Logo Header
  1. Môn Toán
  2. Trắc nghiệm Tính chất cơ bản của phân số Toán 6 Cánh diều

Trắc nghiệm Tính chất cơ bản của phân số Toán 6 Cánh diều

Trắc nghiệm Tính chất cơ bản của phân số Toán 6 Cánh diều

Chào mừng bạn đến với bài tập trắc nghiệm về Tính chất cơ bản của phân số dành cho học sinh lớp 6 chương trình Cánh diều.

Bài tập này được thiết kế để giúp các em ôn luyện và củng cố kiến thức đã học, đồng thời rèn luyện kỹ năng giải bài tập một cách nhanh chóng và chính xác.

Giaitoan.edu.vn hy vọng sẽ là người bạn đồng hành hữu ích trên con đường chinh phục môn Toán của các em!

Đề bài

    Câu 1 :

    Chọn câu sai. Với \(a;b;m \in Z;b;m \ne 0\) thì

    • A.

      \(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\,\) 

    • B.

      \(\dfrac{a}{b} = \dfrac{{a + m}}{{b + m}}\,\)

    • C.

      \(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\,\)

    • D.

      \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n }}\) với \(n\) là ước chung của \(a;b.\)

    Câu 2 :

    Phân số \(\dfrac{a}{b}\) là phân số tối giản khi ƯC\(\left( {a;b} \right)\) bằng

    • A.

      $\left\{ {1; - 1} \right\}$

    • B.

      \(\left\{ 2 \right\}\)

    • C.

      \(\left\{ {1;2} \right\}\)

    • D.

      \(\left\{ {1;2;3} \right\}\)

    Câu 3 :

    Tìm số \(a;b\) biết \(\dfrac{{24}}{{56}} = \dfrac{a}{7} = \dfrac{{ - 111}}{b}\)

    • A.

      \(a = 3,b = - 259\)

    • B.

      \(a = - 3,b = - 259\)

    • C.

      \(a = 3,b = 259\)

    • D.

      \(a = - 3,b = 259\)

    Câu 4 :

    Phân số nào dưới đây là phân số tối giản?

    • A.

      \(\dfrac{{ - 2}}{4}\) 

    • B.

      \(\dfrac{{ - 15}}{{ - 96}}\)

    • C.

      \(\dfrac{{13}}{{27}}\)

    • D.

      \(\dfrac{{ - 29}}{{58}}\)

    Câu 5 :

    Rút gọn phân số \(\dfrac{{600}}{{800}}\) về dạng phân số tối giản ta được:

    • A.

      \(\dfrac{1}{2}\)

    • B.

      \(\dfrac{6}{8}\)

    • C.

      \(\dfrac{3}{4}\)

    • D.

      \(\dfrac{{ - 3}}{4}\)

    Câu 6 :

    Rút gọn phân số \(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}}\) về dạng phân số tối giản ta được phân số có tử số là

    • A.

      \(\dfrac{4}{9}\) 

    • B.

      \(31\)

    • C.

      \( - 1\) 

    • D.

      \(4\)

    Câu 7 :

    Tìm \(x\) biết \(\dfrac{{2323}}{{3232}} = \dfrac{x}{{32}}.\)

    • A.

      \(101\) 

    • B.

      \(32\)

    • C.

      \( - 23\)

    • D.

      \(23\)

    Câu 8 :

    Rút gọn phân số \(\dfrac{{4.8}}{{64.( - 7)}}\) ta được phân số tối giản là:

    • A.

      \(\dfrac{{ - 1}}{7}\) 

    • B.

      \(\dfrac{{ - 1}}{{14}}\)

    • C.

      \(\dfrac{4}{{ - 56}}\)

    • D.

      \(\dfrac{{ - 1}}{{70}}\)

    Câu 9 :

    Rút gọn biểu thức \(A = \dfrac{{3.\left( { - 4} \right).60 - 60}}{{50.20}}\) ta được

    • A.

      \(\dfrac{{ - 13}}{{25}}\)

    • B.

      \(\dfrac{{ - 18}}{{25}}\)

    • C.

      \(\dfrac{{ - 6}}{{25}}\)

    • D.

      \(\dfrac{{ - 39}}{{50}}\)

    Câu 10 :

    Phân số nào sau đây là kết quả của biểu thức \(\dfrac{{2.9.52}}{{22.\left( { - 72} \right)}}\) sau khi rút gọn đến tối giản?

    • A.

      \(\dfrac{{ - 13}}{{22}}\)

    • B.

      \(\dfrac{{13}}{{22}}\)

    • C.

      \(\dfrac{{ - 13}}{{18}}\)

    • D.

      \(\dfrac{{ - 117}}{{198}}\)

    Câu 11 :

    Rút gọn phân số \(\dfrac{{ - 12a}}{{24}}\) , \(a \in \mathbb{Z}\) ta được:

    • A.

      \(\dfrac{a}{2}\)

    • B.

      \(\dfrac{1}{2}\)

    • C.

      \(\dfrac{{ - 1}}{2}\)

    • D.

      \(\dfrac{{ - a}}{2}\)

    Câu 12 :

    Phân số \(\dfrac{{ - m}}{{ - n}};\,\,n,m \in \mathbb{Z};n \ne 0\) bằng phân số nào sau đây

    • A.

      \(\dfrac{m}{n}\)

    • B.

      \(\dfrac{n}{m}\)

    • C.

      \(\dfrac{{ - n}}{m}\)

    • D.

      \(\dfrac{m}{{ - n}}\)

    Câu 13 :

    Quy đồng mẫu số hai phân số \(\dfrac{2}{7};\dfrac{5}{{ - 8}}\)được hai phân số lần lượt là:

    • A.

      \(\dfrac{{16}}{{56}};\dfrac{{ - 35}}{{56}}\)

    • B.

      \(\dfrac{{16}}{{56}};\dfrac{{35}}{{56}}\)

    • C.

      \(\dfrac{{16}}{{56}};\dfrac{{35}}{{ - 56}}\)

    • D.

      \(\dfrac{{ - 16}}{{56}};\dfrac{{ - 35}}{{56}}\)

    Câu 14 :

    Mẫu số chung của các phân số \(\dfrac{2}{5};\dfrac{{23}}{{18}};\dfrac{5}{{75}}\) là

    • A.

      $180$ 

    • B.

      \(500\)

    • C.

      \(750\) 

    • D.

      \(450\)

    Câu 15 :

    Mẫu chung nguyên dương nhỏ nhất của các phân số \(\dfrac{{19}}{{{3^2}.7.11}};\dfrac{{23}}{{{3^3}{{.7}^2}.19}}\) là:

    • A.

      \({3^3}{.7^2}\)

    • B.

      \({3^3}{.7^3}.11.19\)

    • C.

      \({3^2}{.7^2}.11.19\)

    • D.

      \({3^3}{.7^2}.11.19\)

    Lời giải và đáp án

    Câu 1 :

    Chọn câu sai. Với \(a;b;m \in Z;b;m \ne 0\) thì

    • A.

      \(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\,\) 

    • B.

      \(\dfrac{a}{b} = \dfrac{{a + m}}{{b + m}}\,\)

    • C.

      \(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\,\)

    • D.

      \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n }}\) với \(n\) là ước chung của \(a;b.\)

    Đáp án : B

    Phương pháp giải :

    Áp dụng tính chất cơ bản của phân số

    \(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\).

    Lời giải chi tiết :

    Dựa vào các tính chất cơ bản của phân số:

    \(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\) và \(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\) thì các đáp án A, C, D đều đúng.

    Đáp án B sai.

    Câu 2 :

    Phân số \(\dfrac{a}{b}\) là phân số tối giản khi ƯC\(\left( {a;b} \right)\) bằng

    • A.

      $\left\{ {1; - 1} \right\}$

    • B.

      \(\left\{ 2 \right\}\)

    • C.

      \(\left\{ {1;2} \right\}\)

    • D.

      \(\left\{ {1;2;3} \right\}\)

    Đáp án : A

    Lời giải chi tiết :

    Phân số tối giản (hay phân số không rút gọn được nữa) là phân số mà cả tử và mẫu chỉ có ước chung là $1$ và $ - 1.$

    Câu 3 :

    Tìm số \(a;b\) biết \(\dfrac{{24}}{{56}} = \dfrac{a}{7} = \dfrac{{ - 111}}{b}\)

    • A.

      \(a = 3,b = - 259\)

    • B.

      \(a = - 3,b = - 259\)

    • C.

      \(a = 3,b = 259\)

    • D.

      \(a = - 3,b = 259\)

    Đáp án : A

    Phương pháp giải :

    Sử dụng tính chất của phân số:

    \(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\)

    Lời giải chi tiết :

    Ta có:

    \(\dfrac{{24}}{{56}} = \dfrac{{24:8}}{{56:8}} = \dfrac{3}{7} = \dfrac{a}{7} \Rightarrow a = 3\)

    \(\dfrac{3}{7} = \dfrac{{3.\left( { - 37} \right)}}{{7.\left( { - 37} \right)}} = \dfrac{{ - 111}}{{ - 259}} = \dfrac{{ - 111}}{b} \Rightarrow b = - 259\)

    Vậy \(a = 3,b = - 259\)

    Câu 4 :

    Phân số nào dưới đây là phân số tối giản?

    • A.

      \(\dfrac{{ - 2}}{4}\) 

    • B.

      \(\dfrac{{ - 15}}{{ - 96}}\)

    • C.

      \(\dfrac{{13}}{{27}}\)

    • D.

      \(\dfrac{{ - 29}}{{58}}\)

    Đáp án : C

    Phương pháp giải :

    Định nghĩa phân số tối giản:

    Phân số tối giản (hay phân số không rút gọn được nữa) là phân số mà cả tử và mẫu chỉ có ước chung là $1$ và $ - 1.$

    Do đó ta chỉ cần tìm \(ƯCLN\) của giá trị tuyệt đối của tử và mẫu phân số, nếu \(ƯCLN\) đó là \(1\) thì phân số đã cho tối giản.

    Lời giải chi tiết :

    Đáp án A: \(ƯCLN\left( {2;4} \right) = 2 \ne 1\) nên loại.

    Đáp án B: \(ƯCLN\left( {15;96} \right) = 3 \ne 1\) nên loại.

    Đáp án C: \(ƯCLN\left( {13;27} \right) = 1\) nên C đúng.

    Đáp án D: \(ƯCLN\left( {29;58} \right) = 29 \ne 1\) nên D sai.

    Câu 5 :

    Rút gọn phân số \(\dfrac{{600}}{{800}}\) về dạng phân số tối giản ta được:

    • A.

      \(\dfrac{1}{2}\)

    • B.

      \(\dfrac{6}{8}\)

    • C.

      \(\dfrac{3}{4}\)

    • D.

      \(\dfrac{{ - 3}}{4}\)

    Đáp án : C

    Phương pháp giải :

    - Chia cả tử và mẫu của phân số $\dfrac{a}{b}$ cho ƯCLN của $\left| a \right|$ và $\left| b \right|$ để rút gọn phân số tối giản.

    Lời giải chi tiết :

    Ta có: \(ƯCLN\left( {600,800} \right) = 200\) nên:

    \(\dfrac{{600}}{{800}} = \dfrac{{600:200}}{{800:200}} = \dfrac{3}{4}\)

    Câu 6 :

    Rút gọn phân số \(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}}\) về dạng phân số tối giản ta được phân số có tử số là

    • A.

      \(\dfrac{4}{9}\) 

    • B.

      \(31\)

    • C.

      \( - 1\) 

    • D.

      \(4\)

    Đáp án : D

    Phương pháp giải :

    - Tính tử và mẫu của phân số đã cho và rút gọn phân số đó.

    Lời giải chi tiết :

    Ta có:

    \(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}} = \dfrac{{ - 6 + 30}}{{54}}\) \( = \dfrac{{24}}{{54}} = \dfrac{{24:6}}{{54:6}} = \dfrac{4}{9}\)

    Vậy tử số của phân số cần tìm là \(4\)

    Câu 7 :

    Tìm \(x\) biết \(\dfrac{{2323}}{{3232}} = \dfrac{x}{{32}}.\)

    • A.

      \(101\) 

    • B.

      \(32\)

    • C.

      \( - 23\)

    • D.

      \(23\)

    Đáp án : D

    Phương pháp giải :

    Rút gọn phân số đã cho: Chia cả tử và mẫu của phân số $\dfrac{a}{b}$ cho ƯCLN của $\left| a \right|$ và $\left| b \right|$ để rút gọn phân số tối giản.

    Lời giải chi tiết :

    Ta có: \(\dfrac{{2323}}{{3232}} = \dfrac{{2323:101}}{{3232:101}}\)\( = \dfrac{{23}}{{32}} = \dfrac{x}{{32}} \Rightarrow x = 23\)

    Câu 8 :

    Rút gọn phân số \(\dfrac{{4.8}}{{64.( - 7)}}\) ta được phân số tối giản là:

    • A.

      \(\dfrac{{ - 1}}{7}\) 

    • B.

      \(\dfrac{{ - 1}}{{14}}\)

    • C.

      \(\dfrac{4}{{ - 56}}\)

    • D.

      \(\dfrac{{ - 1}}{{70}}\)

    Đáp án : B

    Phương pháp giải :

    Tách các thừa số ở tử và mẫu thành tích các thừa số nhỏ hơn rồi chia cả tử và mẫu cho các thừa số chung.

    Lời giải chi tiết :

    Ta có:

    \(\dfrac{{4.8}}{{64.\left( { - 7} \right)}} = \dfrac{{4.8}}{{2.4.8.\left( { - 7} \right)}} = \dfrac{1}{{2.\left( { - 7} \right)}} = \dfrac{{ - 1}}{{14}}\)

    Câu 9 :

    Rút gọn biểu thức \(A = \dfrac{{3.\left( { - 4} \right).60 - 60}}{{50.20}}\) ta được

    • A.

      \(\dfrac{{ - 13}}{{25}}\)

    • B.

      \(\dfrac{{ - 18}}{{25}}\)

    • C.

      \(\dfrac{{ - 6}}{{25}}\)

    • D.

      \(\dfrac{{ - 39}}{{50}}\)

    Đáp án : D

    Phương pháp giải :

    - Phân tích tử của \(A\) thành các nhân tử.

    - Rút gọn biểu thức bằng cách chia cả tử và mẫu của \(A\) cho nhân tử chung.

    Lời giải chi tiết :

    Ta có:

    \(A = \dfrac{{3.\left( { - 4} \right).60 - 60}}{{50.20}}\)\( = \dfrac{{\left[ {3.\left( { - 4} \right) - 1} \right].60}}{{50.20}}\)\( = \dfrac{{ - 13.60}}{{50.20}} = \dfrac{{ - 13.3}}{{50}} = \dfrac{{ - 39}}{{50}}\)

    Câu 10 :

    Phân số nào sau đây là kết quả của biểu thức \(\dfrac{{2.9.52}}{{22.\left( { - 72} \right)}}\) sau khi rút gọn đến tối giản?

    • A.

      \(\dfrac{{ - 13}}{{22}}\)

    • B.

      \(\dfrac{{13}}{{22}}\)

    • C.

      \(\dfrac{{ - 13}}{{18}}\)

    • D.

      \(\dfrac{{ - 117}}{{198}}\)

    Đáp án : A

    Phương pháp giải :

    - Phân tích các thừa số trong tích ở cả tử và mẫu thành tích các thừa số nguyên tố.

    - Chia cả tử và mẫu của biểu thức cho từng lũy thừa chung ở tử và mẫu mà có số mũ nhỏ hơn.

    Lời giải chi tiết :

    \(\dfrac{{2.9.52}}{{22.\left( { - 72} \right)}} = \dfrac{{{{2.3}^2}{{.2}^2}.13}}{{2.11.\left( { - {2^3}{{.3}^2}} \right)}}\)\( = \dfrac{{{2^3}{{.3}^2}.13}}{{ - {2^4}{{.3}^2}.11}} = \dfrac{{13}}{{ - 2.11}} = \dfrac{{ - 13}}{{22}}\)

    Câu 11 :

    Rút gọn phân số \(\dfrac{{ - 12a}}{{24}}\) , \(a \in \mathbb{Z}\) ta được:

    • A.

      \(\dfrac{a}{2}\)

    • B.

      \(\dfrac{1}{2}\)

    • C.

      \(\dfrac{{ - 1}}{2}\)

    • D.

      \(\dfrac{{ - a}}{2}\)

    Đáp án : D

    Lời giải chi tiết :

    Ta có: \(\dfrac{{ - 12a}}{{24}} = \dfrac{{\left( { - 1} \right).12.a}}{{12.2}} = \dfrac{{\left( { - 1} \right).a}}{2} = \dfrac{{ - a}}{2}\).

    Câu 12 :

    Phân số \(\dfrac{{ - m}}{{ - n}};\,\,n,m \in \mathbb{Z};n \ne 0\) bằng phân số nào sau đây

    • A.

      \(\dfrac{m}{n}\)

    • B.

      \(\dfrac{n}{m}\)

    • C.

      \(\dfrac{{ - n}}{m}\)

    • D.

      \(\dfrac{m}{{ - n}}\)

    Đáp án : A

    Lời giải chi tiết :

    Ta có: \(\dfrac{{ - m}}{{ - n}} = \dfrac{m}{n}\)

    Câu 13 :

    Quy đồng mẫu số hai phân số \(\dfrac{2}{7};\dfrac{5}{{ - 8}}\)được hai phân số lần lượt là:

    • A.

      \(\dfrac{{16}}{{56}};\dfrac{{ - 35}}{{56}}\)

    • B.

      \(\dfrac{{16}}{{56}};\dfrac{{35}}{{56}}\)

    • C.

      \(\dfrac{{16}}{{56}};\dfrac{{35}}{{ - 56}}\)

    • D.

      \(\dfrac{{ - 16}}{{56}};\dfrac{{ - 35}}{{56}}\)

    Đáp án : A

    Phương pháp giải :

     Đưa các phân số về có mẫu dương hết rồi quy đồng mẫu số các phân số.

    +) Tìm $MSC$ (thường là $BCNN$ của các mẫu).

    +) Tìm thừa số phụ $ = {\rm{ }}MSC{\rm{ }}:{\rm{ }}MS$

    +) Nhân cả tử và mẫu với thừa số phụ tương ứng

    Lời giải chi tiết :

    Ta quy đồng \(\dfrac{2}{7}\) và \(\dfrac{{ - 5}}{8}\) (\(MSC:56\))

    \(\dfrac{2}{7} = \dfrac{{2.8}}{{7.8}} = \dfrac{{16}}{{56}};\) \(\dfrac{{ - 5}}{8} = \dfrac{{ - 5.7}}{{8.7}} = \dfrac{{ - 35}}{{56}}\)

    Câu 14 :

    Mẫu số chung của các phân số \(\dfrac{2}{5};\dfrac{{23}}{{18}};\dfrac{5}{{75}}\) là

    • A.

      $180$ 

    • B.

      \(500\)

    • C.

      \(750\) 

    • D.

      \(450\)

    Đáp án : D

    Phương pháp giải :

    - Phân tích các mẫu số thành tích các thừa số nguyên tố.

    - \(MSC\) được chọn thường là \(BCNN\) của các mẫu số.

    Lời giải chi tiết :

    Ta có:

    \(\begin{array}{l}5 = 5.1\\18 = {2.3^2}\\75 = {3.5^2}\end{array}\)

    \( \Rightarrow BCNN\left( {5;18;75} \right) = {2.3^2}{.5^2} = 450\)

    Vậy ta có thể chọn một mẫu chung là \(450\)

    Câu 15 :

    Mẫu chung nguyên dương nhỏ nhất của các phân số \(\dfrac{{19}}{{{3^2}.7.11}};\dfrac{{23}}{{{3^3}{{.7}^2}.19}}\) là:

    • A.

      \({3^3}{.7^2}\)

    • B.

      \({3^3}{.7^3}.11.19\)

    • C.

      \({3^2}{.7^2}.11.19\)

    • D.

      \({3^3}{.7^2}.11.19\)

    Đáp án : D

    Phương pháp giải :

    Mẫu chung nguyên dương nhỏ nhất của các phân số là \(BCNN\) của các mẫu.

    Lời giải chi tiết :

    \({{{3^2}.7.11}}\) và \({{{3^3}{{.7}^2}.19}}\) có thừa số nguyên tố chung là 3, 7, thừa số nguyên tố riêng là 11, 19.

    Số mũ lớn nhất của 3 là 3, số mũ lớn nhất của 7 là 2.

    Do đó BCNN(\({{{3^2}.7.11}};{{{3^3}{{.7}^2}.19}}\)) = \({3^3}{.7^2}.11.19\)

    Vậy mẫu chung nguyên dương nhỏ nhất của hai mẫu đã cho là \({3^3}{.7^2}.11.19\)

    Lời giải và đáp án

      Câu 1 :

      Chọn câu sai. Với \(a;b;m \in Z;b;m \ne 0\) thì

      • A.

        \(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\,\) 

      • B.

        \(\dfrac{a}{b} = \dfrac{{a + m}}{{b + m}}\,\)

      • C.

        \(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\,\)

      • D.

        \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n }}\) với \(n\) là ước chung của \(a;b.\)

      Câu 2 :

      Phân số \(\dfrac{a}{b}\) là phân số tối giản khi ƯC\(\left( {a;b} \right)\) bằng

      • A.

        $\left\{ {1; - 1} \right\}$

      • B.

        \(\left\{ 2 \right\}\)

      • C.

        \(\left\{ {1;2} \right\}\)

      • D.

        \(\left\{ {1;2;3} \right\}\)

      Câu 3 :

      Tìm số \(a;b\) biết \(\dfrac{{24}}{{56}} = \dfrac{a}{7} = \dfrac{{ - 111}}{b}\)

      • A.

        \(a = 3,b = - 259\)

      • B.

        \(a = - 3,b = - 259\)

      • C.

        \(a = 3,b = 259\)

      • D.

        \(a = - 3,b = 259\)

      Câu 4 :

      Phân số nào dưới đây là phân số tối giản?

      • A.

        \(\dfrac{{ - 2}}{4}\) 

      • B.

        \(\dfrac{{ - 15}}{{ - 96}}\)

      • C.

        \(\dfrac{{13}}{{27}}\)

      • D.

        \(\dfrac{{ - 29}}{{58}}\)

      Câu 5 :

      Rút gọn phân số \(\dfrac{{600}}{{800}}\) về dạng phân số tối giản ta được:

      • A.

        \(\dfrac{1}{2}\)

      • B.

        \(\dfrac{6}{8}\)

      • C.

        \(\dfrac{3}{4}\)

      • D.

        \(\dfrac{{ - 3}}{4}\)

      Câu 6 :

      Rút gọn phân số \(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}}\) về dạng phân số tối giản ta được phân số có tử số là

      • A.

        \(\dfrac{4}{9}\) 

      • B.

        \(31\)

      • C.

        \( - 1\) 

      • D.

        \(4\)

      Câu 7 :

      Tìm \(x\) biết \(\dfrac{{2323}}{{3232}} = \dfrac{x}{{32}}.\)

      • A.

        \(101\) 

      • B.

        \(32\)

      • C.

        \( - 23\)

      • D.

        \(23\)

      Câu 8 :

      Rút gọn phân số \(\dfrac{{4.8}}{{64.( - 7)}}\) ta được phân số tối giản là:

      • A.

        \(\dfrac{{ - 1}}{7}\) 

      • B.

        \(\dfrac{{ - 1}}{{14}}\)

      • C.

        \(\dfrac{4}{{ - 56}}\)

      • D.

        \(\dfrac{{ - 1}}{{70}}\)

      Câu 9 :

      Rút gọn biểu thức \(A = \dfrac{{3.\left( { - 4} \right).60 - 60}}{{50.20}}\) ta được

      • A.

        \(\dfrac{{ - 13}}{{25}}\)

      • B.

        \(\dfrac{{ - 18}}{{25}}\)

      • C.

        \(\dfrac{{ - 6}}{{25}}\)

      • D.

        \(\dfrac{{ - 39}}{{50}}\)

      Câu 10 :

      Phân số nào sau đây là kết quả của biểu thức \(\dfrac{{2.9.52}}{{22.\left( { - 72} \right)}}\) sau khi rút gọn đến tối giản?

      • A.

        \(\dfrac{{ - 13}}{{22}}\)

      • B.

        \(\dfrac{{13}}{{22}}\)

      • C.

        \(\dfrac{{ - 13}}{{18}}\)

      • D.

        \(\dfrac{{ - 117}}{{198}}\)

      Câu 11 :

      Rút gọn phân số \(\dfrac{{ - 12a}}{{24}}\) , \(a \in \mathbb{Z}\) ta được:

      • A.

        \(\dfrac{a}{2}\)

      • B.

        \(\dfrac{1}{2}\)

      • C.

        \(\dfrac{{ - 1}}{2}\)

      • D.

        \(\dfrac{{ - a}}{2}\)

      Câu 12 :

      Phân số \(\dfrac{{ - m}}{{ - n}};\,\,n,m \in \mathbb{Z};n \ne 0\) bằng phân số nào sau đây

      • A.

        \(\dfrac{m}{n}\)

      • B.

        \(\dfrac{n}{m}\)

      • C.

        \(\dfrac{{ - n}}{m}\)

      • D.

        \(\dfrac{m}{{ - n}}\)

      Câu 13 :

      Quy đồng mẫu số hai phân số \(\dfrac{2}{7};\dfrac{5}{{ - 8}}\)được hai phân số lần lượt là:

      • A.

        \(\dfrac{{16}}{{56}};\dfrac{{ - 35}}{{56}}\)

      • B.

        \(\dfrac{{16}}{{56}};\dfrac{{35}}{{56}}\)

      • C.

        \(\dfrac{{16}}{{56}};\dfrac{{35}}{{ - 56}}\)

      • D.

        \(\dfrac{{ - 16}}{{56}};\dfrac{{ - 35}}{{56}}\)

      Câu 14 :

      Mẫu số chung của các phân số \(\dfrac{2}{5};\dfrac{{23}}{{18}};\dfrac{5}{{75}}\) là

      • A.

        $180$ 

      • B.

        \(500\)

      • C.

        \(750\) 

      • D.

        \(450\)

      Câu 15 :

      Mẫu chung nguyên dương nhỏ nhất của các phân số \(\dfrac{{19}}{{{3^2}.7.11}};\dfrac{{23}}{{{3^3}{{.7}^2}.19}}\) là:

      • A.

        \({3^3}{.7^2}\)

      • B.

        \({3^3}{.7^3}.11.19\)

      • C.

        \({3^2}{.7^2}.11.19\)

      • D.

        \({3^3}{.7^2}.11.19\)

      Câu 1 :

      Chọn câu sai. Với \(a;b;m \in Z;b;m \ne 0\) thì

      • A.

        \(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\,\) 

      • B.

        \(\dfrac{a}{b} = \dfrac{{a + m}}{{b + m}}\,\)

      • C.

        \(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\,\)

      • D.

        \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n }}\) với \(n\) là ước chung của \(a;b.\)

      Đáp án : B

      Phương pháp giải :

      Áp dụng tính chất cơ bản của phân số

      \(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\).

      Lời giải chi tiết :

      Dựa vào các tính chất cơ bản của phân số:

      \(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\) và \(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\) thì các đáp án A, C, D đều đúng.

      Đáp án B sai.

      Câu 2 :

      Phân số \(\dfrac{a}{b}\) là phân số tối giản khi ƯC\(\left( {a;b} \right)\) bằng

      • A.

        $\left\{ {1; - 1} \right\}$

      • B.

        \(\left\{ 2 \right\}\)

      • C.

        \(\left\{ {1;2} \right\}\)

      • D.

        \(\left\{ {1;2;3} \right\}\)

      Đáp án : A

      Lời giải chi tiết :

      Phân số tối giản (hay phân số không rút gọn được nữa) là phân số mà cả tử và mẫu chỉ có ước chung là $1$ và $ - 1.$

      Câu 3 :

      Tìm số \(a;b\) biết \(\dfrac{{24}}{{56}} = \dfrac{a}{7} = \dfrac{{ - 111}}{b}\)

      • A.

        \(a = 3,b = - 259\)

      • B.

        \(a = - 3,b = - 259\)

      • C.

        \(a = 3,b = 259\)

      • D.

        \(a = - 3,b = 259\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng tính chất của phân số:

      \(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\)

      Lời giải chi tiết :

      Ta có:

      \(\dfrac{{24}}{{56}} = \dfrac{{24:8}}{{56:8}} = \dfrac{3}{7} = \dfrac{a}{7} \Rightarrow a = 3\)

      \(\dfrac{3}{7} = \dfrac{{3.\left( { - 37} \right)}}{{7.\left( { - 37} \right)}} = \dfrac{{ - 111}}{{ - 259}} = \dfrac{{ - 111}}{b} \Rightarrow b = - 259\)

      Vậy \(a = 3,b = - 259\)

      Câu 4 :

      Phân số nào dưới đây là phân số tối giản?

      • A.

        \(\dfrac{{ - 2}}{4}\) 

      • B.

        \(\dfrac{{ - 15}}{{ - 96}}\)

      • C.

        \(\dfrac{{13}}{{27}}\)

      • D.

        \(\dfrac{{ - 29}}{{58}}\)

      Đáp án : C

      Phương pháp giải :

      Định nghĩa phân số tối giản:

      Phân số tối giản (hay phân số không rút gọn được nữa) là phân số mà cả tử và mẫu chỉ có ước chung là $1$ và $ - 1.$

      Do đó ta chỉ cần tìm \(ƯCLN\) của giá trị tuyệt đối của tử và mẫu phân số, nếu \(ƯCLN\) đó là \(1\) thì phân số đã cho tối giản.

      Lời giải chi tiết :

      Đáp án A: \(ƯCLN\left( {2;4} \right) = 2 \ne 1\) nên loại.

      Đáp án B: \(ƯCLN\left( {15;96} \right) = 3 \ne 1\) nên loại.

      Đáp án C: \(ƯCLN\left( {13;27} \right) = 1\) nên C đúng.

      Đáp án D: \(ƯCLN\left( {29;58} \right) = 29 \ne 1\) nên D sai.

      Câu 5 :

      Rút gọn phân số \(\dfrac{{600}}{{800}}\) về dạng phân số tối giản ta được:

      • A.

        \(\dfrac{1}{2}\)

      • B.

        \(\dfrac{6}{8}\)

      • C.

        \(\dfrac{3}{4}\)

      • D.

        \(\dfrac{{ - 3}}{4}\)

      Đáp án : C

      Phương pháp giải :

      - Chia cả tử và mẫu của phân số $\dfrac{a}{b}$ cho ƯCLN của $\left| a \right|$ và $\left| b \right|$ để rút gọn phân số tối giản.

      Lời giải chi tiết :

      Ta có: \(ƯCLN\left( {600,800} \right) = 200\) nên:

      \(\dfrac{{600}}{{800}} = \dfrac{{600:200}}{{800:200}} = \dfrac{3}{4}\)

      Câu 6 :

      Rút gọn phân số \(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}}\) về dạng phân số tối giản ta được phân số có tử số là

      • A.

        \(\dfrac{4}{9}\) 

      • B.

        \(31\)

      • C.

        \( - 1\) 

      • D.

        \(4\)

      Đáp án : D

      Phương pháp giải :

      - Tính tử và mẫu của phân số đã cho và rút gọn phân số đó.

      Lời giải chi tiết :

      Ta có:

      \(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}} = \dfrac{{ - 6 + 30}}{{54}}\) \( = \dfrac{{24}}{{54}} = \dfrac{{24:6}}{{54:6}} = \dfrac{4}{9}\)

      Vậy tử số của phân số cần tìm là \(4\)

      Câu 7 :

      Tìm \(x\) biết \(\dfrac{{2323}}{{3232}} = \dfrac{x}{{32}}.\)

      • A.

        \(101\) 

      • B.

        \(32\)

      • C.

        \( - 23\)

      • D.

        \(23\)

      Đáp án : D

      Phương pháp giải :

      Rút gọn phân số đã cho: Chia cả tử và mẫu của phân số $\dfrac{a}{b}$ cho ƯCLN của $\left| a \right|$ và $\left| b \right|$ để rút gọn phân số tối giản.

      Lời giải chi tiết :

      Ta có: \(\dfrac{{2323}}{{3232}} = \dfrac{{2323:101}}{{3232:101}}\)\( = \dfrac{{23}}{{32}} = \dfrac{x}{{32}} \Rightarrow x = 23\)

      Câu 8 :

      Rút gọn phân số \(\dfrac{{4.8}}{{64.( - 7)}}\) ta được phân số tối giản là:

      • A.

        \(\dfrac{{ - 1}}{7}\) 

      • B.

        \(\dfrac{{ - 1}}{{14}}\)

      • C.

        \(\dfrac{4}{{ - 56}}\)

      • D.

        \(\dfrac{{ - 1}}{{70}}\)

      Đáp án : B

      Phương pháp giải :

      Tách các thừa số ở tử và mẫu thành tích các thừa số nhỏ hơn rồi chia cả tử và mẫu cho các thừa số chung.

      Lời giải chi tiết :

      Ta có:

      \(\dfrac{{4.8}}{{64.\left( { - 7} \right)}} = \dfrac{{4.8}}{{2.4.8.\left( { - 7} \right)}} = \dfrac{1}{{2.\left( { - 7} \right)}} = \dfrac{{ - 1}}{{14}}\)

      Câu 9 :

      Rút gọn biểu thức \(A = \dfrac{{3.\left( { - 4} \right).60 - 60}}{{50.20}}\) ta được

      • A.

        \(\dfrac{{ - 13}}{{25}}\)

      • B.

        \(\dfrac{{ - 18}}{{25}}\)

      • C.

        \(\dfrac{{ - 6}}{{25}}\)

      • D.

        \(\dfrac{{ - 39}}{{50}}\)

      Đáp án : D

      Phương pháp giải :

      - Phân tích tử của \(A\) thành các nhân tử.

      - Rút gọn biểu thức bằng cách chia cả tử và mẫu của \(A\) cho nhân tử chung.

      Lời giải chi tiết :

      Ta có:

      \(A = \dfrac{{3.\left( { - 4} \right).60 - 60}}{{50.20}}\)\( = \dfrac{{\left[ {3.\left( { - 4} \right) - 1} \right].60}}{{50.20}}\)\( = \dfrac{{ - 13.60}}{{50.20}} = \dfrac{{ - 13.3}}{{50}} = \dfrac{{ - 39}}{{50}}\)

      Câu 10 :

      Phân số nào sau đây là kết quả của biểu thức \(\dfrac{{2.9.52}}{{22.\left( { - 72} \right)}}\) sau khi rút gọn đến tối giản?

      • A.

        \(\dfrac{{ - 13}}{{22}}\)

      • B.

        \(\dfrac{{13}}{{22}}\)

      • C.

        \(\dfrac{{ - 13}}{{18}}\)

      • D.

        \(\dfrac{{ - 117}}{{198}}\)

      Đáp án : A

      Phương pháp giải :

      - Phân tích các thừa số trong tích ở cả tử và mẫu thành tích các thừa số nguyên tố.

      - Chia cả tử và mẫu của biểu thức cho từng lũy thừa chung ở tử và mẫu mà có số mũ nhỏ hơn.

      Lời giải chi tiết :

      \(\dfrac{{2.9.52}}{{22.\left( { - 72} \right)}} = \dfrac{{{{2.3}^2}{{.2}^2}.13}}{{2.11.\left( { - {2^3}{{.3}^2}} \right)}}\)\( = \dfrac{{{2^3}{{.3}^2}.13}}{{ - {2^4}{{.3}^2}.11}} = \dfrac{{13}}{{ - 2.11}} = \dfrac{{ - 13}}{{22}}\)

      Câu 11 :

      Rút gọn phân số \(\dfrac{{ - 12a}}{{24}}\) , \(a \in \mathbb{Z}\) ta được:

      • A.

        \(\dfrac{a}{2}\)

      • B.

        \(\dfrac{1}{2}\)

      • C.

        \(\dfrac{{ - 1}}{2}\)

      • D.

        \(\dfrac{{ - a}}{2}\)

      Đáp án : D

      Lời giải chi tiết :

      Ta có: \(\dfrac{{ - 12a}}{{24}} = \dfrac{{\left( { - 1} \right).12.a}}{{12.2}} = \dfrac{{\left( { - 1} \right).a}}{2} = \dfrac{{ - a}}{2}\).

      Câu 12 :

      Phân số \(\dfrac{{ - m}}{{ - n}};\,\,n,m \in \mathbb{Z};n \ne 0\) bằng phân số nào sau đây

      • A.

        \(\dfrac{m}{n}\)

      • B.

        \(\dfrac{n}{m}\)

      • C.

        \(\dfrac{{ - n}}{m}\)

      • D.

        \(\dfrac{m}{{ - n}}\)

      Đáp án : A

      Lời giải chi tiết :

      Ta có: \(\dfrac{{ - m}}{{ - n}} = \dfrac{m}{n}\)

      Câu 13 :

      Quy đồng mẫu số hai phân số \(\dfrac{2}{7};\dfrac{5}{{ - 8}}\)được hai phân số lần lượt là:

      • A.

        \(\dfrac{{16}}{{56}};\dfrac{{ - 35}}{{56}}\)

      • B.

        \(\dfrac{{16}}{{56}};\dfrac{{35}}{{56}}\)

      • C.

        \(\dfrac{{16}}{{56}};\dfrac{{35}}{{ - 56}}\)

      • D.

        \(\dfrac{{ - 16}}{{56}};\dfrac{{ - 35}}{{56}}\)

      Đáp án : A

      Phương pháp giải :

       Đưa các phân số về có mẫu dương hết rồi quy đồng mẫu số các phân số.

      +) Tìm $MSC$ (thường là $BCNN$ của các mẫu).

      +) Tìm thừa số phụ $ = {\rm{ }}MSC{\rm{ }}:{\rm{ }}MS$

      +) Nhân cả tử và mẫu với thừa số phụ tương ứng

      Lời giải chi tiết :

      Ta quy đồng \(\dfrac{2}{7}\) và \(\dfrac{{ - 5}}{8}\) (\(MSC:56\))

      \(\dfrac{2}{7} = \dfrac{{2.8}}{{7.8}} = \dfrac{{16}}{{56}};\) \(\dfrac{{ - 5}}{8} = \dfrac{{ - 5.7}}{{8.7}} = \dfrac{{ - 35}}{{56}}\)

      Câu 14 :

      Mẫu số chung của các phân số \(\dfrac{2}{5};\dfrac{{23}}{{18}};\dfrac{5}{{75}}\) là

      • A.

        $180$ 

      • B.

        \(500\)

      • C.

        \(750\) 

      • D.

        \(450\)

      Đáp án : D

      Phương pháp giải :

      - Phân tích các mẫu số thành tích các thừa số nguyên tố.

      - \(MSC\) được chọn thường là \(BCNN\) của các mẫu số.

      Lời giải chi tiết :

      Ta có:

      \(\begin{array}{l}5 = 5.1\\18 = {2.3^2}\\75 = {3.5^2}\end{array}\)

      \( \Rightarrow BCNN\left( {5;18;75} \right) = {2.3^2}{.5^2} = 450\)

      Vậy ta có thể chọn một mẫu chung là \(450\)

      Câu 15 :

      Mẫu chung nguyên dương nhỏ nhất của các phân số \(\dfrac{{19}}{{{3^2}.7.11}};\dfrac{{23}}{{{3^3}{{.7}^2}.19}}\) là:

      • A.

        \({3^3}{.7^2}\)

      • B.

        \({3^3}{.7^3}.11.19\)

      • C.

        \({3^2}{.7^2}.11.19\)

      • D.

        \({3^3}{.7^2}.11.19\)

      Đáp án : D

      Phương pháp giải :

      Mẫu chung nguyên dương nhỏ nhất của các phân số là \(BCNN\) của các mẫu.

      Lời giải chi tiết :

      \({{{3^2}.7.11}}\) và \({{{3^3}{{.7}^2}.19}}\) có thừa số nguyên tố chung là 3, 7, thừa số nguyên tố riêng là 11, 19.

      Số mũ lớn nhất của 3 là 3, số mũ lớn nhất của 7 là 2.

      Do đó BCNN(\({{{3^2}.7.11}};{{{3^3}{{.7}^2}.19}}\)) = \({3^3}{.7^2}.11.19\)

      Vậy mẫu chung nguyên dương nhỏ nhất của hai mẫu đã cho là \({3^3}{.7^2}.11.19\)

      Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Trắc nghiệm Tính chất cơ bản của phân số Toán 6 Cánh diều – nội dung then chốt trong chuyên mục bài tập toán lớp 6 trên nền tảng toán math. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

      Trắc nghiệm Tính chất cơ bản của phân số Toán 6 Cánh diều: Tổng quan

      Phân số là một khái niệm cơ bản trong toán học, xuất hiện từ rất sớm trong chương trình học. Việc nắm vững các tính chất cơ bản của phân số là nền tảng quan trọng để học sinh có thể thực hiện các phép toán phức tạp hơn như cộng, trừ, nhân, chia phân số, so sánh phân số, và giải các bài toán ứng dụng.

      Các Tính chất cơ bản của phân số

      Có hai tính chất cơ bản của phân số mà học sinh lớp 6 cần nắm vững:

      1. Tính chất 1: Nếu ta nhân cả tử số và mẫu số của một phân số với cùng một số nguyên khác 0 thì được một phân số bằng phân số đó. Ví dụ: a/b = (a * m) / (b * m) (với m ≠ 0)
      2. Tính chất 2: Nếu ta chia cả tử số và mẫu số của một phân số với cùng một số nguyên khác 0 thì được một phân số bằng phân số đó. Ví dụ: a/b = (a : m) / (b : m) (với m ≠ 0)

      Ứng dụng của các Tính chất cơ bản của phân số

      Các tính chất này được sử dụng để:

      • Rút gọn phân số: Tìm ước chung lớn nhất (ƯCLN) của tử số và mẫu số, sau đó chia cả tử số và mẫu số cho ƯCLN đó.
      • Quy đồng mẫu số: Tìm bội chung nhỏ nhất (BCNN) của các mẫu số, sau đó nhân cả tử số và mẫu số của mỗi phân số với một số sao cho mẫu số bằng BCNN.
      • So sánh phân số: Rút gọn các phân số về dạng tối giản, sau đó so sánh tử số và mẫu số.

      Dạng bài tập Trắc nghiệm thường gặp

      Các bài tập trắc nghiệm về tính chất cơ bản của phân số thường xoay quanh các dạng sau:

      • Nhận biết phân số bằng nhau: Cho hai phân số, yêu cầu xác định xem chúng có bằng nhau hay không.
      • Tìm số chưa biết trong đẳng thức phân số: Ví dụ: 2/3 = x/6, tìm x.
      • Rút gọn phân số: Yêu cầu rút gọn một phân số về dạng tối giản.
      • Quy đồng mẫu số: Yêu cầu quy đồng mẫu số của hai hoặc nhiều phân số.
      • So sánh phân số: Yêu cầu so sánh hai phân số.

      Ví dụ minh họa

      Ví dụ 1: Rút gọn phân số 12/18.

      Giải:

      ƯCLN(12, 18) = 6. Vậy 12/18 = (12 : 6) / (18 : 6) = 2/3.

      Ví dụ 2: Tìm x sao cho 3/4 = x/12.

      Giải:

      x = (3 * 12) / 4 = 9.

      Mẹo giải nhanh

      • Khi rút gọn phân số, hãy tìm ƯCLN của tử số và mẫu số.
      • Khi quy đồng mẫu số, hãy tìm BCNN của các mẫu số.
      • Luôn kiểm tra lại kết quả sau khi thực hiện các phép toán.

      Luyện tập thêm

      Để nắm vững kiến thức về tính chất cơ bản của phân số, các em nên luyện tập thường xuyên với các bài tập khác nhau. Giaitoan.edu.vn cung cấp một kho bài tập phong phú và đa dạng, giúp các em rèn luyện kỹ năng và tự tin hơn trong các kỳ thi.

      Kết luận

      Hi vọng rằng bài viết này đã cung cấp cho các em những kiến thức cơ bản và hữu ích về trắc nghiệm tính chất cơ bản của phân số Toán 6 Cánh diều. Chúc các em học tập tốt và đạt kết quả cao!

      Tài liệu, đề thi và đáp án Toán 6