Chào mừng các em học sinh lớp 6 đến với đề thi học kì 2 môn Toán số 7 của giaitoan.edu.vn. Đề thi này được biên soạn dựa trên chương trình học Toán 6, bao gồm các dạng bài tập thường gặp trong đề thi chính thức.
Mục tiêu của đề thi này là giúp các em làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự đánh giá năng lực của bản thân trước kỳ thi quan trọng.
Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.
Phần I: Trắc nghiệm
1. A | 2. B | 3. C | 4. B |
Câu 1
Phương pháp:
So sánh số sách bán được trong 5 ngày.
Cách giải:
Ngày bán được nhiều cuốn vở nhất là thứ Hai.
Chọn A.
Câu 2
Phương pháp:
So sánh chữ số hàng phần mười với 5. Nếu chữ số đó bé hơn 5 thì làm tròn xuống, còn lại thì làm tròn lên.
Cách giải:
Số 60,986 làm tròn đến chữ số hàng đơn vị là: 61.
Chọn A.
Câu 3
Phương pháp:
Viết phân số có tử là độ dài đoạn AB, mẫu số là độ dài đoạn MN. Rút gọn phân số đó.
Chú ý: Đưa về cùng đơn vị đo.
Cách giải:
Đoạn thẳng AB dài 50cm hay 5dm.
Đoạn thẳng MN dài 15 dm.
Vậy tỉ số độ dài của đoạn thẳng AB và đoạn thẳng MN là: \(\dfrac{5}{{15}} = \dfrac{1}{3}\).
Chọn C.
Câu 4
Phương pháp:
I là trung điểm của AB nếu I nằm giữa hai điểm A, B và IA = IB.
Cách giải:
F là trung điểm của BC.
Chọn B.
Phần II: Tự luận
Bài 1
Phương pháp:
a) Thực hiện cộng hai phân số cùng mẫu số.
b) Nhóm các số hạng có phần thập phân giống nhau, sau đó thực hiện tính.
c) Sử dụng tính chất phân phối của phép nhân và phép cộng.
Cách giải:
a) \(\dfrac{{ - 6}}{{21}} + \dfrac{{34}}{{21}} = \dfrac{{ - 6 + 34}}{{21}} = \dfrac{{28}}{{21}} = \dfrac{4}{3}\)
b)
\(\begin{array}{l}\,\,\,\, - 3,5 + 4,6 + 3,5 + \left( { - 1,6} \right)\\ = \left( { - 3,5 + 3,5} \right) + \left( {4,6 + \left( { - 1,6} \right)} \right)\\ = 0 + 3\\ = 3\end{array}\)
c)
\(\begin{array}{l}\,\,\,\dfrac{5}{{11}}.\dfrac{{18}}{{29}} - \dfrac{5}{{11}}.\dfrac{8}{{29}} + \dfrac{5}{{11}}.\dfrac{{19}}{{29}}\\ = \dfrac{5}{{11}}.\left( {\dfrac{{18}}{{29}} - \dfrac{8}{{29}} + \dfrac{{19}}{{29}}} \right)\\ = \dfrac{5}{{11}}.1\\ = \dfrac{5}{{11}}\end{array}\)
Câu 2
Phương pháp:
Thực hiện bài toán thứ tự thực hiện phép tính ngược để tìm x.
Cách giải:
a)
\(\begin{array}{l}\dfrac{3}{7} + x = \dfrac{4}{5}\\\,\,\,\,\,\,\,\,\,x = \dfrac{4}{5} - \dfrac{3}{7}\\\,\,\,\,\,\,\,\,\,x = \dfrac{{13}}{{35}}\end{array}\)
Vậy \(x = \dfrac{{13}}{{35}}\)
b)
\(\begin{array}{l}\dfrac{x}{6} - \dfrac{1}{2} = \dfrac{2}{3}\\\dfrac{x}{6}\,\,\,\,\,\,\,\,\,\, = \dfrac{2}{3} + \dfrac{1}{2}\,\\\dfrac{x}{6}\,\,\,\,\,\,\,\,\,\, = \dfrac{7}{6}\,\\x\,\,\,\,\,\,\,\,\,\,\, = 7\end{array}\)
Vậy \(x = 7\)
c) \(\left( {3x - 1} \right)\left( {\dfrac{{ - 1}}{2}x + 5} \right) = 0\)
TH1:
\(\begin{array}{l}3x - 1 = 0\\x\,\,\,\,\,\,\,\,\,\,\, = 1\\x\,\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{3}\end{array}\)
TH2:
\(\begin{array}{l}\dfrac{{ - 1}}{2}x + 5 = 0\\\dfrac{{ - 1}}{2}x\,\,\,\,\,\,\,\,\,\,\, = - 5\\\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\,\, = - 5:\dfrac{{ - 1}}{2}\\\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\,\, = 10\end{array}\)1
Vậy \(x = \dfrac{1}{3}\) hoặc \(x = 10\)
Câu 3
Phương pháp:
a) Xác suất thực nghiệm của sự kiện = Số lần xảy ra sự kiện : Số lần thực hiện
b) Tính số lần cả hai đồng xu cùng xuất hiện mặt ngửa, sau đó tính xác suất của sự kiện xuất hiện hai đồng ngửa.
Cách giải:
a) Xác suất thực nghiệm của sự kiện xuất hiện một đồng ngửa, một đồng sấp là: \(\dfrac{{26}}{{50}} = \dfrac{{13}}{{25}}\)
b) Số lần xuất hiện hai đồng ngửa là: \(50 - 26 - 14 = 10\)(lần)
Xác suất thực nghiệm của sự kiện xuất hiện hai đồng xu cùng ngửa là: \(\dfrac{{10}}{{50}} = \dfrac{1}{5}\)
Câu 4
Phương pháp:
a) Tính tổng số lít sữa An uống sau hai ngày.
b) Tính tỉ số phần trăm: Lấy số thứ hai chia cho số thứ nhất rồi nhân với 100.
Cách giải:
a) Sau 2 ngày An uống số lít sữa là: \(0,25 + 0,3 = 0,55\)(lít)
b) Tỉ số phần trăm lượng sữa tươi An đã uống ngày 1 so với ngày thứ nhất là: \(0,3:0,25 = 1,2 = 120\% \)
Câu 5
Phương pháp:
Sử dụng tính chất trung điểm của đoạn thẳng.
Cách giải:
a) Hai tia trùng nhau gốc I là: IA và Ix
Hai tia đối nhau gốc I là: IA và IO
b) Vì I là trung điểm của đoạn OA nên \(OI = IA = \dfrac{1}{2}OA = \dfrac{1}{2}.6 = 3\left( {cm} \right)\)
Câu 6
Phương pháp:
Tìm hai số nguyên có tích là 11. Lần lượt xét các trường hợp của \(x - 1\) và \(y + 2\).
Cách giải:
Vì \(11 = 11.1 = \left( { - 11} \right).\left( { - 1} \right)\)nên ta có bảng sau:
\(x - 1\) | - 11 | - 1 | 1 | 11 |
\(y + 2\) | - 1 | - 11 | 11 | 1 |
\(x\) | - 10 | 0 | 2 | 12 |
\(y\) | - 3 | - 13 | 9 | - 1 |
Vậy \(\left( {x;y} \right) = \left( { - 10; - 3} \right)\); \(\left( {x;y} \right) = \left( {0; - 13} \right)\); \(\left( {x;y} \right) = \left( {2;9} \right)\) hoặc \(\left( {x;y} \right) = \left( {12; - 1} \right)\).
Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.
Câu 1: Biểu đồ tranh dưới đây cho biết số cuốn vở đã bán được từ thứ hai đến thứ sáu của một cửa hàng sách.
Ngày bán được nhiều cuốn vở nhất là thứ mấy?
A. Thứ Hai
B. Thứ Ba
C. Thứ Tư
D. Thứ Sáu
Câu 2: Số 60,986 làm tròn đến chữ số hàng đơn vị là:
A. 61
B. 60
C. 60,9
D. 60,99
Câu 3: Cho đoạn thẳng AB dài 50cm, đoạn thẳng MN dài 15 dm. Tính tỉ số độ dài của đoạn thẳng AB và đoạn thẳng MN.
A. \(\dfrac{{50}}{{15}}\)
B. \(\dfrac{{15}}{{50}}\)
C. \(\dfrac{1}{3}\)
D. 3
Câu 4: Cho hình vẽ, khẳng định nào dưới đây đúng?
A. A là trung điểm của BC
B. F là trung điểm của BC
C. F là trung điểm của GH
D. B là trung điểm của GC
Phần II. Tự luận (8 điểm):
Bài 1 (1,5 điểm) Thực hiện phép tính:
a) \(\dfrac{{ - 6}}{{21}} + \dfrac{{34}}{{21}}\)
b) \( - 3,5 + 4,6 + 3,5 + \left( { - 1,6} \right)\)
c) \(\dfrac{5}{{11}}.\dfrac{{18}}{{29}} - \dfrac{5}{{11}}.\dfrac{8}{{29}} + \dfrac{5}{{11}}.\dfrac{{19}}{{29}}\)
Bài 2 (1,5 điểm) Tìm x biết:
a) \(\dfrac{3}{7} + x = \dfrac{4}{5}\)
b) \(\dfrac{x}{6} - \dfrac{1}{2} = \dfrac{2}{3}\)
c) \(\left( {3x - 1} \right)\left( {\dfrac{{ - 1}}{2}x + 5} \right) = 0\)
Bài 3 (1 điểm) Tung hai đồng xu cân đối 50 lần, bạn An được kết quả dưới đây, trong đó bạn quên không điền thống kê số lần cả hai đồng xu cùng xuất hiện mặt ngửa:
Sự kiện | Hai đồng ngửa | Một đồng ngửa, một đồng sấp | Hai đồng sấp |
Số lần | ? | 26 | 14 |
a) Tính xác suất thực nghiệm của sự kiện xuất hiện một đồng ngửa, một đồng sấp.
b) Tính số lần cả hai đồng xu cùng xuất hiện mặt ngửa, từ đó tính xác suất thực nghiệm của sự kiện hai đồng xu cùng ngửa.
Bài 4 (1,5 điểm) Mẹ mua cho An một hộp sữa tươi loại 1 lít. Ngày đầu An uống 0,25 lít, ngày tiếp theo An uống tiếp 0,3 lít.
a) Hỏi sau hai ngày An uống bao nhiêu lít sữa?
b) Tính tỉ số % lượng sữa tươi An đã uống của ngày thứ hai so với ngày thứ nhất?
Bài 5 (2 điểm) Vẽ hình theo diễn đạt sau:
- Vẽ tia Ox, lấy điểm A nằm trên tia Ox sao cho OA = 6cm.
- Vẽ điểm I là trung điểm của đoạn OA.
a) Kể tên hai tia trùng nhau gốc I và hai tia đối nhau gốc I.
b) Tính độ dài đoạn OI và IA
Bài 6 (0,5 điểm) Tìm \(x,y \in \mathbb{Z}\)biết: \(\left( {x - 1} \right).\left( {y + 2} \right) = 11.\)
Tải về
Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.
Câu 1: Biểu đồ tranh dưới đây cho biết số cuốn vở đã bán được từ thứ hai đến thứ sáu của một cửa hàng sách.
Ngày bán được nhiều cuốn vở nhất là thứ mấy?
A. Thứ Hai
B. Thứ Ba
C. Thứ Tư
D. Thứ Sáu
Câu 2: Số 60,986 làm tròn đến chữ số hàng đơn vị là:
A. 61
B. 60
C. 60,9
D. 60,99
Câu 3: Cho đoạn thẳng AB dài 50cm, đoạn thẳng MN dài 15 dm. Tính tỉ số độ dài của đoạn thẳng AB và đoạn thẳng MN.
A. \(\dfrac{{50}}{{15}}\)
B. \(\dfrac{{15}}{{50}}\)
C. \(\dfrac{1}{3}\)
D. 3
Câu 4: Cho hình vẽ, khẳng định nào dưới đây đúng?
A. A là trung điểm của BC
B. F là trung điểm của BC
C. F là trung điểm của GH
D. B là trung điểm của GC
Phần II. Tự luận (8 điểm):
Bài 1 (1,5 điểm) Thực hiện phép tính:
a) \(\dfrac{{ - 6}}{{21}} + \dfrac{{34}}{{21}}\)
b) \( - 3,5 + 4,6 + 3,5 + \left( { - 1,6} \right)\)
c) \(\dfrac{5}{{11}}.\dfrac{{18}}{{29}} - \dfrac{5}{{11}}.\dfrac{8}{{29}} + \dfrac{5}{{11}}.\dfrac{{19}}{{29}}\)
Bài 2 (1,5 điểm) Tìm x biết:
a) \(\dfrac{3}{7} + x = \dfrac{4}{5}\)
b) \(\dfrac{x}{6} - \dfrac{1}{2} = \dfrac{2}{3}\)
c) \(\left( {3x - 1} \right)\left( {\dfrac{{ - 1}}{2}x + 5} \right) = 0\)
Bài 3 (1 điểm) Tung hai đồng xu cân đối 50 lần, bạn An được kết quả dưới đây, trong đó bạn quên không điền thống kê số lần cả hai đồng xu cùng xuất hiện mặt ngửa:
Sự kiện | Hai đồng ngửa | Một đồng ngửa, một đồng sấp | Hai đồng sấp |
Số lần | ? | 26 | 14 |
a) Tính xác suất thực nghiệm của sự kiện xuất hiện một đồng ngửa, một đồng sấp.
b) Tính số lần cả hai đồng xu cùng xuất hiện mặt ngửa, từ đó tính xác suất thực nghiệm của sự kiện hai đồng xu cùng ngửa.
Bài 4 (1,5 điểm) Mẹ mua cho An một hộp sữa tươi loại 1 lít. Ngày đầu An uống 0,25 lít, ngày tiếp theo An uống tiếp 0,3 lít.
a) Hỏi sau hai ngày An uống bao nhiêu lít sữa?
b) Tính tỉ số % lượng sữa tươi An đã uống của ngày thứ hai so với ngày thứ nhất?
Bài 5 (2 điểm) Vẽ hình theo diễn đạt sau:
- Vẽ tia Ox, lấy điểm A nằm trên tia Ox sao cho OA = 6cm.
- Vẽ điểm I là trung điểm của đoạn OA.
a) Kể tên hai tia trùng nhau gốc I và hai tia đối nhau gốc I.
b) Tính độ dài đoạn OI và IA
Bài 6 (0,5 điểm) Tìm \(x,y \in \mathbb{Z}\)biết: \(\left( {x - 1} \right).\left( {y + 2} \right) = 11.\)
Phần I: Trắc nghiệm
1. A | 2. B | 3. C | 4. B |
Câu 1
Phương pháp:
So sánh số sách bán được trong 5 ngày.
Cách giải:
Ngày bán được nhiều cuốn vở nhất là thứ Hai.
Chọn A.
Câu 2
Phương pháp:
So sánh chữ số hàng phần mười với 5. Nếu chữ số đó bé hơn 5 thì làm tròn xuống, còn lại thì làm tròn lên.
Cách giải:
Số 60,986 làm tròn đến chữ số hàng đơn vị là: 61.
Chọn A.
Câu 3
Phương pháp:
Viết phân số có tử là độ dài đoạn AB, mẫu số là độ dài đoạn MN. Rút gọn phân số đó.
Chú ý: Đưa về cùng đơn vị đo.
Cách giải:
Đoạn thẳng AB dài 50cm hay 5dm.
Đoạn thẳng MN dài 15 dm.
Vậy tỉ số độ dài của đoạn thẳng AB và đoạn thẳng MN là: \(\dfrac{5}{{15}} = \dfrac{1}{3}\).
Chọn C.
Câu 4
Phương pháp:
I là trung điểm của AB nếu I nằm giữa hai điểm A, B và IA = IB.
Cách giải:
F là trung điểm của BC.
Chọn B.
Phần II: Tự luận
Bài 1
Phương pháp:
a) Thực hiện cộng hai phân số cùng mẫu số.
b) Nhóm các số hạng có phần thập phân giống nhau, sau đó thực hiện tính.
c) Sử dụng tính chất phân phối của phép nhân và phép cộng.
Cách giải:
a) \(\dfrac{{ - 6}}{{21}} + \dfrac{{34}}{{21}} = \dfrac{{ - 6 + 34}}{{21}} = \dfrac{{28}}{{21}} = \dfrac{4}{3}\)
b)
\(\begin{array}{l}\,\,\,\, - 3,5 + 4,6 + 3,5 + \left( { - 1,6} \right)\\ = \left( { - 3,5 + 3,5} \right) + \left( {4,6 + \left( { - 1,6} \right)} \right)\\ = 0 + 3\\ = 3\end{array}\)
c)
\(\begin{array}{l}\,\,\,\dfrac{5}{{11}}.\dfrac{{18}}{{29}} - \dfrac{5}{{11}}.\dfrac{8}{{29}} + \dfrac{5}{{11}}.\dfrac{{19}}{{29}}\\ = \dfrac{5}{{11}}.\left( {\dfrac{{18}}{{29}} - \dfrac{8}{{29}} + \dfrac{{19}}{{29}}} \right)\\ = \dfrac{5}{{11}}.1\\ = \dfrac{5}{{11}}\end{array}\)
Câu 2
Phương pháp:
Thực hiện bài toán thứ tự thực hiện phép tính ngược để tìm x.
Cách giải:
a)
\(\begin{array}{l}\dfrac{3}{7} + x = \dfrac{4}{5}\\\,\,\,\,\,\,\,\,\,x = \dfrac{4}{5} - \dfrac{3}{7}\\\,\,\,\,\,\,\,\,\,x = \dfrac{{13}}{{35}}\end{array}\)
Vậy \(x = \dfrac{{13}}{{35}}\)
b)
\(\begin{array}{l}\dfrac{x}{6} - \dfrac{1}{2} = \dfrac{2}{3}\\\dfrac{x}{6}\,\,\,\,\,\,\,\,\,\, = \dfrac{2}{3} + \dfrac{1}{2}\,\\\dfrac{x}{6}\,\,\,\,\,\,\,\,\,\, = \dfrac{7}{6}\,\\x\,\,\,\,\,\,\,\,\,\,\, = 7\end{array}\)
Vậy \(x = 7\)
c) \(\left( {3x - 1} \right)\left( {\dfrac{{ - 1}}{2}x + 5} \right) = 0\)
TH1:
\(\begin{array}{l}3x - 1 = 0\\x\,\,\,\,\,\,\,\,\,\,\, = 1\\x\,\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{3}\end{array}\)
TH2:
\(\begin{array}{l}\dfrac{{ - 1}}{2}x + 5 = 0\\\dfrac{{ - 1}}{2}x\,\,\,\,\,\,\,\,\,\,\, = - 5\\\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\,\, = - 5:\dfrac{{ - 1}}{2}\\\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\,\, = 10\end{array}\)1
Vậy \(x = \dfrac{1}{3}\) hoặc \(x = 10\)
Câu 3
Phương pháp:
a) Xác suất thực nghiệm của sự kiện = Số lần xảy ra sự kiện : Số lần thực hiện
b) Tính số lần cả hai đồng xu cùng xuất hiện mặt ngửa, sau đó tính xác suất của sự kiện xuất hiện hai đồng ngửa.
Cách giải:
a) Xác suất thực nghiệm của sự kiện xuất hiện một đồng ngửa, một đồng sấp là: \(\dfrac{{26}}{{50}} = \dfrac{{13}}{{25}}\)
b) Số lần xuất hiện hai đồng ngửa là: \(50 - 26 - 14 = 10\)(lần)
Xác suất thực nghiệm của sự kiện xuất hiện hai đồng xu cùng ngửa là: \(\dfrac{{10}}{{50}} = \dfrac{1}{5}\)
Câu 4
Phương pháp:
a) Tính tổng số lít sữa An uống sau hai ngày.
b) Tính tỉ số phần trăm: Lấy số thứ hai chia cho số thứ nhất rồi nhân với 100.
Cách giải:
a) Sau 2 ngày An uống số lít sữa là: \(0,25 + 0,3 = 0,55\)(lít)
b) Tỉ số phần trăm lượng sữa tươi An đã uống ngày 1 so với ngày thứ nhất là: \(0,3:0,25 = 1,2 = 120\% \)
Câu 5
Phương pháp:
Sử dụng tính chất trung điểm của đoạn thẳng.
Cách giải:
a) Hai tia trùng nhau gốc I là: IA và Ix
Hai tia đối nhau gốc I là: IA và IO
b) Vì I là trung điểm của đoạn OA nên \(OI = IA = \dfrac{1}{2}OA = \dfrac{1}{2}.6 = 3\left( {cm} \right)\)
Câu 6
Phương pháp:
Tìm hai số nguyên có tích là 11. Lần lượt xét các trường hợp của \(x - 1\) và \(y + 2\).
Cách giải:
Vì \(11 = 11.1 = \left( { - 11} \right).\left( { - 1} \right)\)nên ta có bảng sau:
\(x - 1\) | - 11 | - 1 | 1 | 11 |
\(y + 2\) | - 1 | - 11 | 11 | 1 |
\(x\) | - 10 | 0 | 2 | 12 |
\(y\) | - 3 | - 13 | 9 | - 1 |
Vậy \(\left( {x;y} \right) = \left( { - 10; - 3} \right)\); \(\left( {x;y} \right) = \left( {0; - 13} \right)\); \(\left( {x;y} \right) = \left( {2;9} \right)\) hoặc \(\left( {x;y} \right) = \left( {12; - 1} \right)\).
Đề thi học kì 2 Toán 6 - Đề số 7 tại giaitoan.edu.vn được xây dựng với mục tiêu đánh giá toàn diện kiến thức và kỹ năng của học sinh sau một học kỳ học tập. Đề thi bao gồm các chủ đề chính như số tự nhiên, số nguyên, phân số, phép tính với phân số, hình học cơ bản và giải toán có lời văn.
Đề thi được chia thành các phần nhỏ, mỗi phần tập trung vào một chủ đề cụ thể. Dưới đây là chi tiết nội dung của đề thi:
Việc luyện tập với Đề thi học kì 2 Toán 6 - Đề số 7 tại giaitoan.edu.vn mang lại nhiều lợi ích cho học sinh:
Để giúp học sinh tự học hiệu quả, giaitoan.edu.vn cung cấp đáp án và lời giải chi tiết cho từng bài tập trong đề thi. Học sinh có thể tham khảo đáp án để kiểm tra kết quả và hiểu rõ cách giải bài tập.
Để đạt kết quả tốt nhất khi làm Đề thi học kì 2 Toán 6 - Đề số 7, học sinh nên:
Ngoài Đề thi học kì 2 Toán 6 - Đề số 7, giaitoan.edu.vn còn cung cấp nhiều đề thi khác với các mức độ khó khác nhau. Học sinh có thể lựa chọn các đề thi phù hợp với năng lực của bản thân để luyện tập và nâng cao kiến thức.
Đề thi học kì 2 Toán 6 - Đề số 7 tại giaitoan.edu.vn là một công cụ hữu ích giúp học sinh ôn tập và chuẩn bị tốt nhất cho kỳ thi. Chúc các em học sinh đạt kết quả cao trong kỳ thi sắp tới!