Logo Header
  1. Môn Toán
  2. Đề thi giữa kì 2 Toán 6 - Đề số 1 - Kết nối tri thức

Đề thi giữa kì 2 Toán 6 - Đề số 1 - Kết nối tri thức

Đề thi giữa kì 2 Toán 6 - Đề số 1 - Kết nối tri thức

Chào mừng các em học sinh lớp 6 đến với đề thi giữa kì 2 môn Toán chương trình Kết nối tri thức. Đề thi này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong học kì.

Giaitoan.edu.vn cung cấp đề thi chính thức, đáp án chi tiết và lời giải bài tập giúp các em tự học hiệu quả.

Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Đề bài

    Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

    Câu 1:Giá trị của x trong biểu thức \(\dfrac{x}{4} = \dfrac{6}{{ - 12}}\) là:

    A. -8

    B. -2

    C. 8

    D. 2

    Câu 2:Hình bên có mấy tia:

    Đề thi giữa kì 2 Toán 6 - Đề số 1 - Kết nối tri thức 0 1

    A. 6

    B. 3

    C. 4

    D. 8

    Câu 3: \(\dfrac{2}{3}\) số tuổi của Mai cách đây 3 năm là 6 tuổi. Hỏi hiện nay Mai bao nhiêu tuổi?

    A. 15 tuổi.

    B. 12 tuổi.

    C. 9 tuổi.

    D. 6 tuổi.

    Câu 4:Khoảng cách giữa hai vị trí A và B thực tế là 1740m. Trên một bản đồ, khoảng cách đó dài 5,8cm. Tỉ lệ xích của bản đồ là:

    A. \(\dfrac{1}{{3000}}\).

    B. \(\dfrac{1}{{300000}}\).

    C. \(\dfrac{1}{{300}}\).

    D. \(\dfrac{1}{{30000}}\).

    Phần II. Tự luận (8 điểm):

    Bài 1: (2 điểm) Thực hiện phép tính (tính hợp lý nếu có thể):

    a) \(\dfrac{{ - 7}}{{16}} + \dfrac{3}{{16}}\)

    b) \(\dfrac{1}{7} + \dfrac{{ - 9}}{{27}} + \dfrac{{10}}{7} + \dfrac{{ - 4}}{7}\)

    c) \(\dfrac{4}{9}.\dfrac{{ - 7}}{{26}} + \dfrac{{45}}{{ - 26}}.\dfrac{4}{9} + \dfrac{1}{3}\)

    Bài 2:(1,5 điểm)Tìm x, biết:

    a) \(x - \dfrac{{ - 1}}{5} = 1\dfrac{1}{2}\)

    b) \( - \dfrac{1}{2} + \left( {x - \dfrac{5}{{11}}} \right) = \dfrac{{ - 3}}{4}\)

    c) \(\dfrac{3}{4} + \left( {\dfrac{2}{5} - x} \right) = \dfrac{1}{4}\)

    Bài 3:(1,5 điểm)Khối 6 của một trường có 4 lớp. Số học sinh lớp 6A1 bằng \(\dfrac{2}{7}\) tổng số học sinh của ba lớp còn lại. Số học sinh lớp 6A2 bằng \(\dfrac{{11}}{{45}}\) tổng số học sinh khối 6. Số học sinh lớp 6A3 bằng \(\dfrac{7}{{27}}\) tổng số học sinh khối 6. Số học sinh lớp 6A4 là 37 bạn. Hỏi số học sinh lớp 6A1, 6A2, 6A3 là bao nhiêu?

    Bài 4: (2,5 điểm) Trên tia An lấy 2 điểm K và Q sao cho AK = 3cm, AQ = 4cm.

    a) Tính độ dài đoạn thẳng KQ.

    b) Lấy điểm C trên tia Am là tia đối của tia An sao cho AC = 3cm, tính CK. Điểm A có là trung điểm của đoạn thẳng CK không? Vì sao?

    c) Lấy điểm B là trung điểm của đoạn thẳng CA. So sánh BK và AQ?

    Bài 5:(0,5 điểm)Tính giá trị của biểu thức: \(A = \dfrac{7}{{1.2}} + \dfrac{7}{{2.3}} + \dfrac{7}{{3.4}} + \ldots + \dfrac{7}{{2011.2012}}\)

    Lời giải

      Phần I: Trắc nghiệm

      1. B

      2. A

      3. B

      4. D

      Câu 1

      Phương pháp:

      Đưa về hai phân số cùng mẫu và so sánh hai phân số bằng nhau hoặc nhân chéo.

      Cách giải:

      Cách 1:

      \(\dfrac{x}{4} = \dfrac{6}{{ - 12}}\)

      \(\begin{array}{l}\dfrac{{3x}}{{12}} = \dfrac{{ - 6}}{{12}}\\3x = - 6\\x = - 2\end{array}\)

      Cách 2:

      \(\begin{array}{l}\dfrac{x}{4} = \dfrac{6}{{ - 12}}\\x = \dfrac{{4.6}}{{ - 12}}\\x = - 2\end{array}\)

      Chọn B.

      Câu 2

      Phương pháp:

      Hình gồm điểm O và một phần đường thẳng bị chia ra bởi điểm O được gọi là một tia gốc O.

      Cách giải:

      Hình trên có 6 tia: Ax, Ay, Bx, By, Cx, Cy.

      Chọn A.

      Câu 3

      Phương pháp:

      Tìm số tuổi của Mai cách đây 3 năm.

      Tìm số tuổi của Mai hiện tại.

      Cách giải:

      Số tuổi của Mai cách đây là năm là: \(6:\dfrac{2}{3} = 9\) (tuổi).

      Số tuổi của Mai hiện tại là: \(9 + 3 = 12\) (tuổi).

      Chọn B.

      Câu 4

      Phương pháp:

      Tỉ lệ xích là khoảng cách a giữa 2 điểm trên bản vẽ và khoảng cách b giữa 2 điểm trên thực tế.

      Cách giải:

      Đổi: 1740m = 174000 cm.

      Tỉ lệ xích của bản đồ là: \(\dfrac{{5,8}}{{174000}} = \dfrac{1}{{30000}}\).

      Chọn D.

      Chú ý khi giải: Phải quy đổi về cùng đơn vị đo độ dài.

      Phần II: Tự luận

      Bài 1

      Phương pháp

      a) Cộng hai phân số cùng mẫu.

      b) Nhóm thích hợp các phân số cùng mẫu.

      c) Sử dụng tính chất phân phối của phép nhân và phép cộng.

      Cách giải:

      a) \(\dfrac{{ - 7}}{{16}} + \dfrac{3}{{16}}\)

      \(\begin{array}{l} = \dfrac{{ - 7 + 3}}{{16}}\\ = \dfrac{{ - 4}}{{16}}\\ = \dfrac{{ - 1}}{4}\end{array}\)

      b) \(\dfrac{1}{7} + \dfrac{{ - 9}}{{27}} + \dfrac{{10}}{7} + \dfrac{{ - 4}}{7}\)

      \(\begin{array}{l} = \left( {\dfrac{1}{7} + \dfrac{{10}}{7} + \dfrac{{ - 4}}{7}} \right) + \dfrac{{ - 1}}{3}\\ = \dfrac{{1 + 10 - 4}}{7} + \dfrac{{ - 1}}{3}\\ = \dfrac{7}{7} + \dfrac{{ - 1}}{3}\\ = \dfrac{3}{3} + \dfrac{{ - 1}}{3}\\ = \dfrac{{3 - 1}}{3}\\ = \dfrac{2}{3}\end{array}\)

      c) \(\dfrac{4}{9}.\dfrac{{ - 7}}{{26}} + \dfrac{{45}}{{ - 26}}.\dfrac{4}{9} + \dfrac{1}{3}\)

      \(\begin{array}{l} = \dfrac{4}{9}.\left( {\dfrac{{ - 7}}{{26}} + \dfrac{{45}}{{ - 26}}} \right) + \dfrac{1}{3}\\ = \dfrac{4}{9}\left( {\dfrac{{ - 7}}{{26}} + \dfrac{{ - 45}}{{26}}} \right) + \dfrac{1}{3}\\ = \dfrac{4}{9}.\dfrac{{ - 7 - 45}}{{26}} + \dfrac{1}{3}\\ = \dfrac{4}{9}.\left( { - 2} \right) + \dfrac{1}{3}\\ = \dfrac{{ - 8}}{9} + \dfrac{3}{9}\\ = \dfrac{{ - 8 + 3}}{9}\\ = \dfrac{{ - 5}}{9}\end{array}\)

      Bài 2

      Phương pháp

      Chuyển vế để tìm được \(x\).

      Sử dụng phép tính giá trị lũy thừa của một số.

      Cách giải

      Áp dụng quy tắc chuyến vế và đổi dấu để tìm x.

      Cách giải:

      a) \(x - \frac{{ - 1}}{5} = 1\)

      \(\begin{array}{l}\frac{1}{2}x - \frac{{ - 1}}{5} = \frac{3}{2}\\x = \frac{3}{2} + \frac{{ - 1}}{5}\\x = \frac{{13}}{{10}}\end{array}\)

      Vậy \(x = \frac{{13}}{{10}}\)

      b) \( - \frac{1}{2} + \left( {x - \frac{5}{{11}}} \right) = \frac{{ - 3}}{4}\)

      \(\begin{array}{l}x - \frac{5}{{11}} = \frac{{ - 3}}{4} + \frac{1}{2}\\x - \frac{5}{{11}} = \frac{{ - 1}}{4}\\x = \frac{{ - 1}}{4} + \frac{5}{{11}}\\x = \frac{9}{{44}}\end{array}\)

      Vậy \(x = \frac{9}{{44}}\)

      c) \(\frac{3}{4} + \left( {\frac{2}{5} - x} \right) = \frac{1}{4}\)

      \(\frac{2}{5} - x = \frac{1}{4} - \frac{3}{4}\)

      \(\frac{2}{5} - x = {\rm{\;}} - \frac{1}{2}\)

      \(x = \frac{2}{5} + \frac{1}{2}\)

      \(x = \frac{9}{{10}}\)

      Vậy \(x = \frac{9}{{10}}\)

      Bài 3

      Phương pháp

      So sánh số học sinh lớp 6A1 với tổng số học sinh khối 6.

      So sánh số học sinh lớp 6A4 với tổng số học sinh khối 6.

      Tính số học sinh khối 6, từ đó tính số học sinh mỗi lớp 6A1, 6A2, 6A3.

      Cách giải:

      Vì số học sinh lớp 6A1 bằng \(\dfrac{2}{7}\) tổng số học sinh 3 lớp còn lại => Số học sinh lớp 6A1 bằng \(\dfrac{2}{9}\) tổng số học sinh khối 6.

      Số học sinh lớp 6A4 bằng \(1 - \dfrac{2}{9} - \dfrac{{11}}{{45}} - \dfrac{7}{{27}} = \dfrac{{37}}{{135}}\) (tổng số học sinh khối 6)

      Số học sinh khối 6 là: \(37:\dfrac{{37}}{{135}} = 135\) (học sinh).

      Số học sinh lớp 6A1 là: \(135.\dfrac{2}{9} = 30\) (học sinh).

      Số học sinh lớp 6A2 là: \(135.\dfrac{{11}}{{45}} = 33\) (học sinh).

      Số học sinh lớp 6A3 là: \(135.\dfrac{7}{{27}} = 35\) (học sinh).

      Vậy lớp 6A1 có 30 học sinh, lớp 6A2 có 33 học sinh, lớp 6A3 có 35 học sinh.

      Bài 4

      Phương pháp

      a) Chứng minh K nằm giữa A và Q và suy ra AK + KQ = AQ.

      b) Chứng minh A nằm giữa C và K. Tính CK = AC + AK.

      Chỉ ra A nằm giữa C, K và AC = AK. Từ đó suy ra A là trung điểm của CK.

      c) Tính BA.

      Chứng minh A nằm giữa B và K. Tính BK = BA + AK.

      So sánh BK và AQ.

      Cách giải:

      Đề thi giữa kì 2 Toán 6 - Đề số 1 - Kết nối tri thức 1 1

       a) Vì AK < AQ (3cm < 4cm) nên K nằm giữa A và Q.

      => AK + KQ = AQ

      => 3 + KQ = 4

      => KQ = 4 – 3

      => KQ = 1 (cm)

      b) Vì C và K nằm trên hai tia đối An và Am nên A nằm giữa C và K.

      => CK = AC + AK

      => CK = 3 + 3

      => CK = 6 (cm)

      Ta có: A nằm giữa C và K.

      AC = AK = 3cm.

      => A là trung điểm của CK.

      c) Vì B là trung điểm của AC nên BA = AC : 2 = 3 : 2 = 1,5 (cm).

      Vì B, K nằm trên hai tia đối nhau An và Am nên A nằm giữa B và K.

      => BK = BA + AK

      => BK = 1,5 + 3

      => BK = 4,5 (cm)

      Mà AQ = 4 (cm)

      => BK > AQ.

      Bài 5

      Phương pháp

      Nhận xét:

       \(\dfrac{1}{{1.2}} = 1 - \dfrac{1}{2};\) \(\dfrac{1}{{2.3}} = \dfrac{1}{2} - \dfrac{1}{3};\)\(\dfrac{1}{{3.4}} = \dfrac{1}{3} - \dfrac{1}{4};\)…; \(\dfrac{1}{{2011.2012}} = \dfrac{1}{{2011}} - \dfrac{1}{{2012}}\) sau đó rút gọn các cặp phân số đối nhau rồi thực hiện tính.

      Cách giải:

      \(A = \dfrac{7}{{1.2}} + \dfrac{7}{{2.3}} + \dfrac{7}{{3.4}} + \ldots + \dfrac{7}{{2011.2012}}\)

      \( = 7.\left( {\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \ldots + \dfrac{1}{{2011.2012}}} \right)\)

      \( = 7.\left( {1 - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + \ldots + \dfrac{1}{{2011}} - \dfrac{1}{{2012}}} \right)\)

      \( = 7.\left( {1 - \dfrac{1}{{2012}}} \right) = \dfrac{{14077}}{{2012}}\)

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải
      • Tải về

      Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

      Câu 1:Giá trị của x trong biểu thức \(\dfrac{x}{4} = \dfrac{6}{{ - 12}}\) là:

      A. -8

      B. -2

      C. 8

      D. 2

      Câu 2:Hình bên có mấy tia:

      Đề thi giữa kì 2 Toán 6 - Đề số 1 - Kết nối tri thức 1

      A. 6

      B. 3

      C. 4

      D. 8

      Câu 3: \(\dfrac{2}{3}\) số tuổi của Mai cách đây 3 năm là 6 tuổi. Hỏi hiện nay Mai bao nhiêu tuổi?

      A. 15 tuổi.

      B. 12 tuổi.

      C. 9 tuổi.

      D. 6 tuổi.

      Câu 4:Khoảng cách giữa hai vị trí A và B thực tế là 1740m. Trên một bản đồ, khoảng cách đó dài 5,8cm. Tỉ lệ xích của bản đồ là:

      A. \(\dfrac{1}{{3000}}\).

      B. \(\dfrac{1}{{300000}}\).

      C. \(\dfrac{1}{{300}}\).

      D. \(\dfrac{1}{{30000}}\).

      Phần II. Tự luận (8 điểm):

      Bài 1: (2 điểm) Thực hiện phép tính (tính hợp lý nếu có thể):

      a) \(\dfrac{{ - 7}}{{16}} + \dfrac{3}{{16}}\)

      b) \(\dfrac{1}{7} + \dfrac{{ - 9}}{{27}} + \dfrac{{10}}{7} + \dfrac{{ - 4}}{7}\)

      c) \(\dfrac{4}{9}.\dfrac{{ - 7}}{{26}} + \dfrac{{45}}{{ - 26}}.\dfrac{4}{9} + \dfrac{1}{3}\)

      Bài 2:(1,5 điểm)Tìm x, biết:

      a) \(x - \dfrac{{ - 1}}{5} = 1\dfrac{1}{2}\)

      b) \( - \dfrac{1}{2} + \left( {x - \dfrac{5}{{11}}} \right) = \dfrac{{ - 3}}{4}\)

      c) \(\dfrac{3}{4} + \left( {\dfrac{2}{5} - x} \right) = \dfrac{1}{4}\)

      Bài 3:(1,5 điểm)Khối 6 của một trường có 4 lớp. Số học sinh lớp 6A1 bằng \(\dfrac{2}{7}\) tổng số học sinh của ba lớp còn lại. Số học sinh lớp 6A2 bằng \(\dfrac{{11}}{{45}}\) tổng số học sinh khối 6. Số học sinh lớp 6A3 bằng \(\dfrac{7}{{27}}\) tổng số học sinh khối 6. Số học sinh lớp 6A4 là 37 bạn. Hỏi số học sinh lớp 6A1, 6A2, 6A3 là bao nhiêu?

      Bài 4: (2,5 điểm) Trên tia An lấy 2 điểm K và Q sao cho AK = 3cm, AQ = 4cm.

      a) Tính độ dài đoạn thẳng KQ.

      b) Lấy điểm C trên tia Am là tia đối của tia An sao cho AC = 3cm, tính CK. Điểm A có là trung điểm của đoạn thẳng CK không? Vì sao?

      c) Lấy điểm B là trung điểm của đoạn thẳng CA. So sánh BK và AQ?

      Bài 5:(0,5 điểm)Tính giá trị của biểu thức: \(A = \dfrac{7}{{1.2}} + \dfrac{7}{{2.3}} + \dfrac{7}{{3.4}} + \ldots + \dfrac{7}{{2011.2012}}\)

      Phần I: Trắc nghiệm

      1. B

      2. A

      3. B

      4. D

      Câu 1

      Phương pháp:

      Đưa về hai phân số cùng mẫu và so sánh hai phân số bằng nhau hoặc nhân chéo.

      Cách giải:

      Cách 1:

      \(\dfrac{x}{4} = \dfrac{6}{{ - 12}}\)

      \(\begin{array}{l}\dfrac{{3x}}{{12}} = \dfrac{{ - 6}}{{12}}\\3x = - 6\\x = - 2\end{array}\)

      Cách 2:

      \(\begin{array}{l}\dfrac{x}{4} = \dfrac{6}{{ - 12}}\\x = \dfrac{{4.6}}{{ - 12}}\\x = - 2\end{array}\)

      Chọn B.

      Câu 2

      Phương pháp:

      Hình gồm điểm O và một phần đường thẳng bị chia ra bởi điểm O được gọi là một tia gốc O.

      Cách giải:

      Hình trên có 6 tia: Ax, Ay, Bx, By, Cx, Cy.

      Chọn A.

      Câu 3

      Phương pháp:

      Tìm số tuổi của Mai cách đây 3 năm.

      Tìm số tuổi của Mai hiện tại.

      Cách giải:

      Số tuổi của Mai cách đây là năm là: \(6:\dfrac{2}{3} = 9\) (tuổi).

      Số tuổi của Mai hiện tại là: \(9 + 3 = 12\) (tuổi).

      Chọn B.

      Câu 4

      Phương pháp:

      Tỉ lệ xích là khoảng cách a giữa 2 điểm trên bản vẽ và khoảng cách b giữa 2 điểm trên thực tế.

      Cách giải:

      Đổi: 1740m = 174000 cm.

      Tỉ lệ xích của bản đồ là: \(\dfrac{{5,8}}{{174000}} = \dfrac{1}{{30000}}\).

      Chọn D.

      Chú ý khi giải: Phải quy đổi về cùng đơn vị đo độ dài.

      Phần II: Tự luận

      Bài 1

      Phương pháp

      a) Cộng hai phân số cùng mẫu.

      b) Nhóm thích hợp các phân số cùng mẫu.

      c) Sử dụng tính chất phân phối của phép nhân và phép cộng.

      Cách giải:

      a) \(\dfrac{{ - 7}}{{16}} + \dfrac{3}{{16}}\)

      \(\begin{array}{l} = \dfrac{{ - 7 + 3}}{{16}}\\ = \dfrac{{ - 4}}{{16}}\\ = \dfrac{{ - 1}}{4}\end{array}\)

      b) \(\dfrac{1}{7} + \dfrac{{ - 9}}{{27}} + \dfrac{{10}}{7} + \dfrac{{ - 4}}{7}\)

      \(\begin{array}{l} = \left( {\dfrac{1}{7} + \dfrac{{10}}{7} + \dfrac{{ - 4}}{7}} \right) + \dfrac{{ - 1}}{3}\\ = \dfrac{{1 + 10 - 4}}{7} + \dfrac{{ - 1}}{3}\\ = \dfrac{7}{7} + \dfrac{{ - 1}}{3}\\ = \dfrac{3}{3} + \dfrac{{ - 1}}{3}\\ = \dfrac{{3 - 1}}{3}\\ = \dfrac{2}{3}\end{array}\)

      c) \(\dfrac{4}{9}.\dfrac{{ - 7}}{{26}} + \dfrac{{45}}{{ - 26}}.\dfrac{4}{9} + \dfrac{1}{3}\)

      \(\begin{array}{l} = \dfrac{4}{9}.\left( {\dfrac{{ - 7}}{{26}} + \dfrac{{45}}{{ - 26}}} \right) + \dfrac{1}{3}\\ = \dfrac{4}{9}\left( {\dfrac{{ - 7}}{{26}} + \dfrac{{ - 45}}{{26}}} \right) + \dfrac{1}{3}\\ = \dfrac{4}{9}.\dfrac{{ - 7 - 45}}{{26}} + \dfrac{1}{3}\\ = \dfrac{4}{9}.\left( { - 2} \right) + \dfrac{1}{3}\\ = \dfrac{{ - 8}}{9} + \dfrac{3}{9}\\ = \dfrac{{ - 8 + 3}}{9}\\ = \dfrac{{ - 5}}{9}\end{array}\)

      Bài 2

      Phương pháp

      Chuyển vế để tìm được \(x\).

      Sử dụng phép tính giá trị lũy thừa của một số.

      Cách giải

      Áp dụng quy tắc chuyến vế và đổi dấu để tìm x.

      Cách giải:

      a) \(x - \frac{{ - 1}}{5} = 1\)

      \(\begin{array}{l}\frac{1}{2}x - \frac{{ - 1}}{5} = \frac{3}{2}\\x = \frac{3}{2} + \frac{{ - 1}}{5}\\x = \frac{{13}}{{10}}\end{array}\)

      Vậy \(x = \frac{{13}}{{10}}\)

      b) \( - \frac{1}{2} + \left( {x - \frac{5}{{11}}} \right) = \frac{{ - 3}}{4}\)

      \(\begin{array}{l}x - \frac{5}{{11}} = \frac{{ - 3}}{4} + \frac{1}{2}\\x - \frac{5}{{11}} = \frac{{ - 1}}{4}\\x = \frac{{ - 1}}{4} + \frac{5}{{11}}\\x = \frac{9}{{44}}\end{array}\)

      Vậy \(x = \frac{9}{{44}}\)

      c) \(\frac{3}{4} + \left( {\frac{2}{5} - x} \right) = \frac{1}{4}\)

      \(\frac{2}{5} - x = \frac{1}{4} - \frac{3}{4}\)

      \(\frac{2}{5} - x = {\rm{\;}} - \frac{1}{2}\)

      \(x = \frac{2}{5} + \frac{1}{2}\)

      \(x = \frac{9}{{10}}\)

      Vậy \(x = \frac{9}{{10}}\)

      Bài 3

      Phương pháp

      So sánh số học sinh lớp 6A1 với tổng số học sinh khối 6.

      So sánh số học sinh lớp 6A4 với tổng số học sinh khối 6.

      Tính số học sinh khối 6, từ đó tính số học sinh mỗi lớp 6A1, 6A2, 6A3.

      Cách giải:

      Vì số học sinh lớp 6A1 bằng \(\dfrac{2}{7}\) tổng số học sinh 3 lớp còn lại => Số học sinh lớp 6A1 bằng \(\dfrac{2}{9}\) tổng số học sinh khối 6.

      Số học sinh lớp 6A4 bằng \(1 - \dfrac{2}{9} - \dfrac{{11}}{{45}} - \dfrac{7}{{27}} = \dfrac{{37}}{{135}}\) (tổng số học sinh khối 6)

      Số học sinh khối 6 là: \(37:\dfrac{{37}}{{135}} = 135\) (học sinh).

      Số học sinh lớp 6A1 là: \(135.\dfrac{2}{9} = 30\) (học sinh).

      Số học sinh lớp 6A2 là: \(135.\dfrac{{11}}{{45}} = 33\) (học sinh).

      Số học sinh lớp 6A3 là: \(135.\dfrac{7}{{27}} = 35\) (học sinh).

      Vậy lớp 6A1 có 30 học sinh, lớp 6A2 có 33 học sinh, lớp 6A3 có 35 học sinh.

      Bài 4

      Phương pháp

      a) Chứng minh K nằm giữa A và Q và suy ra AK + KQ = AQ.

      b) Chứng minh A nằm giữa C và K. Tính CK = AC + AK.

      Chỉ ra A nằm giữa C, K và AC = AK. Từ đó suy ra A là trung điểm của CK.

      c) Tính BA.

      Chứng minh A nằm giữa B và K. Tính BK = BA + AK.

      So sánh BK và AQ.

      Cách giải:

      Đề thi giữa kì 2 Toán 6 - Đề số 1 - Kết nối tri thức 2

       a) Vì AK < AQ (3cm < 4cm) nên K nằm giữa A và Q.

      => AK + KQ = AQ

      => 3 + KQ = 4

      => KQ = 4 – 3

      => KQ = 1 (cm)

      b) Vì C và K nằm trên hai tia đối An và Am nên A nằm giữa C và K.

      => CK = AC + AK

      => CK = 3 + 3

      => CK = 6 (cm)

      Ta có: A nằm giữa C và K.

      AC = AK = 3cm.

      => A là trung điểm của CK.

      c) Vì B là trung điểm của AC nên BA = AC : 2 = 3 : 2 = 1,5 (cm).

      Vì B, K nằm trên hai tia đối nhau An và Am nên A nằm giữa B và K.

      => BK = BA + AK

      => BK = 1,5 + 3

      => BK = 4,5 (cm)

      Mà AQ = 4 (cm)

      => BK > AQ.

      Bài 5

      Phương pháp

      Nhận xét:

       \(\dfrac{1}{{1.2}} = 1 - \dfrac{1}{2};\) \(\dfrac{1}{{2.3}} = \dfrac{1}{2} - \dfrac{1}{3};\)\(\dfrac{1}{{3.4}} = \dfrac{1}{3} - \dfrac{1}{4};\)…; \(\dfrac{1}{{2011.2012}} = \dfrac{1}{{2011}} - \dfrac{1}{{2012}}\) sau đó rút gọn các cặp phân số đối nhau rồi thực hiện tính.

      Cách giải:

      \(A = \dfrac{7}{{1.2}} + \dfrac{7}{{2.3}} + \dfrac{7}{{3.4}} + \ldots + \dfrac{7}{{2011.2012}}\)

      \( = 7.\left( {\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \ldots + \dfrac{1}{{2011.2012}}} \right)\)

      \( = 7.\left( {1 - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + \ldots + \dfrac{1}{{2011}} - \dfrac{1}{{2012}}} \right)\)

      \( = 7.\left( {1 - \dfrac{1}{{2012}}} \right) = \dfrac{{14077}}{{2012}}\)

      Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Đề thi giữa kì 2 Toán 6 - Đề số 1 - Kết nối tri thức – nội dung then chốt trong chuyên mục sgk toán lớp 6 trên nền tảng toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

      Đề thi giữa kì 2 Toán 6 - Đề số 1 - Kết nối tri thức: Tổng quan và Hướng dẫn Giải Chi Tiết

      Đề thi giữa kì 2 Toán 6 - Đề số 1 chương trình Kết nối tri thức là một bài kiểm tra quan trọng giúp đánh giá mức độ nắm vững kiến thức của học sinh sau nửa học kì. Đề thi bao gồm các dạng bài tập khác nhau, tập trung vào các chủ đề chính đã được học, như số tự nhiên, phân số, số thập phân, hình học cơ bản và các bài toán thực tế.

      Cấu trúc Đề thi giữa kì 2 Toán 6 - Đề số 1 - Kết nối tri thức

      Thông thường, đề thi giữa kì 2 Toán 6 - Đề số 1 - Kết nối tri thức sẽ có cấu trúc gồm các phần sau:

      1. Phần trắc nghiệm: Kiểm tra khả năng hiểu và vận dụng kiến thức cơ bản.
      2. Phần tự luận: Yêu cầu học sinh trình bày lời giải chi tiết cho các bài toán.
      3. Bài toán thực tế: Đánh giá khả năng áp dụng kiến thức vào giải quyết các vấn đề thực tế.

      Nội dung chính trong Đề thi giữa kì 2 Toán 6 - Đề số 1 - Kết nối tri thức

      Các chủ đề chính thường xuất hiện trong đề thi bao gồm:

      • Số tự nhiên: Các phép toán cộng, trừ, nhân, chia, tính chất chia hết, ước và bội.
      • Phân số: Các phép toán cộng, trừ, nhân, chia phân số, so sánh phân số, rút gọn phân số.
      • Số thập phân: Các phép toán cộng, trừ, nhân, chia số thập phân, so sánh số thập phân, chuyển đổi giữa phân số và số thập phân.
      • Hình học cơ bản: Điểm, đường thẳng, đoạn thẳng, góc, tam giác, hình vuông, hình chữ nhật.
      • Bài toán thực tế: Các bài toán liên quan đến tính toán diện tích, chu vi, thời gian, quãng đường.

      Hướng dẫn Giải Đề thi giữa kì 2 Toán 6 - Đề số 1 - Kết nối tri thức

      Để đạt kết quả tốt trong đề thi giữa kì 2 Toán 6 - Đề số 1 - Kết nối tri thức, học sinh cần:

      • Nắm vững kiến thức cơ bản: Hiểu rõ các định nghĩa, tính chất và quy tắc đã học.
      • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài.
      • Đọc kỹ đề bài: Hiểu rõ yêu cầu của bài toán trước khi bắt đầu giải.
      • Trình bày lời giải rõ ràng: Viết các bước giải một cách logic và dễ hiểu.
      • Kiểm tra lại kết quả: Đảm bảo rằng kết quả cuối cùng là chính xác.

      Ví dụ minh họa một bài toán trong Đề thi giữa kì 2 Toán 6 - Đề số 1 - Kết nối tri thức

      Bài toán: Một khu vườn hình chữ nhật có chiều dài 12m và chiều rộng 8m. Tính chu vi và diện tích của khu vườn đó.

      Giải:

      • Chu vi khu vườn: (12 + 8) x 2 = 40m
      • Diện tích khu vườn: 12 x 8 = 96 m2

      Tài liệu ôn tập hữu ích

      Để chuẩn bị tốt nhất cho đề thi giữa kì 2 Toán 6 - Đề số 1 - Kết nối tri thức, học sinh có thể tham khảo các tài liệu sau:

      • Sách giáo khoa Toán 6 - Kết nối tri thức
      • Sách bài tập Toán 6 - Kết nối tri thức
      • Các đề thi thử giữa kì 2 Toán 6 - Kết nối tri thức
      • Các video bài giảng Toán 6 trên giaitoan.edu.vn

      Lời khuyên

      Hãy dành thời gian ôn tập kiến thức một cách hệ thống và làm nhiều bài tập để tự tin bước vào kỳ thi giữa kì 2 Toán 6 - Đề số 1 - Kết nối tri thức. Chúc các em đạt kết quả tốt nhất!

      Bảng tổng hợp các dạng bài tập thường gặp

      Dạng bài tậpChủ đềVí dụ
      Tính toánSố tự nhiên, phân số, số thập phânTính 123 + 456 - 789
      Giải bài toánỨng dụng kiến thức vào thực tếMột người mua 5kg gạo với giá 15.000 đồng/kg. Hỏi người đó phải trả bao nhiêu tiền?
      Chứng minhHình họcChứng minh hai tam giác bằng nhau

      Tài liệu, đề thi và đáp án Toán 6