Chào mừng các em học sinh đến với bài trắc nghiệm Toán 6 Bài 6: Thứ tự thực hiện các phép tính. Bài trắc nghiệm này được thiết kế để giúp các em ôn tập và củng cố kiến thức về thứ tự thực hiện các phép tính trong toán học.
Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, kèm đáp án chi tiết, giúp các em tự đánh giá năng lực và chuẩn bị tốt nhất cho các bài kiểm tra trên lớp.
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?
Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa
Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ
Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ
Cả ba đáp án A,B,C đều đúng
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?
\(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)
\(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)
\(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)
\(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)
Tính: \(1 + 12.3.5\)
181
195
180
15
Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)
6
Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:
$9$
$10$
$11$
$12$
Có bao nhiêu giá trị của \(x\) thỏa mãn \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132?\)
$3$
$2$
$1$
$4$
Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\) là
$319$
$931$
$193$
$391$
Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là
$100$
$95$
$105$
$80$
Lời giải và đáp án
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?
Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa
Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ
Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ
Cả ba đáp án A,B,C đều đúng
Đáp án : C
Đối với biểu thức không có dấu ngoặc thì thứ tự thực hiện phép tính đúng là : Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?
\(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)
\(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)
\(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)
\(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)
Đáp án : B
Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự : \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)
Tính: \(1 + 12.3.5\)
181
195
180
15
Đáp án : A
Thực hiện theo quy tắc:
Nhân và chia \( \to \) cộng và trừ.
\(1 + 12.3.5 = 1+\left( {12.3} \right).5 = 1 + 36.5 = 1 + 180 = 181\)
Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)
6
Đáp án : A
Thực hiện phép tính trong ngoặc tròn ( ) trước: Lũy thừa \( \to \) nhân và chia \( \to \) cộng và trừ.
Lấy kết quả trong ngoặc nhân với 3.
\(3.\left( {{2^3}.4 - 6.5} \right) = 3.\left( {8.4 - 6.5} \right)\)\( = 3.\left( {32 - 30} \right) = 3.2 = 6\)
Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:
$9$
$10$
$11$
$12$
Đáp án : B
+ Tính vế phải sau đó tìm thừa số chưa biết bằng cách lấy tích chia cho thừa số đã biết.
+ Sử dụng mối quan hệ giữa số hạng và tổng để tìm $x$
\(\begin{array}{l}5(x + 15) = {5^3}\\5(x + 15) = 125\\x + 15 = 125:5\\x + 15\, = 25\\x\,\, = 25 - 15\\x\, = 10.\end{array}\)
Có bao nhiêu giá trị của \(x\) thỏa mãn \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132?\)
$3$
$2$
$1$
$4$
Đáp án : C
+ Tìm số trừ bằng cách lấy số bị trừ trừ đi hiệu.
+ Tìm số hạng bằng tổng trừ đi số hạng đã biết.
Ta có \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132\)
\(23 + \left( {13 + 72 - x} \right) = 240 - 132\)
\(23 + \left( {85 - x} \right) = 108\)
\(85 - x = 108 - 23\)
\(85 - x = 85\)
\(x = 85 - 85\)
\(x = 0.\)
Vậy có một giá trị \(x = 0\) thỏa mãn đề bài.
Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\) là
$319$
$931$
$193$
$391$
Đáp án : D
Thực hiện phép tính trong ngoặc đơn trước rồi tính trong ngoặc vuông.
Sau đó là phép lũy thừa, nhân và trừ các kết quả.
Ta có \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\)
\( = {3^4}.6 - \left( {131 - {6^2}} \right)\)
\( = 81.6 - \left( {131 - 36} \right)\)
\( = 486 - 95 = 391.\)
Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là
$100$
$95$
$105$
$80$
Đáp án : C
Thực hiện phép tính nâng lên lũy thừa rồi đến nhân chia cuối cùng là cộng trừ.
Ta có \({2^4} - 50:25 + 13.7\)\( = 16 - 2 + 91 = 14 + 91 = 105\)
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?
Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa
Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ
Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ
Cả ba đáp án A,B,C đều đúng
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?
\(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)
\(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)
\(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)
\(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)
Tính: \(1 + 12.3.5\)
181
195
180
15
Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)
6
Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:
$9$
$10$
$11$
$12$
Có bao nhiêu giá trị của \(x\) thỏa mãn \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132?\)
$3$
$2$
$1$
$4$
Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\) là
$319$
$931$
$193$
$391$
Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là
$100$
$95$
$105$
$80$
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?
Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa
Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ
Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ
Cả ba đáp án A,B,C đều đúng
Đáp án : C
Đối với biểu thức không có dấu ngoặc thì thứ tự thực hiện phép tính đúng là : Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?
\(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)
\(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)
\(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)
\(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)
Đáp án : B
Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự : \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)
Tính: \(1 + 12.3.5\)
181
195
180
15
Đáp án : A
Thực hiện theo quy tắc:
Nhân và chia \( \to \) cộng và trừ.
\(1 + 12.3.5 = 1+\left( {12.3} \right).5 = 1 + 36.5 = 1 + 180 = 181\)
Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)
6
Đáp án : A
Thực hiện phép tính trong ngoặc tròn ( ) trước: Lũy thừa \( \to \) nhân và chia \( \to \) cộng và trừ.
Lấy kết quả trong ngoặc nhân với 3.
\(3.\left( {{2^3}.4 - 6.5} \right) = 3.\left( {8.4 - 6.5} \right)\)\( = 3.\left( {32 - 30} \right) = 3.2 = 6\)
Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:
$9$
$10$
$11$
$12$
Đáp án : B
+ Tính vế phải sau đó tìm thừa số chưa biết bằng cách lấy tích chia cho thừa số đã biết.
+ Sử dụng mối quan hệ giữa số hạng và tổng để tìm $x$
\(\begin{array}{l}5(x + 15) = {5^3}\\5(x + 15) = 125\\x + 15 = 125:5\\x + 15\, = 25\\x\,\, = 25 - 15\\x\, = 10.\end{array}\)
Có bao nhiêu giá trị của \(x\) thỏa mãn \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132?\)
$3$
$2$
$1$
$4$
Đáp án : C
+ Tìm số trừ bằng cách lấy số bị trừ trừ đi hiệu.
+ Tìm số hạng bằng tổng trừ đi số hạng đã biết.
Ta có \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132\)
\(23 + \left( {13 + 72 - x} \right) = 240 - 132\)
\(23 + \left( {85 - x} \right) = 108\)
\(85 - x = 108 - 23\)
\(85 - x = 85\)
\(x = 85 - 85\)
\(x = 0.\)
Vậy có một giá trị \(x = 0\) thỏa mãn đề bài.
Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\) là
$319$
$931$
$193$
$391$
Đáp án : D
Thực hiện phép tính trong ngoặc đơn trước rồi tính trong ngoặc vuông.
Sau đó là phép lũy thừa, nhân và trừ các kết quả.
Ta có \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\)
\( = {3^4}.6 - \left( {131 - {6^2}} \right)\)
\( = 81.6 - \left( {131 - 36} \right)\)
\( = 486 - 95 = 391.\)
Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là
$100$
$95$
$105$
$80$
Đáp án : C
Thực hiện phép tính nâng lên lũy thừa rồi đến nhân chia cuối cùng là cộng trừ.
Ta có \({2^4} - 50:25 + 13.7\)\( = 16 - 2 + 91 = 14 + 91 = 105\)
Bài 6 trong chương trình Toán 6 Cánh diều tập trung vào việc nắm vững quy tắc thứ tự thực hiện các phép tính. Đây là một kiến thức nền tảng quan trọng, giúp học sinh giải quyết các bài toán phức tạp một cách chính xác. Việc hiểu rõ thứ tự ưu tiên của các phép tính (ngoặc, nhân chia trước, cộng trừ sau) là chìa khóa để tránh sai sót trong quá trình tính toán.
Xét biểu thức: 5 + 2 x 3 - 4 : 2
Thực hiện theo thứ tự:
Vậy, kết quả của biểu thức là 9.
Để nâng cao khả năng giải quyết các bài toán phức tạp, các em có thể luyện tập thêm với các bài tập trắc nghiệm nâng cao. Các bài tập này thường có nhiều phép tính và ngoặc lồng nhau, đòi hỏi học sinh phải có tư duy logic và khả năng tính toán nhanh nhạy.
Kiến thức về thứ tự thực hiện các phép tính không chỉ quan trọng trong môn Toán mà còn được ứng dụng rộng rãi trong các lĩnh vực khác như Vật lý, Hóa học, Kinh tế,... Do đó, việc nắm vững kiến thức này là rất cần thiết cho sự phát triển toàn diện của học sinh.
Để đạt được kết quả tốt nhất, các em nên luyện tập thường xuyên các bài tập về thứ tự thực hiện các phép tính. Giaitoan.edu.vn cung cấp một nguồn tài liệu phong phú và đa dạng, giúp các em tự tin chinh phục môn Toán.
Thứ tự | Phép tính |
---|---|
1 | Trong ngoặc |
2 | Nhân, Chia |
3 | Cộng, Trừ |
Thực hiện từ trái sang phải trong mỗi cấp độ. |