Logo Header
  1. Môn Toán
  2. Đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức

Đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức

Đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức

Chào mừng các em học sinh đến với đề thi giữa kì 2 Toán 6 - Đề số 2 chương trình Kết nối tri thức.

Đề thi này được thiết kế để giúp các em ôn luyện và đánh giá kiến thức đã học trong giai đoạn giữa kì 2.

Giaitoan.edu.vn cung cấp đề thi kèm đáp án chi tiết, giúp các em tự học và nâng cao khả năng giải toán.

Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Đề bài

    Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

    Câu 1:Cho 5 điểm trong đó không có ba điểm nào thẳng hàng. Qua hai điểm vẽ được một đường thẳng. Số đường thẳng vẽ được là:

    A. 10

    B. 9

    C. 12

    D. 13

    Câu 2:Cho hình vẽ. Trong các khẳng định sau, khẳng định nào là sai?

    Đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức 0 1

    A. Điểm O là giao điểm của hai đường thẳng AB và CD.

    B. Điểm O thuộc đoạn thẳng CD.

    C. Điểm O thuộc đường thẳng AB.

    D. Điểm O thuộc đoạn thẳng AB.

    Câu 3: Bạn Hòa đi siêu thị mua thực phẩm tổng hết 500 nghìn đồng. Ngày hôm đó siêu thị giảm giá 20%. Số tiền Hòa phải trả nếu không được giảm là:

    A. 600 nghìn đồng

    B. 625 nghìn đồng

    C. 450 nghìn đồng

    D. 400 nghìn đồng

    Câu 4:Phân số nào sau đây bằng phân số \(\dfrac{{ - 2}}{5}\)?

    A. \(\dfrac{6}{{ - 15}}\)

    B. \( - \dfrac{2}{{10}}\)

    C. \(\dfrac{4}{{10}}\)

    D. \( - \dfrac{5}{2}\)

    Phần II. Tự luận (8 điểm):

    Bài 1: (2 điểm) Thực hiện các phép tính:

    a) \(\left( {\dfrac{7}{{16}} + \dfrac{{ - 1}}{8} + \dfrac{9}{{32}}} \right):\dfrac{5}{4}\)

    b) \(10\dfrac{2}{9} + 2\dfrac{3}{5} - 6\dfrac{2}{9}\)

    c) \(\dfrac{{ - 25}}{{30}}.\dfrac{{37}}{{44}} + \dfrac{{ - 25}}{{30}}.\dfrac{{13}}{{44}} + \dfrac{{ - 25}}{{30}}.\dfrac{{ - 6}}{{44}}\)

    Bài 2:(1,5 điểm)Tìm x biết:

    a) \( - x - \dfrac{3}{5} = - \dfrac{1}{{10}}\)

    b) \(\dfrac{2}{3}:x = 2,4 - \dfrac{4}{5}\)

    \(\dfrac{5}{4}\left( {x - \dfrac{3}{5}} \right) = \dfrac{{ - 1}}{8}\)

    Bài 3 (1,5 điểm) Ba khối lớp 6, 7, 8 của một trường có 1008 học sinh. Số học sinh khối 6 bằng \(\dfrac{5}{{14}}\) tổng số học sinh. Số học sinh khối 7 bằng \(\dfrac{1}{3}\) tổng số học sinh, còn lại là học sinh khối 8. Tính số học sinh mỗi khối của trường đó?

    Bài 4: (2,5 điểm) Vẽ đường thẳng xy. Lấy điểm O trên đường thẳng xy, điểm A thuộc tia Ox, điểm B thuộc tia Oy (A và B khác điểm O).

    1. Trong 3 điểm A, O, B điểm nào nằm giữa hai điểm còn lại?

    2. Lấy điểm M nằm giữa hai điểm O và A. Điểm O có nằm giữa hai điểm B và M không?

    3. Nếu OA = 3cm, AB = 6cm thì điểm O có là trung điểm của đoạn thẳng AB không?

    Bài 5:(0,5 điểm)Tìm các số nguyên n để biểu thức sau nhận giá trị là số nguyên: \(A = \dfrac{{3n - 4}}{{3 - n}}\).

    Lời giải

      Phần I: Trắc nghiệm

      1. A

      2. D

      3. B

      4. A

      Câu 1

      Phương pháp:

      Cứ qua 2 điểm ta vẽ 1 đường thẳng nên với \(n\) điểm không thẳng hàng có tất cả: \(\dfrac{{n.\left( {n - 1} \right)}}{2}\) (đường thẳng)

      Cách giải:

      Qua 5 điểm trong đó không có 3 điểm nào thẳng hàng ta vẽ được: \(\dfrac{{4.5}}{2} = 10\) (đường thẳng)

      Chọn A.

      Câu 2

      Phương pháp:

      Quan sát hình vẽ.

      Cách giải:

      Điểm O nằm ngoài đoạn thẳng AB.

      Vậy D sai.

      Chọn D.

      Câu 3

      Phương pháp:

      Sau khi được giảm 20%, số tiền phải trả bằng 80% số tiền ban đầu. Ta lấy số hết Hòa đã trả chia 80%.

      Cách giải:

      Số tiền Hòa phải trả là: \(500:\dfrac{{100 - 20}}{{100}} = 625\)(nghìn đồng)

      Chọn B.

      Câu 4

      Phương pháp

      Kiểm tra tích \(a.d\)và \(b.c\) có bằng nhau hay không.

      Cách giải:

      Ta có: \(6.5 = \left( { - 2} \right).\left( { - 15} \right)\) nên \(\dfrac{{ - 2}}{5} = \dfrac{6}{{ - 15}}\)

      Chọn A.

      Phần II: Tự luận

      Bài 1

      Phương pháp

      a) Thực hiện phép tính trong ngoặc trước, ngoài ngoặc sau.

      b) Nhóm hai hỗn số có phần phân số giống nhau, sau đó cộng với hỗn số còn lại.

      c) Áp dụng tính chất phân phối của phép nhân và phép cộng.

      Cách giải:

      a) \(\left( {\dfrac{7}{{16}} + \dfrac{{ - 1}}{8} + \dfrac{9}{{32}}} \right):\dfrac{5}{4} = \left( {\dfrac{7}{{16}} + \dfrac{{ - 2}}{{16}} + \dfrac{9}{{32}}} \right):\dfrac{5}{4} = \left( {\dfrac{5}{{16}} + \dfrac{9}{{32}}} \right):\dfrac{5}{4} = \left( {\dfrac{{10}}{{32}} + \dfrac{9}{{32}}} \right):\dfrac{5}{4} = \dfrac{{19}}{{32}}:\dfrac{5}{4} = \dfrac{{19}}{{40}}\)

      b) \(10\dfrac{2}{9} + 2\dfrac{3}{5} - 6\dfrac{2}{9} = \left( {10\dfrac{2}{9} - 6\dfrac{2}{9}} \right) + 2\dfrac{3}{5} = 4 + \dfrac{{13}}{5} = \dfrac{{33}}{5}\)

      c) \(\dfrac{{ - 25}}{{30}}.\dfrac{{37}}{{44}} + \dfrac{{ - 25}}{{30}}.\dfrac{{13}}{{44}} + \dfrac{{ - 25}}{{30}}.\dfrac{{ - 6}}{{44}} = \dfrac{{ - 25}}{{30}}.\left( {\dfrac{{37}}{{44}} + \dfrac{{13}}{{44}} + \dfrac{{ - 6}}{{44}}} \right) = \dfrac{{ - 5}}{6}.\dfrac{{44}}{{44}} = \dfrac{{ - 5}}{6}\)

      Bài 2

      Phương pháp

      Thực hiện bài toán thứ tự thực hiện phép tính ngược để tìm x.

      Cách giải:

      a) \( - x - \dfrac{3}{5} = - \dfrac{1}{{10}}\)

      \(\begin{array}{l}x = \dfrac{1}{{10}} - \dfrac{3}{5}\\x = \dfrac{1}{{10}} - \dfrac{6}{{10}}\\x = - \dfrac{5}{{10}}\\x = - \dfrac{1}{2}\end{array}\)

      Vậy \(x = \dfrac{{ - 1}}{2}.\)

      b) \(\dfrac{2}{3}:x = 2,4 - \dfrac{4}{5}\)

      \(\begin{array}{l}\dfrac{2}{3}:x = \dfrac{{12}}{5} - \dfrac{4}{5}\\\dfrac{2}{3}:x = \dfrac{8}{5}\\\,\,\,\,\,\,\,x = \dfrac{2}{3}:\dfrac{8}{5}\\\,\,\,\,\,\,\,x = \dfrac{5}{{12}}\end{array}\)

      Vậy \(x = \dfrac{5}{{12}}.\)

      c) \(\dfrac{5}{4}\left( {x - \dfrac{3}{5}} \right) = \dfrac{{ - 1}}{8}\)

      \(\begin{array}{l}x - \dfrac{3}{5} = \dfrac{{ - 1}}{8}:\dfrac{5}{4}\\x - \dfrac{3}{5} = \dfrac{{ - 1}}{{10}}\\x\,\,\,\,\,\,\,\,\,\, = \dfrac{{ - 1}}{{10}} + \dfrac{3}{5}\\x\,\,\,\,\,\,\,\,\,\, = \dfrac{{ - 1}}{{10}} + \dfrac{6}{{10}}\\x\,\,\,\,\,\,\,\,\,\, = \dfrac{5}{{10}} = \dfrac{1}{2}\end{array}\)

      Vậy \(x = \dfrac{1}{2}.\)

      Bài 3

      Phương pháp:

      Tính số học sinh khối 6 bằng \(\dfrac{5}{{14}}\). Tổng số học sinh.

      Tính số học sinh khối 7 bằng \(\dfrac{1}{3}\). Tổng số học sinh

      Tính số học sinh khối 8 = Tổng số học sinh – (số học sinh khối 6 + số học sinh khối 7).

      Cách giải:

      Số học sinh khối 6 là: \(\dfrac{5}{{14}}.1008 = 360\) (học sinh).

      Số học sinh khối 7 là: \(\dfrac{1}{3}.1008 = 336\) (học sinh)

      Số học sinh khối 8 là: \(1008 - \left( {360 - 336} \right) = 312\) (học sinh).

      Bài 4

      Phương pháp:

      1. 2. Sử dụng hai tia đối nhau.

      3. Chứng minh thêm OA = OB, hết hợp O nằm giữa A và B đã chứng minh ở ý 1.

      Cách giải:

      Đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức 1 1

      1. Vì A thuộc tia Ox, B thuộc tia Oy.

      Mà Ox và Oy là hai tia đối nhau nên O nằm giữa A và B.

      2. Vì M nằm giữa O và A nên OM cũng chính là tia OA.

      Mà OA và OB là hai tia đối nhau nên OM và OB cũng là hai tia đối nhau.

      Suy ra O nằm giữa B và M.

      3. Vì O nằm giữa A và B nên AO + OB = AB

      Hay 3 + OB = 6.

      Suy ra OB = 6 – 3 = 3 (cm)

      Vì OA = OB (=3cm) và O nằm giữa A và B nên O là trung điểm của AB.

      Bài 5

      Phương pháp

      Phân tích \(A = a + \dfrac{b}{{3 - n}}\), với \(a,\,\,b \in \mathbb{Z}\).

      Để \(A \in \mathbb{Z}\) thì \(3 - n \in U\left( b \right)\).

      Cách giải:

      \(\begin{array}{l}A = \dfrac{{3n - 4}}{{3 - n}} = \dfrac{{3n - 9 + 5}}{{ - n + 3}}\\\,\,\,\,\, = \dfrac{{3n - 9}}{{ - n + 3}} + \dfrac{5}{{ - n + 3}}\\\,\,\,\,\, = \dfrac{{ - 3\left( { - n + 3} \right)}}{{ - n + 3}} + \dfrac{5}{{ - n + 3}}\\\,\,\,\,\, = - 3 + \dfrac{5}{{ - n + 3}}\end{array}\)

      Để A nhận giá trị nguyên thì \( - 3 + \dfrac{5}{{ - n + 3}} \in \mathbb{Z} \Rightarrow \dfrac{5}{{ - n + 3}} \in \mathbb{Z}\)\( \Rightarrow - n + 3 \in \left\{ { \pm 1; \pm 5} \right\}\)

      Ta có bảng giá trị sau:

      Đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức 1 2

      Vậy \(n \in \left\{ {2;4; - 2;8} \right\}\).

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải
      • Tải về

      Phần I: Trắc nghiệm (2 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

      Câu 1:Cho 5 điểm trong đó không có ba điểm nào thẳng hàng. Qua hai điểm vẽ được một đường thẳng. Số đường thẳng vẽ được là:

      A. 10

      B. 9

      C. 12

      D. 13

      Câu 2:Cho hình vẽ. Trong các khẳng định sau, khẳng định nào là sai?

      Đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức 1

      A. Điểm O là giao điểm của hai đường thẳng AB và CD.

      B. Điểm O thuộc đoạn thẳng CD.

      C. Điểm O thuộc đường thẳng AB.

      D. Điểm O thuộc đoạn thẳng AB.

      Câu 3: Bạn Hòa đi siêu thị mua thực phẩm tổng hết 500 nghìn đồng. Ngày hôm đó siêu thị giảm giá 20%. Số tiền Hòa phải trả nếu không được giảm là:

      A. 600 nghìn đồng

      B. 625 nghìn đồng

      C. 450 nghìn đồng

      D. 400 nghìn đồng

      Câu 4:Phân số nào sau đây bằng phân số \(\dfrac{{ - 2}}{5}\)?

      A. \(\dfrac{6}{{ - 15}}\)

      B. \( - \dfrac{2}{{10}}\)

      C. \(\dfrac{4}{{10}}\)

      D. \( - \dfrac{5}{2}\)

      Phần II. Tự luận (8 điểm):

      Bài 1: (2 điểm) Thực hiện các phép tính:

      a) \(\left( {\dfrac{7}{{16}} + \dfrac{{ - 1}}{8} + \dfrac{9}{{32}}} \right):\dfrac{5}{4}\)

      b) \(10\dfrac{2}{9} + 2\dfrac{3}{5} - 6\dfrac{2}{9}\)

      c) \(\dfrac{{ - 25}}{{30}}.\dfrac{{37}}{{44}} + \dfrac{{ - 25}}{{30}}.\dfrac{{13}}{{44}} + \dfrac{{ - 25}}{{30}}.\dfrac{{ - 6}}{{44}}\)

      Bài 2:(1,5 điểm)Tìm x biết:

      a) \( - x - \dfrac{3}{5} = - \dfrac{1}{{10}}\)

      b) \(\dfrac{2}{3}:x = 2,4 - \dfrac{4}{5}\)

      \(\dfrac{5}{4}\left( {x - \dfrac{3}{5}} \right) = \dfrac{{ - 1}}{8}\)

      Bài 3 (1,5 điểm) Ba khối lớp 6, 7, 8 của một trường có 1008 học sinh. Số học sinh khối 6 bằng \(\dfrac{5}{{14}}\) tổng số học sinh. Số học sinh khối 7 bằng \(\dfrac{1}{3}\) tổng số học sinh, còn lại là học sinh khối 8. Tính số học sinh mỗi khối của trường đó?

      Bài 4: (2,5 điểm) Vẽ đường thẳng xy. Lấy điểm O trên đường thẳng xy, điểm A thuộc tia Ox, điểm B thuộc tia Oy (A và B khác điểm O).

      1. Trong 3 điểm A, O, B điểm nào nằm giữa hai điểm còn lại?

      2. Lấy điểm M nằm giữa hai điểm O và A. Điểm O có nằm giữa hai điểm B và M không?

      3. Nếu OA = 3cm, AB = 6cm thì điểm O có là trung điểm của đoạn thẳng AB không?

      Bài 5:(0,5 điểm)Tìm các số nguyên n để biểu thức sau nhận giá trị là số nguyên: \(A = \dfrac{{3n - 4}}{{3 - n}}\).

      Phần I: Trắc nghiệm

      1. A

      2. D

      3. B

      4. A

      Câu 1

      Phương pháp:

      Cứ qua 2 điểm ta vẽ 1 đường thẳng nên với \(n\) điểm không thẳng hàng có tất cả: \(\dfrac{{n.\left( {n - 1} \right)}}{2}\) (đường thẳng)

      Cách giải:

      Qua 5 điểm trong đó không có 3 điểm nào thẳng hàng ta vẽ được: \(\dfrac{{4.5}}{2} = 10\) (đường thẳng)

      Chọn A.

      Câu 2

      Phương pháp:

      Quan sát hình vẽ.

      Cách giải:

      Điểm O nằm ngoài đoạn thẳng AB.

      Vậy D sai.

      Chọn D.

      Câu 3

      Phương pháp:

      Sau khi được giảm 20%, số tiền phải trả bằng 80% số tiền ban đầu. Ta lấy số hết Hòa đã trả chia 80%.

      Cách giải:

      Số tiền Hòa phải trả là: \(500:\dfrac{{100 - 20}}{{100}} = 625\)(nghìn đồng)

      Chọn B.

      Câu 4

      Phương pháp

      Kiểm tra tích \(a.d\)và \(b.c\) có bằng nhau hay không.

      Cách giải:

      Ta có: \(6.5 = \left( { - 2} \right).\left( { - 15} \right)\) nên \(\dfrac{{ - 2}}{5} = \dfrac{6}{{ - 15}}\)

      Chọn A.

      Phần II: Tự luận

      Bài 1

      Phương pháp

      a) Thực hiện phép tính trong ngoặc trước, ngoài ngoặc sau.

      b) Nhóm hai hỗn số có phần phân số giống nhau, sau đó cộng với hỗn số còn lại.

      c) Áp dụng tính chất phân phối của phép nhân và phép cộng.

      Cách giải:

      a) \(\left( {\dfrac{7}{{16}} + \dfrac{{ - 1}}{8} + \dfrac{9}{{32}}} \right):\dfrac{5}{4} = \left( {\dfrac{7}{{16}} + \dfrac{{ - 2}}{{16}} + \dfrac{9}{{32}}} \right):\dfrac{5}{4} = \left( {\dfrac{5}{{16}} + \dfrac{9}{{32}}} \right):\dfrac{5}{4} = \left( {\dfrac{{10}}{{32}} + \dfrac{9}{{32}}} \right):\dfrac{5}{4} = \dfrac{{19}}{{32}}:\dfrac{5}{4} = \dfrac{{19}}{{40}}\)

      b) \(10\dfrac{2}{9} + 2\dfrac{3}{5} - 6\dfrac{2}{9} = \left( {10\dfrac{2}{9} - 6\dfrac{2}{9}} \right) + 2\dfrac{3}{5} = 4 + \dfrac{{13}}{5} = \dfrac{{33}}{5}\)

      c) \(\dfrac{{ - 25}}{{30}}.\dfrac{{37}}{{44}} + \dfrac{{ - 25}}{{30}}.\dfrac{{13}}{{44}} + \dfrac{{ - 25}}{{30}}.\dfrac{{ - 6}}{{44}} = \dfrac{{ - 25}}{{30}}.\left( {\dfrac{{37}}{{44}} + \dfrac{{13}}{{44}} + \dfrac{{ - 6}}{{44}}} \right) = \dfrac{{ - 5}}{6}.\dfrac{{44}}{{44}} = \dfrac{{ - 5}}{6}\)

      Bài 2

      Phương pháp

      Thực hiện bài toán thứ tự thực hiện phép tính ngược để tìm x.

      Cách giải:

      a) \( - x - \dfrac{3}{5} = - \dfrac{1}{{10}}\)

      \(\begin{array}{l}x = \dfrac{1}{{10}} - \dfrac{3}{5}\\x = \dfrac{1}{{10}} - \dfrac{6}{{10}}\\x = - \dfrac{5}{{10}}\\x = - \dfrac{1}{2}\end{array}\)

      Vậy \(x = \dfrac{{ - 1}}{2}.\)

      b) \(\dfrac{2}{3}:x = 2,4 - \dfrac{4}{5}\)

      \(\begin{array}{l}\dfrac{2}{3}:x = \dfrac{{12}}{5} - \dfrac{4}{5}\\\dfrac{2}{3}:x = \dfrac{8}{5}\\\,\,\,\,\,\,\,x = \dfrac{2}{3}:\dfrac{8}{5}\\\,\,\,\,\,\,\,x = \dfrac{5}{{12}}\end{array}\)

      Vậy \(x = \dfrac{5}{{12}}.\)

      c) \(\dfrac{5}{4}\left( {x - \dfrac{3}{5}} \right) = \dfrac{{ - 1}}{8}\)

      \(\begin{array}{l}x - \dfrac{3}{5} = \dfrac{{ - 1}}{8}:\dfrac{5}{4}\\x - \dfrac{3}{5} = \dfrac{{ - 1}}{{10}}\\x\,\,\,\,\,\,\,\,\,\, = \dfrac{{ - 1}}{{10}} + \dfrac{3}{5}\\x\,\,\,\,\,\,\,\,\,\, = \dfrac{{ - 1}}{{10}} + \dfrac{6}{{10}}\\x\,\,\,\,\,\,\,\,\,\, = \dfrac{5}{{10}} = \dfrac{1}{2}\end{array}\)

      Vậy \(x = \dfrac{1}{2}.\)

      Bài 3

      Phương pháp:

      Tính số học sinh khối 6 bằng \(\dfrac{5}{{14}}\). Tổng số học sinh.

      Tính số học sinh khối 7 bằng \(\dfrac{1}{3}\). Tổng số học sinh

      Tính số học sinh khối 8 = Tổng số học sinh – (số học sinh khối 6 + số học sinh khối 7).

      Cách giải:

      Số học sinh khối 6 là: \(\dfrac{5}{{14}}.1008 = 360\) (học sinh).

      Số học sinh khối 7 là: \(\dfrac{1}{3}.1008 = 336\) (học sinh)

      Số học sinh khối 8 là: \(1008 - \left( {360 - 336} \right) = 312\) (học sinh).

      Bài 4

      Phương pháp:

      1. 2. Sử dụng hai tia đối nhau.

      3. Chứng minh thêm OA = OB, hết hợp O nằm giữa A và B đã chứng minh ở ý 1.

      Cách giải:

      Đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức 2

      1. Vì A thuộc tia Ox, B thuộc tia Oy.

      Mà Ox và Oy là hai tia đối nhau nên O nằm giữa A và B.

      2. Vì M nằm giữa O và A nên OM cũng chính là tia OA.

      Mà OA và OB là hai tia đối nhau nên OM và OB cũng là hai tia đối nhau.

      Suy ra O nằm giữa B và M.

      3. Vì O nằm giữa A và B nên AO + OB = AB

      Hay 3 + OB = 6.

      Suy ra OB = 6 – 3 = 3 (cm)

      Vì OA = OB (=3cm) và O nằm giữa A và B nên O là trung điểm của AB.

      Bài 5

      Phương pháp

      Phân tích \(A = a + \dfrac{b}{{3 - n}}\), với \(a,\,\,b \in \mathbb{Z}\).

      Để \(A \in \mathbb{Z}\) thì \(3 - n \in U\left( b \right)\).

      Cách giải:

      \(\begin{array}{l}A = \dfrac{{3n - 4}}{{3 - n}} = \dfrac{{3n - 9 + 5}}{{ - n + 3}}\\\,\,\,\,\, = \dfrac{{3n - 9}}{{ - n + 3}} + \dfrac{5}{{ - n + 3}}\\\,\,\,\,\, = \dfrac{{ - 3\left( { - n + 3} \right)}}{{ - n + 3}} + \dfrac{5}{{ - n + 3}}\\\,\,\,\,\, = - 3 + \dfrac{5}{{ - n + 3}}\end{array}\)

      Để A nhận giá trị nguyên thì \( - 3 + \dfrac{5}{{ - n + 3}} \in \mathbb{Z} \Rightarrow \dfrac{5}{{ - n + 3}} \in \mathbb{Z}\)\( \Rightarrow - n + 3 \in \left\{ { \pm 1; \pm 5} \right\}\)

      Ta có bảng giá trị sau:

      Đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức 3

      Vậy \(n \in \left\{ {2;4; - 2;8} \right\}\).

      Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức – nội dung then chốt trong chuyên mục giải bài toán lớp 6 trên nền tảng toán học. Với bộ bài tập toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

      Đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức: Tổng quan và Hướng dẫn Giải Chi Tiết

      Đề thi giữa kì 2 Toán 6 - Đề số 2 chương trình Kết nối tri thức là một bài kiểm tra quan trọng giúp học sinh đánh giá mức độ nắm vững kiến thức đã học trong giai đoạn giữa học kì. Đề thi bao gồm các dạng bài tập khác nhau, tập trung vào các chủ đề chính như số nguyên, phân số, tỉ số, phần trăm và hình học cơ bản.

      Cấu trúc Đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức

      Thông thường, đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức sẽ có cấu trúc như sau:

      • Phần trắc nghiệm: Khoảng 5-7 câu hỏi, tập trung vào việc kiểm tra kiến thức lý thuyết và khả năng vận dụng các công thức cơ bản.
      • Phần tự luận: Khoảng 3-5 bài tập, yêu cầu học sinh trình bày lời giải chi tiết và rõ ràng. Các bài tập tự luận thường bao gồm các dạng bài tập về số nguyên, phân số, tỉ số, phần trăm và hình học.

      Các Chủ đề Chính trong Đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức

      1. Số nguyên: Các phép toán cộng, trừ, nhân, chia số nguyên; tính chất của số nguyên; so sánh số nguyên.
      2. Phân số: Các phép toán cộng, trừ, nhân, chia phân số; rút gọn phân số; so sánh phân số.
      3. Tỉ số và phần trăm: Tính tỉ số của hai đại lượng; tính phần trăm của một đại lượng; giải bài toán về tỉ số và phần trăm.
      4. Hình học: Các khái niệm cơ bản về hình học; tính diện tích và chu vi của các hình đơn giản (hình vuông, hình chữ nhật, hình tam giác).

      Hướng dẫn Giải Đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức

      Để đạt kết quả tốt trong đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức, học sinh cần:

      • Nắm vững kiến thức lý thuyết: Hiểu rõ các định nghĩa, tính chất và công thức cơ bản.
      • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng giải toán.
      • Đọc kỹ đề bài: Hiểu rõ yêu cầu của đề bài trước khi bắt đầu giải.
      • Trình bày lời giải rõ ràng: Viết các bước giải một cách logic và dễ hiểu.
      • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

      Ví dụ về một bài tập trong Đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức

      Bài tập: Tính giá trị của biểu thức sau: (1/2 + 1/3) x 6/5

      Lời giải:

      1. Tính tổng trong ngoặc: 1/2 + 1/3 = 3/6 + 2/6 = 5/6
      2. Nhân kết quả với 6/5: (5/6) x (6/5) = 1
      3. Vậy, giá trị của biểu thức là 1.

      Tài liệu Ôn tập cho Đề thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức

      Để chuẩn bị tốt nhất cho đề thi, học sinh có thể tham khảo các tài liệu sau:

      • Sách giáo khoa Toán 6 - Kết nối tri thức
      • Sách bài tập Toán 6 - Kết nối tri thức
      • Các đề thi thử giữa kì 2 Toán 6 - Kết nối tri thức
      • Các trang web học toán online uy tín như giaitoan.edu.vn

      Lời khuyên

      Hãy dành thời gian ôn tập kiến thức một cách kỹ lưỡng và làm nhiều bài tập để tự tin bước vào kỳ thi giữa kì 2 Toán 6 - Đề số 2 - Kết nối tri thức. Chúc các em học sinh đạt kết quả tốt nhất!

      Chủ đềMức độ quan trọng
      Số nguyênCao
      Phân sốCao
      Tỉ số và phần trămTrung bình
      Hình họcTrung bình
      Nguồn: giaitoan.edu.vn

      Tài liệu, đề thi và đáp án Toán 6