\)
Vậy lễ hội có khoảng \(21000\) người.
Thực hiện phép tính \(\left( {4,375 + 5,2} \right) - \left( {6,452 - 3,55} \right)\) rồi làm tròn kết quả đến chữ số thập phân thứ hai, ta được kết quả là
\(6,674\)
\(6,68\)
\(6,63\)
\(6,67\)
Đáp án : D
Thực hiện phép tính rồi dùng qui ước làm tròn số để làm tròn theo yêu cầu bài toán.
Ta có \(\left( {4,375 + 5,2} \right) - \left( {6,452 - 3,55} \right)\)\( = 9,575 - 2,902 = 6,673\)
Kết quả được làm tròn đến chữ số thập phân thứ hai: \(6,673 \approx 6,67.\)
Kết quả của phép tính \(7,5432 + 1,37 + 5,163 + 0,16\) sau khi làm tròn đến chữ số thập phân thứ nhất là:
\(14,4\)
\(14,24\)
\(14,3\)
\(14,2\)
Đáp án : D
Thực hiện phép tính rồi dùng qui ước làm tròn số để làm tròn theo yêu cầu bài toán
Ta có \(7,5432 + 1,37 + 5,163 + 0,16\)\( = 8,9132 + 5,163 + 0,16 = 14,0762 + 0,16 = 14,2362\)
Làm tròn kết quả \(14,2362\) đến chữ số thập phân thứ nhất: \(14,2362 \approx 14,2.\)
Ước lượng kết quả của phép tính \(\dfrac{{43,7 + 18,2}}{{7,8 + 3,9}}.\)
\(5\)
\(\dfrac{{31}}{6}\)
\(\dfrac{{61}}{9}\)
\(6\)
Đáp án : A
Để ước lượng kết quả phép tính , ta thường sử dụng qui ước làm tròn số để làm tròn chữ số ở hàng cao nhất của mỗi số trong phép tính.
Ta có \(43,7 \approx 40\); \(18,2 \approx 20\); \(7,8 \approx 8;\,3,9 \approx 4\)
Nên ta có \(\dfrac{{43,7 + 18,2}}{{7,8 + 3,9}} \approx \dfrac{{40 + 20}}{{8 + 4}}\)
Hay \(\dfrac{{43,7 + 18,2}}{{7,8 + 3,9}} \approx 5\)
Bài 8 trong chương trình Toán 6 Cánh diều tập trung vào việc giúp học sinh hiểu và vận dụng các khái niệm về ước lượng và làm tròn số. Đây là những kỹ năng cơ bản, cần thiết cho việc giải quyết các bài toán thực tế và phát triển tư duy toán học.
Ước lượng là việc tìm một giá trị gần đúng cho một đại lượng nào đó khi chưa có đủ thông tin chính xác. Trong toán học, ước lượng thường được sử dụng để kiểm tra tính hợp lý của kết quả tính toán hoặc để đơn giản hóa các bài toán phức tạp.
Làm tròn số là việc thay thế một số bằng một số gần đúng hơn, có ít chữ số hơn. Việc làm tròn số giúp cho việc tính toán trở nên dễ dàng hơn và kết quả cũng dễ nhìn hơn.
Ví dụ 1: Làm tròn số 3,14159 đến hàng phần trăm.
Chữ số hàng phần trăm là 1. Chữ số liền kề là 4 (nhỏ hơn 5). Vậy ta giữ nguyên chữ số 1 và bỏ các chữ số phía sau. Kết quả là 3,14.
Ví dụ 2: Làm tròn số 7,852 đến hàng đơn vị.
Chữ số hàng đơn vị là 7. Chữ số liền kề là 8 (lớn hơn hoặc bằng 5). Vậy ta tăng chữ số 7 lên 1 đơn vị và bỏ các chữ số phía sau. Kết quả là 8.
Để nắm vững kiến thức và kỹ năng về ước lượng và làm tròn số, các em nên luyện tập thêm nhiều bài tập khác nhau. Các em có thể tìm thấy các bài tập này trong sách giáo khoa, sách bài tập hoặc trên các trang web học toán online như giaitoan.edu.vn.
Trắc nghiệm Bài 8: Ước lượng và làm tròn số Toán 6 Cánh diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng toán học cơ bản. Bằng cách nắm vững các khái niệm và quy tắc, cùng với việc luyện tập thường xuyên, các em sẽ tự tin hơn trong việc giải quyết các bài toán và đạt kết quả tốt trong học tập.